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SOME CRYSTAL ROGERS-RAMANUJAN
TYPE IDENTITIES

MIRKO PRIMC

ABSTRACT. By using the KMN2 crystal base character formula for the basic

A~l)-module, and the principally specialized Weyl-Kac character formula, we
obtain a Rogers-Ramanujan type combinatorial identity for colored partitions.
The difference conditions between parts are given by the energy function of

certain perfect A~l) -crystal. Vve also recall some other identities for this type
of colored partitions, but coming from the vertex operator constructions and
with no apparent connection to the crystal base theory.

1. INTRODUCTION

J. Lepowsky and R. Wilson gave in [LW] a Lie-theoretic interpretation of
Rogers-Ramanujan identities in terms of representations of affine Lie algebra
g = .5[(2, q~.The product sides of Rogers-Ramanujan identities follow from
the principally specialized Weyl-Kac character formula for level 3 standard g­
modules, the sum sides follow from the vertex operator construction of bases of
level 3 standard g-modules, parameterized by partitions satisfying difference
2 conditions.

The Lepowsky-Wilson approach is also possible for other affine Lie algebras
and for other constructions of vertex operators, various combinatorial conse­
quences are illustrated by constructions given, for example, in [C3]' [LP]' [Ma]
and [Mi].

In [PI] there is a construction of the basic A~1)-module based on the
Frenkel-Kac vertex operator formula. It was noted there that the combina­
torial difference conditions arising from the vertex operator formula coincide
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with the energy function in the construction by paths of the basic represen­

tation of A~~l given in [DJKMO]. In [P2] this combinatorial connection for
basic modules is extended to other classical affine Lie algebras, this time by
using more general crystal base character formula for standard modules due
to S.-J. Kang, M. Kashiwara, K. C. Misra, T. Miwa, T. Nakashima and A.
Nakayashiki [KMN2].

This combinatorial connection of the crystal base theory and the vertex
operator constructions suggested that it might be interesting to study Rogers­
Ramanujan type combinatorial identities for colored partitions, where differ­
ences are given by energy functions of perfect crystals. So we start, roughly
speaking, with colored partitions (nl),81 ~ (n2),82 ~ ... ~ (ns)ss > 0, where
each number nr is "colored" with a "color" f3r from the set of nine "colors"
{1, ... ,9}. Analogous to the Rogers-Ramanujan case, we consider colored
partitions satisfying difference conditions

where differences E,8rl3r+l E {O, 1, 2} are the values of an energy function of
certain perfect 5[(3, q~-crystal. We obtain an identity for such colored par­
titions (Theorem 2.1) by using the principally specialized Weyl-Kac character
formula and the crystal base character formula [KMN2].

In the last section we recall some other identities for this type of colored
partitions, but coming from the vertex operator construction [MP2] and with
no apparent connection to the crystal base theory.

I am grateful to Jim Lepowsky and Arne Meurman for many ideas and
results implicit in this work, and to Ivica Siladie for testing the identities
numerically. I thank the ICTP in Trieste, where this work started, for their
kind hospitality.

2. A COMBINATORIAL IDENTITY

Let A be a nonempty set and denote by peA) the set of all maps 7f : A ~ N,
where 7f(a) equals zero for all but finitely many a E A. Clearly 7f is determined
by its values (7f(a) I a E A) and we shall also write 7f as a monomial

7f = IIa1l"(a).
aEA

We shall say that 7f is a partition and for 7f(a) > 0 we shall say that a is a
part of 7f. We define the length f(7f) of 7f by f(7f) = LaEA 7f(a). We consider
elements of A as partitions of length 1, i.e. A c peA). For P,7f E peA) we
write 7f :J P if 7f(a) ~ pea) for all a E A and we say that 7f contains p.

For P,7f E peA) we define 7fP in peA) by (7fp)(a) = 7f(a) + pea), a E A.

We shall say that 1 = TIaEA aD is the partition with no parts and length O.
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Clearly P(A) is a monoid. For lack of a better terminology, we shall say that
I C P(A) is an ideal in the monoid P(A) if p E I and 7f E P(A) implies
P7f E I. For such an I we call the difference of sets P(A)\I a partition ideal
in P(A) (d. [AI, Chapter 8]). Later on we shall consider an ideal I = P(A)V
generated by a set V, and the corresponding partition ideal we shall denote
as

Pv = P(A)\(P(A)V).

Let a ~ lal be a map from A to N. Then we define the degree 17f1 of 7f by

17f1 = l:lal7f(a),
aEA

and we say that a part a of 7f has the degree lal.
Now let

f = {1,2,3,4,5,6,7,8,9},

we shall think of f as a set of colors, and let A = f x Z<o. We shall write
(0:, i) =icn

A = {i", 10: E f, i E Z<o},

and we shall think that i", has a color 0:. We define a map (-i)", ~ I(-i)", I
for i > a by

(2.1)

(-ih ~ 3i - 2,

(-ih ~ 3i -1,

(-ih ~ 3i - 1,

(-i)4 ~ 3i,

(-i)s ~ 3i,

(-i)6 ~ 3i,

(-i)g ~ 3i + 2,

(-i)s ~ 3i + 1,

(-ih ~ 3i + 1.

So, for example, (-5h has the color 1 and the degree I(-5h I = 13. In general,
we can think of 7f E P(A) as a colored partition of the nonnegative integern = 17f1.Let E = (E",p)"',PEr be a matrix

2

22122222
1

21121222
1

12112222
1

11a11111
E=

aa11a1122
a

1a11a212
a

1a11a212
a

a11a1122
a

aa1aa112

Define a subset V in P(A) by V = {i",ip I E",pEp", ~ I} U{(i -l)",ip I E",p = 2}.
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We shall say that a colored partition IT satisfies the difference D condition
if IT does not contain any colored partition from D, or, equivalently, if IT

is an element of the partition ideal Pv = P(A)\(P(A)D). So, for example,
IT = (-5h (-3)8 (-2)9 does not satisfy the difference D condition since E89 = 2
and (-3)8(-2)g E D.

Now we can state the following Rogers-Ramanujan type identity:

Theorem 2.1.
00 00

L H/ITJ = n lIT E pv}qn = II(1- qr)-I.
n=O r=1

The product side follows from the principally specialized Weyl-Kac char­
acter formula for the basic .5[(3, q~-module [L], the sum side follows from
the crystal base character formula [KMN2]. The proof is given in the next
section.

3. THE PRINCIPALLY SPECIALIZED

CHARACTER FOR THE BASIC A~1)-MODULE

Let us consider a multiple of the character of the basic .5[(3, q~-module
L(Ao)

(3.1)

00

II(1 - e-rO)-l . e-Ao ch L(Ao).
r=l

Then the principal specialization e-ai 1-+ q, i = 0,1,2, of this product gives
00 00

II(1 _lr)-l II (1 - qr)-l = II(1 _ qr)-l.
r=l rotO mod 3 r=l

Here we use notions, notation and results as in [K] or [L].
On the other side, we may use the results in [KMN2] to express (3.1) in

terms of colored partitions. We consider a perfect crystal r for 5[(3, q~
coming from the tensor product of the vector representation and its dual:

1~2~5

11 11
4 7~9

together with a-arrows
o 0 0 0

9 -t 4 -t 1, 8 -t 3 and 7 -t 2 .
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For 13 E r let us denote by wt(j3) the f)-weight of 13, that is, the restriction of
the classical weight of 13 on the fixed Cartan subalgebra f)c g. Note that

wt 1 = - wt 9 = al + a2,

wt 2 = - wt 8 = a2,

wt 3 = - wt 7 = al,
wt 4 = wt 5 = wt 6 = o.

The crystal r has the unique energy function H with values in {O,1, 2}, and
we have chosen

Ea{3 = H(j3 0 a).

In particular, we have

(3.2) E44 = H(404) = 0, wt4 = o.

The ground state path for the basic module L(Ao) is

PAa = 4,4,4,4,4,4, ....

By [KMN2, Proposition 4.6.4], the set P(Ao, r) of sequences P = (p(j) ; j ~
1) in r such that p(j) = PAa(j) = 4 for j »0 parameterizes a basis of L(Ao),

where, by taking into account (3.2), the weight and the degree of a sequence
is given by

00

(3.3)

(3.4)

Ipi = - Lj H(p(j + 1) 0 p(j)),
j=l

00

wt(p) = Lwt(p(j)).
j=l

We want to interpret this result in terms of colored partitions, and, in order
to do that, let us think of colored partitions in a different way: Let ~ be an
order on r defined as

1 >- 2 >- 3 >- 4 >- 5 >- 6 >- 7>- 8 >- 9,

and define an order on A by

if either i < j or i = j, 13 ~ 'Y.

This is a total order on A. For a colored partition
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we may assume that jl ~ ... ~ js < 0 and that jr = jr+l implies /3r ~ /3r+l,

i.e., (jr)!3r ~ (jr+r)!3r+l' Sometimes we shall denote a colored partition v as

We may visualize v by its Young diagram:

color /3100···0···00- Jl
boxes

/32

00···0···0 - J2...
/3s

00···0 - Js .

Then the total number of boxes Ilvl/ in the Young diagram of v is

s

IIvl1 = L -jm .
m=1

Since to each color /3 E r we can associate its weight wt(/3) E ~*, we define a
weight wt(v) of the colored partition v as

s

wt(v) = L wt(/3m) .
m=1

Now for a given path

p = /31,'" ,/3s-1,/3s,'" ,4,4,4,4, ...

we construct a colored partition partv (P) in the following way: We start with
a large enough 5, i.e., an 5 such that /3j = 4 for all j ~ 5, and we set

-is = -is+1 = ... = 0,

and from there on

-is-1 =E!3._1!3.,

- is-2 = E!3._2!3._1 + E!3._1!3.,

s-1

- i1= L E!3r!3r+l.
r=1

Note that E44 = 0, so it does not matter with which 5 » 0 we have started.

N ow we define a colored partition partv (P) associated to p as
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where we identify the product of all (0)4 with 1 E P(A). It is easy to check
that

(3.5)

so by construction we have

We may visualize the above construction of p 1-+ partv(P) in terms of Young
diagrams: We start from "the bottom" for large enough s and we add 0 boxes
to a color {Js = 4. As we are finished with associating -ir+! boxes to {Jr+1, we
associate to (Jr an extra E{3r,{3r+1 boxes, so that partv(p) satisfies difference
conditions

By counting the number of boxes we added at each stage, we see that the
total number of boxes in partdp) equals -Ipl given by (3.3), i.e.

(3.6)

. s

'. II partv(P)11 = L r E{3r,{3r+l = -Ipl·
r=l

We also have (d. (3.4) and (3.2))

(3.7)

s

wt(partv(p)) = L{Jr = wt(p).
r=l

For a given colored partition v and a plain partition ~ E P(Z<o) (Le. a
partition "without colors"),

v= ((ir){31 ~···~(is){3s),

~ = (jl ~ h ~...~jp),

is,jp < 0, we define a colored partition v EB ~ by

where r = max{ s,p}, with additional colors {Js+l = ... = {Jp = 4 in the case
p> s, and

kn = in + L -1,
-jm~n

that is, to a Young diagram of v we add to each color {Jl, ... , {J-il one box,
then we add to each color {Jl, ... , {J- i2 another one box, and so on. Of course,
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in the case p > s we consider isH = ... = ip = O. It is clear that in the case
v = partv(p) we have difference conditions

It is clear that the map

(p,~) I-t partv(P) EB~,

is injective. Hence, by using (3.6) and (3.7), [KMN2, Proposition 4.6.4] implies

00

L ewt(1r)-111rIlo = II(1 - e-rO)-l . e-Ao chL(Ao),
1r=partv(p)EBll. r=l

where the sum runs over all pats p E P(Ao, r) and plain partitions ~ E

P(Z<o).
What we want to see is that every 7r = partv(p) EB~ is in Pv. For that it

is sufficient to show that

(3.8) (ia ~ j(3) E Pv if and only if Ii- jl ~ Ea{3,

(3.9)

ia ~ j{3 ~ k-y, Ii - kl ~ 1, iak-y E V implies iaj{J E V or j{3k-y E V.

It is easy to see, by using (3.5), that (3.8) holds. Now, in the presence of
(3.8), we can easily check that (3.9) holds as well; in terms of E it reads as

(3.10)

or, equivalently, as

Hence every 7r = partv(P) EB~ is in Pv. Moreover, every 7r E Pv can be
written in this way, and hence we have

00

L ewt(1r)-111rIlo = II(1- e-ro)-l . e-Ao chL(Ao)·
1rEPv r=l

Since the map (-i) a I-t I(-i)al defined by (2.1) is the principal specialization,
Theorem 2.1 holds.
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4. SOME REMARKS

Let r be a classical crystal with an energy function H with values in the

set {O, 1, 2}. Then, as before, we can consider colored partitions 7f E peA)
with A = r x Z<o and we can define the degree 117f11 and the ~-weight of
7f as above, with ~ = C-span{h1, ... ,ht} (see [KMN2]). If we set Ene =
H(fJ iZI 0:) E {O, 1, 2}, we can define

and we can consider colored partitions which satisfy difference V conditions,
that is, 7f E Pv. Let us define a "character" of the partition ideal Pv as

ch(Pv) = L ewt(11")-II11"llo.

11"EPv

The map e-n; f-t q, i = 0,1, ... ,t, defines e-o f-t qm and the principally
specialized character

00

chq(Pv) = L HI7f1 = n 17f E Pv} qn,
n=O

where I(-j)el = mj - (p, fJ), with (p,O:i) = 1 for i = 1, ... ,t (cf. [K]).

With this notation at hand we can write Theorem 2.1, for our particular

choice of the A~l) -crystal r, as

00

chq(Pv) = II(1- qT)-l.
T=l

Let r be a perfect crystal for 9 = s[(n, q~,n ~ 4, coming from the tensor
product of the vector representation and its dual. Then there is an energy
function H taking values in {O, 1, 2} and the ground state path for the basic
g-module is a constant sequence p(j) = a, with Eaa = H(a iZI a) = 0 and
wt(a) = O. Moreover, there is a total order ~ on r such that (3.5) holds. So
the same proof would go through, and the above identity would hold, if we
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could show (3.10). For example, in the case of A~l) -crystal

14 ~ 24~34~44

31

31 31

13

~23 2
33 43----t

21

2121

12

1
22 32~42--+

11
1111

11

21 ~ 31 ~ 41

together with O-arrows41 ~ 11 ~ 14,

21 ~ 24,31 ~ 34,42 ~ 12,43 ~ 13

all these properties hold, including (3.10), and we have an identity of the

above form. On the other side, let r = {1, 2, 3, 4} be the A~l) -crystal

2+--4
o

with the energy matrix

(2 1 2 2)

1 0 1 1
E= 0 1 0 2 .

o 1 0 2

The KMN2 crystal base character formula is proved under the assumption that
the rank of 9 is at least two, but still many results also hold for 9 = 5[(2, q~.
So it is reasonable to ask whether an analogue of Theorem 2.1 holds as well,
i.e., whether

00

chq(Pv) = II(1 - qr)-1 ?
r=1

Note that here the principal specialization reads

(-ih f-t 2i - 1, (-ih f-t 2i, (-ih f-t 2i, (-i)4 f-t 2i+ 1.
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What is surprising is that there are other identities of a similar form, but
which are not related to the crystal base theory, at least not in any obvious

way: consider an "almost perfect" Ail) -crystal

1 1
1~2~3

o 0

with the energy matrix

Then we have

(4.1) chq(Pv)= II (l_qT)-l.
Todd

Note that here the principal specialization reads

(-ih f--7 2i - 1, (-ih f--7 2i, (-ih f--7 2i + 1.

Moreover, if we define a map (-i)cr M I(-i)crl for i > 0 by

(-ih f--7 3i - 2, (-ih f--7 3i, (-ih M 3i + 2,

(i.e. if we take the (1,2)-specialization of ch(Pv)), then we have a Capparelli
identity (see [C1]-[C3]' [A2])

00

(4.2) L HI7f1 = n I 7f E Pv} qn = II (1 + qT).
n=O T,=l,3,5,6 mod 6

Both (4.1) and (4.2) are proved in [MP2] as specializations of the character
formula for the basic 5[(2,q~-module written in the form

e-Ao ch L(Ao) = ch(Pv).

The character formula itself is proved by using the Lepowsky-Wilson ap­
proach, the proof being quite parallel to [MP1]. The set TJ is originally defined
as the set of leading terms for the vertex operator algebra defining relations
for the basic 5[(2, q~-module (d. [MP2, Section 6]).

So it seems that interesting combinatorial properties of ch(Pv) go beyond
the crystal base character formula [KMN2, Proposition 4.6.4], at least when
the relation Ecr-y ~ Ecr13 + E13-y holds and when there is a total order ~ on r
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such that Ea{3 = 0 implies a ~ fl. Further indications for this provide the
results-in [P2] and the examples below.

Although the one by one matrices have nothing to do with crystals, the
notion of difference 'D condition still makes sense for r = {I} and E = (Ell) =
(2); it is simply the difference 2 condition and chq (Pv), defined via I(-ih I = i,
is the sum side of a Rogers-Ramanujan identity. On the other hand, for
E = (Ell) = (1) the difference 'D condition defines partitions in distinct
parts. Of course, the second case is much simpler, and it has an equally

simple analogue for r = {I, 2} and E = (~ ~): consider an "almost perfect"

Ail) -crystal
1

1 t==: 2
a

with the energy matrix Ea{3 = H(fl I8l a) chosen to be E. Then

(-jhf-t2j-~, (-jh f-t2j + ~

is the principal specialization and we have an identity for partitions in half­
integers

chq(Pv) = IT (1 + qr+!).
r~l

In the case E = (~~) the principal specialization of Pv gives partitions
in half-integers satisfying difference 3 condition, but I am not aware of any
formula that would express chq(Pv) as an infinite product.

Finally, the formulation of Rogers-Ramanujan type identities for colored
partitions in terms of energy functions for crystals was also motivated by a
desire to understand better an identity for the basic A~l) -module obtained in
[MP3]. The set 'D of difference conditions is defined as the set of leading terms
of relations for the basic module, but can be defined as well in the following
way: consider the weighted A2-crystaI r' = r\ {4}

1~2 ~5

21

21

3

1

6 8---+
11

11

7

~9

It is not possible do define O-arrows which would turn r' into an A~l) -crystal
with an energy function. But still, we can define a "difference condition
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matrix"

(E",j3) ""j3H'

2

2222222
1

2121222
1

1212222

E=

01111122
1

1111212
0

1011212
0

0111122
0

0001112

and we can define a subset V in P(A), A = rl x !Z<O, by

V ={i",ij3 I E",(3Ej3", ~ I} U{(i - l)",ij3 I E",j3 = 2}

U{(i - 1h is ir} U{(i - l)g (i - l)s i7}'

Then, as proved in [MP3], we have

e-Ao ch L(Ao) = ch(Pv).

By taking the principal specialization (2.1) without the color 4, we obtain a
combinatorial identity

II
rjt;O mod 3

As it happens, the above "difference 2 conditions" {(i -l)",ij3 I E",j3 = 2} are
the same as in the case of partitions discussed in Section 2. One is tempted
to think that this is more than a mere coincidence and that the difference

conditions {(i-I h is ir} U{(i - l)g (i - 1)s i7} are some sort of "corrections"

of the fact that rl is not a perfect A~l)-crystal. With this regard it may be
interesting to note that the energy matrix E in Section 2 is invariant under
the change

1 t+ 1, 2 t+ 3, 5 t+ 6, 7 t+ 8, 9 t+ 9

and 4 t+ 4. Here we have ES1 = 0, E61 = 1 and Egs = 0, E96 = 1. So the
"interaction" between parts i6 i1 E V and is i1 rt V is not symmetrical, the
later is "compensated" with a weaker requirement (i - 1h is h E V. Likewise
ig i6 E V "corresponds" to a weaker ig is (i + 1h E v. It should be said that
the present proof of the above identity has no connections with the crystal
base theory.
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