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THE EXTRARESOLVABILITY OF SOME FUNCTION
SPACES*

O. T. ALAS, S. GARCIA-FERREIRA AND A. H.TOMITA

ABSTRACT. A space X is said to be extraresolvable if X contains a fam
ily 7) of dense subsets such that the intersection of every two elements
of 7) is nowhere dense and 17)1 > ~(X), where ~(X) = min{IUI :
U is a non empty open subset of X} is the dispersion character of X.
In this paper, we study the extraresolvability of some function spaces
Cp(X) equipped with the pointwise convergence topology. "liVeshow that
Cp(X) is not extraresolvable provided that X satisfies one of the follow
ing conditions: X is metric; nw(X) = w; X is normal, e(X) = nw(X)

and either e(X) is attained or cf(e(X)) is countable. Hence, Cp(JR) and
Cp(Q) are not extraresolvable. "liVeestablish the equivalences 2w < 2WI

iff Cp([O,WI)) is extraresolvable; and, under GCH, for every infinite
cardinal K, the space Cp([O, K)) is extraresolvable iff ef(K) > w, where
[0, K) has the order topology. \Ve also prove that if K<cf(K) = K and
cf(K) > w, then Cp({O,I}K) is extraresolvablej and that Cp(,B(K)) is
extraresolvable, for every infinite cardinal K with the discrete topology.
It is shown that Cp([O, ,BwI)) is extraresolvable, where ,BwI is the beth
cardinal corresponding to WI' Under GCH, for a compact space X,
we have that cf(w(X)) > W iff Cp(X) is extraresolvable. We proved
that 2W < 2WI is equivalent to the statement "Cp( {O, 1}WI) is strongly
extraresolvable" .

O. INTRODUCTION

All topological spaces considered in this paper are Tychonoff without iso
lated points. If X is a space, then Cp(X) will denote the space of all real
valued continuous functions on X with the pointwise convergence topology (i.
e., the topology on Cp(X) inherited from the space l~:\'lWe allow X to have
isolated points only when we deal with Cp(X).

E. Hewitt [He] called a space resolvable if it has two disjoint dense subsets.
The class of resolvable spaces is very extensive: E. Hewitt [He] proved that
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all metric spaces and all locally compact spaces are resolvable (see [CGl, Th.
3.7]). Years later, Ceder [CeJ introduced the spaces which contain k-many
pairwise disjoint dense subsets, for a cardinal K, ~ 2, and he called them
K,-resolvable. It is evident that a space X cannot be K,-resolvable for any
K,> ~(X). A ~(X)-resolvable space X is called maximally resolvable. Ceder
[CeJ showed that metric spaces and locally compact spaces are maximally
resolvable (see [CGl]). The following class of spaces, which contains the class
of w-resolvable spaces, was investigated by V. 1. Malykhin [Maj.

Definition 0.1. (Malykhin) A space X is called extraresalvable if there ex
ists a family V of dense subsets of X such that / V I> ~(X) and D n E is
nowhere dense whenever D, E E V and D ::j:. E.

The authors of [CG2] and [CG3] slightly generalize Malykhin's extraresolv
ability as follows.

Definition 0.2. A space X is called strongly extraresalvable if there exists a

family V of dense subsets of X such that 1V I> ~(X) and IDnEI < nwd(X)
whenever D, E E V and D ::j:. E, where nwd(X) is the nowhere density number
of X defined by nwd(X) = min{IAI : A ~ X, A is not nowhere dense in X}.

Notice that every strongly extraresolvable space is extraresolvable and the
reader may find examples of extraresolvable spaces which are not strongly ex
traresolvable in [CG2J. We know that the rational numbers Q is extraresolv
able, and that the real line lR cannot be extraresolvable (for stronger results
see [GMT]). Some other topological properties of extraresolvable spaces, not
considered here, are available in [AGT], [GMT], [CG2J and [CG3J.

For every space X, the space of all bounded real-valued continuous func
tions on X, denoted by C*(X), considered as a subspace of C(X) is a met
ric space (see [GJ]). Hence, by Ceder's Theorem quoted above, C*(X) is
maximally resolvable, for every space X. Since every open subset of Cp(X)
contains a topological copy of C*(X) and IC*(X)I = ICp(X)I, we have that
~(C*(X)) = ~(Cp(X)) = ICp(X)/ and, by Theorem 2.2 of [CGIJ, Cp(X)
is maximally resolvable for every space X (this fact was noticed by V. V.
Tkachuk). This remark suggests the question: When is Cp(X) extraresolv
able, for a space X ? It turns out that the answer is, in some cases, indepen
dent from the axioms of ZFC.

In the present paper, the first Section contains some preliminary results,
and, in the second Section, we study the extraresolvability of some function
spaces and show, in ZFC, that many of the Cp(X) spaces are not extrare
solvable. In this Section, we also give an Example of a space X for which
Cp(X) is strongly extraresolvable.
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1. PRELIMINARIES

Cardinal variables are denoted by the Greek letters a, K and >.. For a set

X and an infinite cardinal number a, we put [X]<>= {A <;::; X : I A 1= a}, the
meaning of [X]<<>and [X]:<,<>should be clear. We use the standard notation
(for definitions see [Ar]) d(X), e(X), t(X), c(X), 'ifw(X), nw(X), iw(X) and
w(X) for the density, the extent, the tightness, the cellularity, the 'if-weight,
the net weight, the i-weight and the weight of a space X, respectively. A
family N of subsets of a space X is said to be a 'if-network if 0 ¢ N and each
nonempty open subset of X contains an element of N. If A is a family of
nonempty subsets of a set X, then ~(A) = min{IA[ : A E A}.

Several classes of spaces are contained in the class of maximally resolvable
spaces: E. G. Pytkeev [Py] proved that k-spaces are maximally resolvable and
V. 1. Malykhin and 1. V. Protasov [MP] showed that totally bounded groups
are maximally resolvable: For background and references about maximal re

solvability the reader is referred to [CGl]. Here, we only state the results of
E. G. Pytkeev and A. G. EI'kin:

Theorem 1.1. Let X be a space.

1. [A. G. El'kin [EI]] If'ifw(X) :::;~(X), then X is maximally resolvable.
2. [E. G. Pytkeev [PyJ] Ift(X) < 6.(X), then X is maximally resolvable.

In the next Theorem, we establish the connection between extraresolvable
and w-resolvable spaces and give a condition to see when a space is not ex
traresolvable (the proofs are available [GMT]).

Theorem 1.2. Let X be a space. Then,

1. if X is extraresolvable, then X is w-resolvable; and

2. if I X [nw(X)= ~(X), then X is not extraresolvable. Furthermore, if
there is a 'if-base of size at most ~(X), then X is maximally resolvable.

\Ve remark from Theorem 1.2 that XI< is never extraresolvable for every
space X and for every cardinal K ~ nw(X). Hence, compact topological
groups and compact metric spaces fail to be extraresolvable.

The next conditions guarantee the strong extraresolvability of some spaces
(these conditions are taken from [AGT]).

Lemma 1.3. Let K and a be cardinal numbers with w :::;a. If X satisfies one
of the following two lists of conditions:

1. ef(K) = a;
2. X has a 'if-network N such that INI :::;K :::; K<<>:::;6.(N);
3. every subset of X of size < K is nowhere dense; and

4. 6.(X) < K<>,

or
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1'. X has a 7r-network N such that INI ::;0: ::; ",<a::; t1(N);

2'. every subset of X of size < 0: is nowhere dense; and

3'. t1(X) < ",a,

then X is strongly extraresolvable.

Using Lemma 1.3, it is shown in [AGT] that the assumption 21' < 21'+

is equivalent to the extraresolvability of the power (",+)"', for every infinite
cardinal number "'. The authors of [AGT] also noticed that many powers,
although several of them are not extraresolvable, admit an extraresolvable
dense subspace.

The proof of the next result resembles the one 'of Theorem 3.1 of [G?vIT].

Lemma 1.4. If X satisfies that

t(X) < d(X) = nwd(X) ::; d(X)<cj(d(X)) ::; t1(X) < d(X)cj(d(X)),

then X is strongly extraresolvable.

Proof: By Theorem 1.1, X is maximally resolvable and hence we may find
a pairwise disjoint family V of dense subsets of X with IVI = d(X)<cj(d(X)).

Let D be a dense subset of X with IDI = d(X). We faithfully index V and
D as {Dy,s: v < d(X),s E d(X)<cj(d(X))} and {dy: v < d(X)}, respectively.

For each v < d(X) and each s E d(X)<cj(d(X)), we choose Ny,s E [Dy,s]St(X)

such that dy E clx Ny,s' Now, for f E d(X)cj(d(X)) we define

Nj = U U Ny'!I.·
y<d(X) Ikcj(d(X))

It is not hard to see that Nj is dense in X for each f E d(Xyj(d(X)). If

f, 9 E d(X)cj(d(X)) and f f::. g, then INj nNg I < d(X) = nwd(X). This shows
that X is strongly extraresolvable. 0

Two important consequences of Lemma 1.4 are the following.

Theorem 1.5. If X satisfies that

1. t(X) < d(X) ::; d(X)<cj(d(X)) ::; t1(X) < d(X)cj(d(X)); and

2. d(V) = d(X), for every non-empty open subset V of X,

then X is strongly extra resolvable.

Proof: By Lemma 1.4, it suffices to show that d(X) = nwd(X). We always
have that d(X) ~ nwd(X). Let A E [X]<d(X) and suppose that there is a
nonempty open subset V of X with V ~ clxA. Then, V n A is dense in V,

but this is impossible since IAI < d(X) = d(V). Therefore, d(X) ::; nwd(X) 0

Theorem 1.6. If G is a topological group such that

1. t(G) < d(G) ::; d(G)<cj(d(G)) ::; t1(G) < d(G)cj(d(G)) and

2. c(G) < d(G),
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then G is strongly extraresolvable.

Proof: In virtue of Lemma 1.4, we only need to verify that d(G) ~ nwd(G).

Let A E [Gj<d(C). Without loss of generality, we may assume that A is a
subgroup of G. Then, H = clcA is also a subgroup of G. Let us suppose
that H has non-void interior. Then, H is a clopen subgroup of G and since
IG/HI ~ c(G) and d(H) ~ IAI, we have that d(G) ~ c(G) ·IAI < d(G), which
is a contradiction. So, d(G) ~ nwd(G) and hence d(G) = nwd(G). 0

The following Lemma is taken from [GMT].

Lemma 1.7. If X satisfies that

t(X) < d(X) ~ 6.(X) < 2d(X)

and d(X) is a strong limit cardinal, then X is strongly extraresolvable.

Lemma 1.8. If X satisfies that

t(X) < d(X) = nwd(X) = 6.(X)

then X is strongly extraresolvable.

Proof: From Theorem 1.1 we obtain that X is maximally resolvable. Hence,
there is a pairwise disjoint family {Dv : v < d(X)} of dense subsets of X. Fix
a dense subset D = {dv : v < d(X)} of X with IDI = d(X). Let {(v~,J.l~;) :

~< d(X)} be an indexing of d(X) x d(X). Now, choose S(vo.J1o) ~ Dvo such
that IS(vo,J1o)I ~ t(X) and dvo E clxS(vO,J1o)' By transfinite induction, for
every ~ < d(X) we may find S(Vf.,J1f.) ~ Dvf. such that

1. IS(vf.,J1d I ~ t(X);

2. dvf. E clxS(vf.,J1f.); and

3. S(Vf.,J1f.) ~ Dvf. - (U«~ Sh,J1.;))·

Abandoning earlier enumeration, we have defined a pairwise disjoint family

{S(.;,(): (~,() E d(X) x d(X)} of subsets of X which satisfies the following:

1. IS(.;,d ~ t(X), for all (~, () E d(X) x d(X);

2. d~ E clxS(~,(), for all (~, () E d(X) x d(X); and
3. if (~, () i- (v, J.l), then S(~,() nS(v,J1) = 0, for (~, (), (v, J.l) E d(X) x d(X).

By Lemma 12.8 of [GJ], there is a family :F ~ d(X)d(X) such that IFI > d(X)

and I{~ < d(X) : fW = g(~)}1 < d(X) whenever f,g E F and f i- g. For
each f E F we define

Nt = U S(~,f(~)).
~<d(X)

We then have that Nt is dense in X for each f E F, and if f, g E F are distinct,
then INt n Ngi < d(X) = nwd(X). Therefore, X is strongly extraresolvable.
o

It is shown in [CG2] that if w(X) ~ 6.(X), then there is a family E of dense
subsets of X such that ID n EI < 6.(X) for distinct D, FEE. But, some
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spaces with this property are far of being extraresolvable (for instance, the
real line lR). By adding the obvious extra condition, we get extraresolvability:

Lemma 1.9. [CG2] If X satisfies that

w(X) = ~(X) = nwd(X),

then X is strongly extraresolvable.

In the next Lemma, we list some properties of the function spaces that we
shall use in the second Section (the proofs are available in [Ar], [MeN], [No]
and [CH]).

Proposition 1.10. 1. For every space X, we have the following.

a. /Cp(X)/w = /Cp(X)/ = w(,B(X))W;

b. ~(Cp(X)) = ICp(X)/ ~ 2d(X);

c. d(Cp(X)) = iw(X);
d. w(Cp(X)) = IXI;
e. c(Cp(X)) = w; and
f. nw(Cp(X)) = nw(X).

2. If X is a metric space, then ICp(X)1 = 2d(X).

3. If K is an infinite cardinal, then

a. ICp([O, K))I = KW = ~(Cp([O, K))) and
b. w(Cp([O, K))) = K.

4. If X is compact, then t(Cp(X)) = w.

Next, we shall show that d(Cp(X)) = nwd(Cp(X)), for every space X.
First, we give some notation and prove a Lemma.

If I is an open interval of lRand x EX, then

[x, I] = {f E Cp(X) : f(x) E I}

will denote a subbasic open set of Cp(X).

Lemma 1.11. Let X be a space. If V is a basic open set of Cp(X), then

iw(X) ~ d(V).

Proof: Let V = njsn[Xj,Ij] be a basic open set of Cp(X), where n < w,
and let D be a dense subset of V having cardinality d(V). We claim that D
separates poins of X. Indeed, fix two distinct points x, y EX. \Ve consider
four cases.

Case 1. {x,y} n {xo, ... ,xn} = 0. Since D is dense in V there is f E

V n [x, (0, 1)] n [y, (1,2)] n D; hence, f(x) f- f(y) and fED.
Case II. {x,y} ~ {xo, ... ,xn} = 0. Without loss of generality, we may

assume that x = Xo and y = Xl. Choose two disjoint open intervals Jo and
J1 so that Jo <; 10 and J1 ~ Jr. We may find f E V n [xo, Jo] n [Xl, JI] n D.
Then, we have that f(xo) f- f(xl) and fED.
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The cases when x E {XQ, ... ,xn} and y 1. {xQ, ... ,xn} and when y E
{xQ, ... , xn} and x 1. {xQ, ... , xn} are left to the reader. This shows our claim.
Thus, we have that D separates points of X. It follows that the evaluation
map e : X -+ ll~P,given by e(x)(j) = f(x) for each x E X and for each fED,
is one-to-one (see [Ar] or [MeN]). By definition, iw(X) :::;IDI = d(V). 0

Theorem 1.12. For every space X, we have that

d(Cp(X)) = nwd(Cp(X)).

Proof: In Proposition 1.10, we pointed out that iw(X) = d(Cp(X)) (a proof
of this fact lies in [Ar] and [MeN]), and it is evident that nwd(Y) :::;d(Y) for
every space Y. So, it is enough to show that iw(X) :::;nwd(Cp(X)). In fact,
let A ~ Cp(X) with IAI < iw(X). Assume that there is a basic open set V

of Cp(X) such that V ~ clCp(x)A. Since V n A is a dense subset of V, by
Lemma 1.11, we must have that iw(X) :::; d(V) :::; IV n AI :::; IAI, which is
impossible. Therefore, iw(X) :::;nwd(Cp(X)) as required. 0

Another proof of Theorem 1.12 lies in [CG2].

2. SPACES OF CONTINUOUS FUNCTIONS

In the paper [Mal, V. 1. Malykhin showed that every dense in itself count
able subspace of Cp(X) is extraresolvable whenever X is an analytic set from
a compact space; for instance, the irrational numbers. On the other hand,
if '" is an infinite cardinal number equipped with the discrete topology, then
Cp("') = RI< cannot be extraresolvable, by Theorem 1.2. In a more general
setting, we have:

Lemma 2.1. If X is a space such that ICp(X)lnw(X) = ICp(X)I, then Cp(X)
is not extraresolvable.

Proof: By hypothesis, we have that

ICp(X)lnw(Cp(X)) = ICp(X)lnw(X) = ICp(X)1 = ~(Cp(X)),

since nw(Cp(X)) = nw(X), by Proposition 1.10. So, by Theorem 1.2, Cp(X)
cannot be extraresolvable. 0

It is possible to show, in ZFC, that Cp(X) is not extraresolvable for several
of the familiar spaces X's.

Theorem 2.2. The space Cp(X) is not extraresolvable provided that X sat
isfies one of the following conditions:

1. X is metric;
2. nw(X) = w;

3. X is normal, e(X) = nw(X) and either e(X) is attained or cf(e(X))
is countable.
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Proof: In all cases, we shall prove that ICp(X)lnw(X) = ICp(X)1 and then
apply Lemma 2.1.

1. X is metric. By Proposition 6.1 of [CR], ICp(X)1 = 2d(X) and since
d(X) = nw(X) (see [Ho, 8.1]), we must have that

ICp(X)lnw(X) = ICp(X)ld(X) = 2d(X) = ICp(X)I·

2. nw(X) = w. From Proposition LID we obtain that

ICp(XW = ICp(X)1 = ICp(X)lnw(X).

3. X is normal and e(X) = nw(X) . First, suppose that e(X) is at
tained. Then, 2e(X) :s ICp(X)1 and hence 2e(X) = 2nw(X) :s ICp(X)1 :s
2d(X) :s 2nw(X). Thus, ICp(X)lnw(X) = 2nw(X) = ICp(X)I· Nmv, assume
that cf(e(X)) = w. Let {1>:n : n < w} be a strictly increasing and cofinal
sequence of cardinal numbers of e(X). Since 2Kn :s ICp(X)1 for every n < w,

we have that 2e(X) = TIn<w 2Kn :s ICp(X)/w = ICp(X)1 :s 2nw(X). Hence,
2e(X) = 2nw(X) = ICp(X)1 = ICp(X)lnw(X). 0

Theorem 2.2 implies that Cp(JR), Cp(Q), Cp([D,l]), Cp(II), where II is the
space of irrational numbers, and Cp(X), for every countable space X, are not
extraresolvable.

Next, we will see that, under GCH, Cp([D,1>:)) is extraresolvable for every
cardinal /1, with ef(/1,) 2': WI.

Lemma 2.3. For every uncountable cardinal 1>:, we have that

nwd(Cp([D, /1,))) = 1>:,

where [D,1>:) has the order topology.

Proof: By Proposition 1.10 and Theorem 1.12, we have

nwd(Cp([O, 1>:))) = d(Cp([O, 1>:))) = iw([O, 1>:)) :s 1>:.

Fix an infinite cardinal A smaller than /1,. Then there exists a regular cardinal
p such that A < p :s 1>:. Let F E [Cp([D,1>:))JA. We may find B < p such
that fl[o,p) is constant for every f E F. We claim that if g E clCp([O,K))F,

then gl[o,p) is also constant. In fact, let g E clCp([O,K))F and suppose that
g(B) -::J. g(v) for some B < v < p. Choose two open disjoint subsets il and
U of JR so that g(B) E V and g(v) E U. If W = 71';1 (V) n 71'HU), where
71'0 : JR[O,K) -7 JR and 71'v : JR[O,K) -7 JR are the projection maps, then liV is an
open neighborhood of g and W nF = 0, which is a contradiction. This shows
our claim. Thus,

clCp([O,K))F <:;;; U (JR[O,II) x {r }[II,p) x JR[P,K))
rER

and so clCp([O,K))F has void interior. Therefore, nwd(Cp([D, 1>:))) = /1,. 0
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Lemma 2.4. Let K be an uncountable cardinal. If Cp([a, K)) is extraresolv

able, then KW < 2".

Proof: If KW = 2", then ICp([a, K))lw(Cp([O,,,))) = (KW)" = 2" = KW =
ICp([a, K))I = ~(Cp([a, K))), and by Lemma 2.1, Cp([a, K)) would not be ex
traresolvable. Therefore, KW < 2". 0

Lemma 2.5. If K = KW, then Cp([a, K)) is strongly extraresolvable.

Proof: We have that

w(Cp([a,K))) = K = KW = ~(Cp([a,K)))

and, by Lemma 2.3, nwd(Cp([a, K))) = K = KW = ~(Cp([a, K))). SO, by
Lemma 1.9, Cp([a, K)) is strongly extraresolvable. 0

We define fJo = W, fJ9+1 = 2{38, for every ordinal (j, and if (j is a limit
ordinal, then fJo = L,v<o fJv. In Z FC, the space Cp ([a, f3Wl)) is strongly
extraresolvable because of Lemma 2.5.

Two consequences of Lemmas 2.4 and 2.5 are the following.

Theorem 2.6. [GCH] For an infnite cardinal K, the following are equiva
lent.

1. Cp([a, K)) is strongly extraresolvable;

2. Cp([a, K)) is extraresolvable;

3. Cf(K) ~ Wl;

4. [0, K) is pseudocompact.

Proof: The implication (1) =} (2) is evident and the equivalence (3) {::}(4) is
well-known (see [GJ]).

(2) =} (3). Assume GCH. By Lemma 2.4, KW < 2" = K+ and so K = KW•

Hence, ef(K) > w.

(3) =} (1). GCH implies that K = KW = K<cf(,,), since ef(K) ~ WI. By
Lemma 2.5, Cp([a, K)) is strongly extraresolvable. 0

Theorem 2.7. The following are equivalent.

1. 2w < 2W1;

2. Cp([a,Wl)) is strongly extraresolvable;

3. Cp([a,wt}) is extraresolvable.

Since 2w = 2W1 and 2W < 2W1 are consistent with the axioms of ZFC,
by Theorem 2.7, the extraresolvability of Cp([a,wd) is independent from the
axioms of ZFC.

Corollary 2.8. [GCH] The space Cp([a, K)) is not extraresolvable for every

cardinal K with ef(K) = w.
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Proof: Assume CCH. Let", be a cardinal with cf(",) = w. Then,

ICp([O, "'))1 = ",w = ",+ = (",+)1< = ICp([O, "'))lnw([O,I<)).

By Lemma 2.1, Cp([O, "')) is not extraresolvable. 0

Now, we shall study the extraresolvability of a Cp(X) space for the case
when X is compact. For the next result we need some notation and a concept:
If 0 =I- T ~ "', then 'lrT : XI< -+ XT will denote the projection map on XT,

and we say that a function f : XI< -+ Y depends on :'S A coordinates if there
is J E [",]9 such that f(x) = f(y) whenever 'lrJ(x) = 'lrJ(Y) and x,y E XI<.

Lemma 2.9. Let", > w be a cardinal number and let X be a space with

d(X) < "'. Then every subset of Cp(XI<) of size < '" is nowhere dense.

Proof: Let F = {f~ : ~ < A} ~ Cp(XI<) with A < "'. By Theorem 10.14 of
[eNl], for every ~ < A, there is S~ E [",]:Sd(X) such that f~depends on S~. Put
S = U~<A S{ and notice that ISI :'S d(X) . A < "'. Fix f E clCp(XK)F. Suppose
that there are x, y E XI< such that 'lrs(x) = 'lrs(Y) and f(x) =I- f(y). Then,
there are disjoint open subsets U and V of 1R with f(x) E U and f(y) E V.

Let W = {g E Cp(XI<) : g(x) E U and g(y) E V}. We have that W is an
open neighborhood of fin Cp(XI<). So, there is ~ < A such that IE E W, but
this is a contradiction since f~(x) =I- f{(Y) and 'lrs(x) = 'lrs(Y). This shows
that every element of clCp(XK)F depends on S. It is not hard to see that this
last condition implies that clCp(XK)F has void interior. 0

Theorem 2.10. If ",<cf(l<) = '" and cf("') > w, then Cp(XI<) is stmngly

extraresolvable for every compact space X with w(X) :'S '" and d(X) < "'.

Proof: Let X be a compact space with w(X) :'S '" and d(X) < "'. By Propo
sition 1.10, ICp(XI<)1 = w(XI<)W = ",W. Then, applying again Proposition
1.10,

nw(Cp(XI<)) = nw(XI<) :'S ",w = '"= ",<cf(l<) =
ICp(XI<)1 = ~(Cp(XI<)) < ",cf(I<).

According to Lemma 2.9, every subset of Cp(XI<) of size < '" is nowhere dense.
So, by Lemma 1.3, Cp(XI<) is strongly extraresolvable. 0

Corollary 2.11. If ",<cf(l<) = '" and cf(",) > w, then Cp( {O, 1 }I<) is strongly
extraresolvable. .

Thus, the space Cp( {O,1},Bwl) is strongly extraresolvable.

Theorem 2.12. If X is a compact space such that

W < w(X) :'S w(X)W = w(X)<cf(w(X» < w(X)Cf(w(X»,

then Cp(X) is stmngly extraresolvable. In particular, under CCH, Cp(X) is
strongly extraresolvable provided that X is a compact spaces with cf(w(X)) >
w.
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Proof: According to Proposition 1.10, t(Cp(X)) = c(Cp(X)) = w and since
X is compact, we have that ~(Cp(X)) = w(X)W and d(Cp(X)) = iw(X) =
w(X). If we replace d(Cp(X)) by w(X) in the inequality of the hypothesis,
then

w = t(Cp(X)) = c(Cp(X)) < d(Cp(X)) ~ d(Cp(X))<cf(d(Cp(X)))

= ~(Cp(X)) < d(Cp(X))cf(d(Cp(X))).

The conclusion now follows from Theorem 1.6. It is clear that GC H implies
w(X) = w(X)W = w(X)<cf(w(X)) < w(X)Cf(w(X)), for every compact space
X with cf(w(X)) > w. Now, we apply the first part of the Theorem. 0

Thus, we have that 2W < 2W1 implies that Cp ({O, 1}Wl) is strongly
extraresolvable.

Theorem 2.13. If X is a compact space and w(X) is a strong limit cardinal

with w(X)W < 2w(X), then Cp(X) is strongly extraresolvable.

Proof: It follows from Proposition 1.10 that t(Cp(X)) = w. By compactness,
we have that d(Cp(X)) = iw(X) = w(X) and ~(Cp(X)) = ICp(X)1 = w(X)w.

Thus,
w = t(Cp(X)) < d(Cp(X)) = w(X) ~ w(X)W

= ~(Cp(X)) < 2d(Cp(X)) = 2w(X).

In virtue of Lemma 1.7, Cp(X) is extrongly extraresolvable. 0

Theorem 2.14. If X is compact and w(X)W = w(X), then Cp(X) is strongly

extraresolvable. Hence, Cp(f3(K)) is strongly extraresolvable, for every infinite

cardinal K equipped with the discrete topology.

Proof: By Proposition 1.10 and Theorem 1.12, we have that

w = t(Cp(X)) < w(X) = d(Cp(X)) = w(X)W

= ~(Cp(X)) = nwd(Cp(X)).

Now, we apply Lemma 1.8 to obtain that Cp(X) is strongly extraresolvable.
If K is an infinite cardinal, then we have W(f3(K)) = 2'" and hence W(f3(K))W =
W(f3(K)). SO, Cp(f3(K)) is strongly extraresolvable, for every infinite cardinal
K. 0

Theorem 2.15. If X is compact and w(X)W = 2w(X), then Cp(X) is not
extraresolvable.

Proof: Since X is compact, by Proposition 1.10, ~(Cp(X)) = jCp(X)1 =
w(X)W = 2w(X); hence, ICp(X)lnw(X) = 2w(X).nw(X) = 2w(X) = ICp(X)I. By
Lemma 2.1, Cp(X) is not extraresolvable. 0

We observe from Theorem 2.15 that if X is compact and Cp(X) is ex
traresolvable, then w(X)W < 2w(X). Let us consider the beth cardinal f3w.
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This cardinal number satisfies that ((3w)W = 2f3w and is a strong limit cardi
nal. Thus, by Theorem 2.15, we have that Cp( {O,1}.Bw) is not extraresolvable.
Also, notice that Cp( {O,1}W) is not extraresolvable, by Theorem 2.2. Under
GCH, we have two very nice equivalences which follow directly from Theo
rems 2.12 and 2.15:

Corollary 2.16. [GCH] For a compact space X, the following are equiva
lent.

1. cf(w(X)) = w.

2. Cp(X) is not extmresolvable.

Corollary 2.17. For a compact space X, the following are equivalent.

1. 2W < 2W1,-

2. Cp( {O, 1 }Wl) is stmngly extmresolvable,-
3. Cp( {O, 1}Wl) is extmresolvable,-

Corollary 2.18. Assuming GCH, the space Cp( {O,I}") is not extmresolv
able for every cardinal K with cf(K) = w.

Theorem 2.19. Let K be an infinite cardinal. If 2W = 2", then Cp(X) is not
extmresolvable for every space X with nw(X) ~ K.

Proof: Assume 2W = 2". Let X be space with nw(X) ~ K. Then, 2W ~

ICp(X)I ~ 2d(X) ~ 2nw(X) ~ 21<; hence,

2w = 2nw(X) = ICp(X)/ = ICp(x)/nw(X).

By Lemma 2.1, we conclude that Cp(X) is not extraresolvable. 0

We finish the paper with some Problems and Questions that the authors
were unable to solve.

Question 2.20. For every X, does Cp(X) have a dense extmresolvable sub
space?

Question 2.21. Is there a space X such that Cp(X) is extmresolvable and is
not stmngly extmresolvable?

Problem 2.22. Find a space X such that Cp(X) is extmresolvable and
Cp((3(X)) is not extmresolvable.

By Theorem 2.14, the space Cp((3(K)) is strongly extraresolvable and
Cp(K) = IRI< is not extraresolvable, for each infinite cardinal K.
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