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ON G-PSEUDO-CENTRES OF CONVEX BODIES

Maria Moszynska and Tomasz Zukowski, Warsaw, Poland

Abstract. As is well known, for every convex body A in Rn there is a unique centrally symmetric
kernel, that is, a centrally symmetric convex body C c A with maximal II-volume. The paper concerns
G-kernels of a covex body A for any subgroup G of 0(11), i.e. G-invariant convex subsets of A with
maximal II-volume. We prove that only for G generated by the central symmetry 0'0 every A has a unique
G-kernel. If A is strictly convex, then its G-kernel is unique for every G.

Introduction

In 1950 Fary and Redei proved that for every convex body A in Rn there exists
a unique centrally symmetric convex body C C A with a maximal volume (see [2]).
They referred to the set C as the centrally symmetric kernel of A. Let p(A) be the
symmetry centre of the kernel C. We call p(A) the pseudo-centre of A.

The map p : .A:'an ~ Rn defined on the class .A:'an of all convex bodies in Rn is a
selector, i.e., p(A) E A for every A. Evidently

0.1. The map p is equivariant under affine automorphisms, i.e., f(]i(A))
p(f(A))forevelyf E GA(n).

0.2. (comp.[2], Satz 5) If A is a simplex, then p(A) is the centroid of A.

Of course, in general, for arbitrary subgroup G of O(n), the situation is quite
different than for the group < 0'0) generated by the reflection at O. For instance, a
convex body may contain many balls (i.e. translates of an O(n )-invariant body) with
a maximal volume.

We shall refer to any G-invariant (up to a translation) convex body contained in
A with a maximal volume as a G-kernel of A. We prove that < 0'0) is the only non
trivial subgroup G of O(n) such that every convex body in Rn has a unique G-kernel
(Theorem 3.8); however, if A is strictly convex, then A has a unique G-kernel for
arbitrary non-trivial G (Theorem 3.9). Our conjecture is that for arbitrary G C O(n)
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and for every convex body A there is a representative of the affine type of A with a
unique G-kernel. We prove this conjecture under some additional assumption on G
(Theorem 4.4).

1. Preliminaries

We use the following terminology and notation:
Let J(;n be the class of all convex bodies in Rn, i.e. compact convex subsets of

Rn with non-empty interior.
The support function IzA : sn-l ---4 R is defined by

IzA(u) = sup{x· u;x E A},

where· is the usual scalar product; we write also Iz(A,u) for IzA(u).

The width of A in direction u is b(A, u) := Iz(A, u) +1z(A, -u) and the thickness
of A is d(A) := inf{b(A, u); u E sn-l}. Of course, diam(A) = sup{b(A, u); II E
sn-l}.

It is well known that d : J(;n ---4 R is continuous with respect to the Hausdorff
limit limH'

The unit ball in Rn is Bn and its volume Kn.

The line passing through a, b (a i- b) is aff( a, b). The linear subspace
spanned by (VI, ... , Vk) is lin(vI, ... , vd·

The relative interior of A with respect to affA is relintA.
We use the symbol EB for the euclidean direct sum, i.e. the Minkowski sum of

subsets of orthogonal subspaces of Rn.

For arbitrary A, BeRn, let

dist(A, B) = inf{lla - bll;a E A, bE B}.

Let X be a nonempty convex subset ofRn. A family {Ax;x E X} of subsets of
Rn is concave provided that for every Xo, Xl E X and t E [0, 1]

A(l-I)xo+IXI :> (1 - t )Axo + tAxI'

As usually, GL(n), O(n), SL(n), GA(n), and SA(n) are the groups of linear
automorphisms, linear isometries, special linear maps (preserving volume), affine
automorphisms, and special affine maps (preserving volume) of Rn, respectively.

If f E GA(n), then detf and Ilfll are understood as det! and II!II for the
corresponding linear map j. Let 0"0 be the reflection at 0 and 'I"x the translation by x.

For any group G of transformations of Rn and any x E Rn, let G(x) be the orbit
of x and let

Further,

fix G := {x ERn; g(x) = x for every g E G}.
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A set CeRn is G-invariant provided that g( C) = C for every g E G.
Evidently,

1.1. Cis GX-invariant if and only if C -x is G-invariant.

We shall need the following elementary lemma.

253

1.2. LEMMA. Let Pn be an n-dimensional parallelepiped in Rn, n ~ 2, with

(n - I)-dimensionalfaces contained in hyperplanes HI, .,., Hn, H;, ... , H~, where Hi
and HI are parallel for all i. Let Xi be a unit normal vector of Hi. lfdist(Hi, HI) = (3

and sin 1(Xi, lin(x), ... , Xi-d) ~ a > Ofor i = 1, ... , n. then Vn(Pn) ~ a~~l'

Proof We can assume that Pn is the Minkowski sum of n segments:

Pn = L7=I~(O' Vi)

for some basis (VI, ... , vn) of Rn•

Let y = 1(xn, lin(xI, ... , Xn-I)).
Induction on n:

If n = 2, then y = n -1(VI, V2) and

{32 (32
V2(P2) = Ilv211{3 = -, - ~ -,

smy a

Let n ~ 3 and assume the assertion holds for n - 1. Let

F=L7~/~(O,Vi) and E=(linvn)l-.

Considerthe orthogonal projection DE : Rn ----t E and let Pn-I = DE(F). Then,
evidently, for i = 1, ... , n - 1, the intersections En Hi and En HI are parallel
(n - 2)- dimensional flats containing (n - 2)-dimensional faces of Pn-I. Moreover,
dist(E n Hi, En HI) = (3 and sin 1(Xi, lin(xI, ... , Xi-d) ~ a for i= 1, ... , n - 1.

Hence, by the inductive assumption,

W-I
Vn-I(Pn-d ~ an-2'

Since

and Vn 1- Xi for i= 1, ... , n, it follows that

cos 1(xn, vn) = sin 1(xn, v;;-) = sin 1(xn, lin(xI, , ... , Xn-I)) ~ a,
whence

{3 (3n
Vn(Pn) ~ -Vn-I(Pn-d ~ --I'a an-

This completes the proof. o
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2. Invariant convex bodies

Let n ~ 2. We are interested in subgroups of GL(n) for which there exist
invariant convex bodies in Rn.

2.1. PROPOSITION. For every G C GL(n) the following are equivalent:

(i) There exists a G-invariant set C E .JtOn,

(ii) G = fG'f-1 for some G' C O(n) and f E GL(n).

Proof (ii) ====>(i): Assume (ii). Let C = f(Rn) and let g E G. Then
g = f g'f-I for some g' E G' and thus

(i) ====>(ii):Let C be G-invariant and let E be the unique ellipsoid with a
maximal volume contained in C (see [1] or [4]). Then E is G-invariant and thus E

has centre 0, whence E = f(Rn) for some f E GL(n). Let G' := f-IGf; then Rn is
G'-invariant and, consequently, G' C O(n). D

Evidently,

2.2. For every G C GL(n) and compact subset C ofRn

C is G-invariant if and only if C is G-invariant.

In view of 2.1 and 2.2, we can restrict our consideration to compact subgroups
ofO(n).

We shall need the following.

2.3. LEMMA. Let G be a compact subgroup ofO(n). If there is no G-invariant
linear subspace of dimension k E {I, ..., n - I}, then there exists aG > 0 satisfying
the following conditions:

(i) d(G(x)) ~ aG for every x E sn-l,

(ii) for every XI E sn-I there exist X2, ••• , Xn E G(xd such that XI, ... , Xn are
linearly independent and

sin 1(Xi, lin(xI, ... , Xi-I)) ~ ~aG

for i = 1, ... , n.

Proof (i): Since there are no G-invariant subspaces, it follows that

Yx E Sn-I d(G(x)) > O. (2.1)
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Since G is compact, the function x f-+ G(x) is continuous, and thus, by the
continuity of d, also the function x f-+ d( G(x)) is continuous. Therefore, there exists
aG > 0 such that

d(G(x)) ;::::aG for every x E Sn-l.

(ii): It suffices to prove that if for some k E {2, ... , n} and Xl E sn-l

Xi E G(XI) for i :::;k - 1, Xl, ... , Xk-l are linearly independent (2.2)k-1

and

sin 1(Xi, lin(xI, ... , Xi-I)) ;::::~aG for i = 1, ... , k - 1, (2.3)k-1

then there exists Xk E G(xI) such that (2.2h and (2.3h hold.
Assume (2.2)k-1 and (2.3)k-l. Let H and HI be arbitrary two supporting hy

perplanes of G(xI) with normal vectors orthogonal to Xl' Let Lk := lin(xI, ... , xk-d.
Without any loss of generality we can assume that

. 1
dlst(H, Lk) ;::::2:d(G(XI))'

Since G(XI) is compact, there is an Xk E H n G(xI). Clearly, Xl, ...Xk are linearly
independent and

o

2.4. PROPOSITION. Let G be a compact subgroup ofO(n). If there is is no G
invariant linear subspace of dimension k E {I, ..., n - I}. then there exists A.G > 0
such that

for every G-invariant C E .A:Qn.

Proof. Let C E .A:Qn be G-invariant. Then 0 E C and d( C) > O. Hence there
exist two parallel supporting hyperplanes H and HI of C such that dist(H, HI) =
d(C).

Let Xl be the unit outer normal vector of H. By Lemma 2.3, there exist aG > 0
and X2, ... , Xn E G(XI) such that Xl, ... , Xn are linearly independent and

. 1
sm 1(xn, Ln) ;::::2:aG, (2.3)n

whereLn = lin(xl, ""Xn-l)'

Choose gi E G such that gi(XI) = Xi, for i = 1, ... , n. Let, further,

Hi := gi(H) and H! := gi(HI).

Then dist(Hi, H;) = d( C), Xi is a unit normal vector of Hi, and each Hi and H!

support C.



256 MARIA MOSZYNSKA AND TOMASZ ZUKOWSKI

Let P be the parallelepiped with (n -I) -dimensional faces contained in H], ..., Hn,

H;, ..., H~. Then, evidently,

( )n-lLet AG:= ;G . Applying now Lemma 1.2 for a := 1aG and f3 := d( C),
by (2.3)n we obtain

o

3. G-pseudo-centres and G-kernels of a convex body

3.1. PROPOSITION. Let G be any transformation group ofRn and let A eRn.
For every CeRn the following are equivalent:

(i) C is a maximal G-invariant subset of A,

(ii) C = ngEG g(A).

Proof (ii) ==> (i):

Evidently C C A, since id E G. For every f E G, f(C) = ngEGfg(A) :) C

andf-l(C) = ngEGf-lg(A) :) c. Thusf(C) = C. Hence C is G-invariant.
Moreover, if C' C A and C' is G-invariant, then C' C C; indeed, C' = g( C') C

g(A) for every g E G, whence C' C ngEG(A) = c. Thus C is maximal.

(i) ==> (ii):

Evidently, if C C A and g(C) = C for every g E G, then C C ngEGg(A).
Since, by (ii) => (i), this intersection is G-invariant, it follows that

C:) ng(A).
gEG

o

3.2. Definition. For G C O(n), A E ,X:'"ct, and x E A, let

Ax,G : = n g(A).
gEGX

If it does not lead to a confusion, we write Ax for Ax,G.
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3.3. PROPOSITION. For every G C O(n) and A E .xon, the family (Ax,G )XEA is
concave.

Proof For every g E G and x E Rn, let

Let us first notice that for every t E [0, 1] and xo, Xl E A,

(1 - t)gxo(A) + tgX1(A) = g(l-t)xo+txl (A). (3.1)

Indeed, if y belongs to the left-hand side, then

y = (1 - t)gxo(ao) + tgX1(al) for some ao, al E A;

thus

y = (1 - t)(g(ao - xo) + xo) + t(g(al - Xl) + Xl) = X + g(a - X),

where X = (1- t )xo + tXI and a = (1- t )ao + tal; hence y belongs to the right-hand
side. This proves C. The inverse inclusion is obvious; thus (3.1) holds.

For every g E G
Ax; C gx;(A) for i = 0, 1,

whence

(1 - t)Axo + tAXI C (1 - t)gxo(A) + tgxI (A).

Therefore, by (3.1),

(1 - t)Axo + tAx! C n gx(A) = Ax·
gEG

D

3.4. Definition. For G C O(n) and A E .xon, let

PdA) : = {p E A; Vn(Ap) ~ Vn(Ax) for every X E A}.

We shall refer to PG(A) as the set of G-pseudo-centres of A.

A convex body C C A will be called a G-kernel of A if Gis GP-invariant for
some p E PdA).

In view of 3.3, for every G C O(n) and A E .xon,

PG(A) =I 0,

i.e., by 3.1, there exists at least one G-kernel of A.

Let us prove a little more.
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3.5. PROPOSITION. For every G C O(n) and A E .JtQn,

Pc(A) n intA i= 0.

Proof Letp E Pc(A). SinceAp,c :J Ap,O(n) and Ap,O(n) is a ball, it follows that

Ap,c i= 0.

Let Xo be the gravity center of Ap,c. Then

Xo E intA n fixGP.

If Xo = p, then p E Pc(A) n intA. If Xo i= p, then xo, p E fixGP, whence

Axo = n g(A) = Ap.
gEC

o

The following two statements describe some properties of G-pseudo-centres.

3.6. PROPOSITION. For every A E .JtQn the set Pc(A) is convex.

Proof Ifx,y E Pc(A) and x i= y, then Vn(Ax) = Vn(Ay) and thus, by the
Brunn-Minkowski inequality ([31,p.309), Vn(Az) = Vn(Ax) for every z E L\(x, y).

Thus L\(x, y) C Pc(A). 0

3.7. PROPOSITION. Let G C O(n) and let EI and Ez be G-illvariallt lillear

subspaces ofRn with Rn = EI EBEz. JfG; = {gIE;;g E G} and A; is a convex body

illE;for i = 1,2, then

Proof Letll; = dimE; for i = 1,2 and letA = Al EBAz. Sinceg(A) = g(AI) EB

g(Az) for every g E G, it follows that for every x = Xl +Xz with X; E A;, i= 1,2,

AX,+X2,C = (AI )x"c, EB (Az)xz,cz'

Hence,

Vn(Ax,c) = Vn1 ((AI)xl,cI)' Vn2 ((AZ)X2,CZ)' (3.2)

Let p E Pc(A). Then p = PI + Pz for some p; E A;, i = 1,2, and, for every
Xl EAI,

thus, by (3.2),

Vn1(Ap"C1) ~ VnJAx"cJ,

i.e. PI E Pc,(AI)' SimilarIy,pz E Pcz(Az). Hence

Pc(A) C PCI (Ar) EB Pcz (Az).
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Let now Pi E PGi(Ai) for i = 1,2 and let P = PI + pz. Then, for every
x = XI +xz with Xi E Ai,

whence, Vn(Ap,G) ~ Vn(Ax,G), by (3.2); hence P E h(A).
Thus

o
As was proved by Fary and Redei in [2]' if G = (0'0), then every convex body

A has a unique G-pseudo-centre, PG(A). Thus, in this particular case we obtain a
selector PG : Jf:Qn ---+ Rn.

We shall now prove that the group generated by central symmetry is the only
group G with this uniqueness property.

3.8. THEOREM. Let G f=. (0'0)' Then there exists A E Jf:Qnwith non-unique
G-kernel and thus with

card h(A) > 1.

Proof By the assumption, there exists a line L passing through 0 which is not
G-invariant, and thus g(L) f=. L for some g E G.

Let f3 = 1. (L, g(L)); then f3 E (0, n Take a E L such that

lIall = 2V2. (3.3)
sin ~

Let b = -a and let B be the unit ball in the hyperplane H = L 1-.
Let A be defined by

A := B EB l1(a, b).

Then

diam (A n g(A)) = ~. /1 + sinz Ii. (3.4)sm~ V 2z

Indeed, let £1 = lin (L U g(L)) and £z = (£1)1-. Since Rn = £1 EB £z, it is easy to
see that

and
diam (A n g(A)) = )4 + diam (£1 nAn g(A))z

diam(£1 nA ng(A)) =~,
sm2

which proves (3.4).
In view of (3.3) and (3.4), diam(Ao,G) ~ diam (A n g(A)). Let 8 := Iiall 

diam(Ao,G) and v := II~=:II'Then AO,G and AO,G + 8 . v are two different G-kernels
ofA. 0
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It is an open problem to characterize the class of convex bodies with exactly
one G-kernel for every G. The following theorem gives a partial solution.

3.9. THEOREM. If A is strictly convex, then for every non-trivial subgroup G of

O(n) there exists a unique G-kernel of A.

Proof Suppose that Co and Clare G-kernels of A. By Proposition 3.3 thefamily
(Ax,G)XEA is concave; by the Brunn-Minkowski theorem ([3]' p.309) it follows that
CI = Co + v for some v E Rn and all the sets C( := (1 - t)Co + tCI have the same
volume for t E [0, 1]. By the strong convexity of A,

relin~(c, c + v) C intA

for every c E Co. Hence Cl C intA.

Let e := dist( Ci'bdA) and

C:=Ci+eBn.

Obviously, Cis G-invariant and, since e > 0, it follows that Vn(C) > Vn(Ci),

contrary to the assumption. 0
Evidently, for any G C O(n), if a convex body A has a unique G-pseudocentre,

then it has a unique G-kernel. The converse implication in general fails; for example,
if G is generated by the symmetry with respect to a line Land CiL(A) = A, then the
body A is the unique G-kernel of itself but P dA) = A n L.

3.10. PROPOSITION.IffixG = {O}, then for every A E JeQn and every Po, PI E
h(A)

APo,G = Ap"G ==> Po = PI,

i.e. the uniqueness of G-kernel implies the uniqueness of G-pseudo-centre.

Proof We may assume that Po = O. Let P = PI -I- O. Then there exists g E G
with g(p) -I- p. Let us consider the isometry f := gpg-I. Evidently, for every x,

f(x) = x + P - g(p),

i.e., f is a translation by a non-zero vector.

Since Ap,G is invariant under gp and g, it follows that f(Ap,G) = Ap,G' This
contradicts the compactness of A. 0

In view of 3.9 and 3.10, if fixG = {O}, then every strictly convex body A has a
unique G-pseudo-centre, pdA).

4. The uniqueness of G-kernel for an affine image

As we have seen, generally a convex body may have many G-kernels (see 3.8).
However, our conjecture is that for arbitrary G C O(n), the affine class of any convex
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body has a representative with a unique G-kernel. We prove this conjecture under
additional assumption on G, which, in view of 3.10, implies that the uniqueness of
G-kernel is equivalent to the uniqueness of G-pseudo-centre.

For any G c O( n), let us consider the function ~G:.JfQn ----+ R defined by
the formula:

(4.1)

We start with two lemmas which hold without any restriction on G.

4.1. LEMMA. Let G c O(n). For every similarity f: Rn ----+ Rn,

4.2. LEMMA. For every G c O(n) the function ~G is continuous.

Proof In view of 4.1, without any loss of generality we may assume that
Vn(A) = 1. Then

~dA) = Vn(Ap),

where p is an arbitrary point of PG(A).

By 3.5, we may assume that p E intA. Thus it suffices to prove that the function
lfIG : HA, x); A E .JfQn,X E intA} ----+ R defined by the formula

(4.2)

is continuous.

Let A = limH Ak and x = limxb where A, Ak E .JfQn, X E intA, and Xk E intAk

for kEN. We replace A and (Ak)kEN by A' and (ADkEN:

A' := A - x and A~ = Ak - Xk.

Then 0 E A' n nl:!A~, A' = limHA~, and, by (4.2),

lfIG(A,x) = lfIdA', 0) and lfIG(Ak,Xk) = lfIG(A~, 0).

Hence, it remains to prove that

i.e.,

limVn (n g(A~)) = Vn (n g(A1)) •gEG gEG

Since Vn is continuous, it suffices to show that

limH n g(A~) = ng(A').
gEG gEG

(4.3)
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There exist a > 0 and {J > 1 such that

aBn C AI C {JBn and aBn C A~ C {JBn for every k.

Let e > O. Since AI = limA~, there exists k.{) E N such that
ae ae

A~ C AI + If .Bn and AI C A~ + If .Bn for k ~ ko·

But, it is easy to check that

AI + ae . Bn C (1 + ~) .AI
{J {J

and similarly for A~, kEN.
Thus

I ( e) I I ( e I
Ak C 1 +,B . A and A C 1 + ,B) . Ak for k ~ ko·

Hence, for every g E G,
E

g(AU C (1 + ,B) . g(AI)

and therefore

n g(AU C (1 + ~) n g(AI) C n g(A') + eBn for k ~ ko·
gEG gEG gEG

Similarly,

n g(AI) C ng(AU + eBn for k ~ ko·
gEG gEG

This proves (4.3).

The next lemma requires an additional assumption on G.

D

4.3. LEMMA. Let G C O(n). If there is no G-invariant linear subspace of

dimension k E {1, ... , n - 1}, then for every A E Jt'"on and every e > 0 there exists
y > 0 such that for every f E SA( n)

Ilfll > y ===} q,c(f(A)) < e. (4.4)

Proof. Let us first notice that it suffices to prove the assertion for the unit n-ball.
Indeed, let it hold for Bn. Take A E .JtQn and e > O. By 4.1, we may assume

that Vn(A) = 1. Take a > 0 such that A ca· Bn and let el = +. Then, by thea Kn

assumption, there exists y > 0 such that for every f E SA(n) with Ilfll > y

q,G (/(Bn)) < el.

Thus
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which proves the assertion for arbitrary convex body A.
Hence, we assume A = Bn. By Proposition 2.4, there exists AG > 0 such that

for every G-invariant C E ~n

(4.5)

Take an E > 0 and let

(4.6)

We may assume without any loss of generality thatf E SL(n). Let I\fll > y and let
aI, ..., an be the half-axes of the ellipsoidf(Bn), with al ~ ... ~ an. Then

I I
an ~ (a2 ..... an) n=I = (Vn (J(Bn)) . (Knal )-1) n-1,

and, since Vn (J(Bn)) = Kn, it follows that (an)n-l ~ (al)-l, i.e.,

al ~ (an)l-n. (4.7)

But Ilfll = al; thus, by the assumption, al > y, which, together with (4.6) and
(4.7), yields

and, consequently,

(2an)" < ;G' (4.8)

Let C be a G-kernel of f(Bn). Then IPG(J(Bn)) = Vn(C), and thus, by (4.5)
and (4.8),

o

4.4. THEOREM. Let G C O(n). If there is no G-invariant linear subspace

of dimension k E {I, ... , n - I}. then for every A E ~n there exists an affine

automorphismfo ofRn such that fo(A) has a unique G-pseudo-centre.

Proof Let IP := IPG' Take A E ~n and E > O. By Lemma 4.3, there exists
y > 0 such that IP(f(A)) < E whenever f E SA(n) and Ilf\1 > y.

By the continuity oflP (Lemma 4.2), also the function ~A : SA(n) -----+ R
defined by

~A(J) := IP(J(A))

is continuous and, therefore, it attains its maximum in the compact subset <P:= {j E

GA(n); Ilfll ~ y, Idetfl ~ I} ofGA(n). Let fa be a maximizer of ~AI<p.We have to
show that

PG (Jo(A)) is a singleton. (4.9)
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Let A' = fo(A) and Pi E PG(A') for i = 0, 1. Then, by the Brunn-Minkowski
Theorem combined with 3.3,

(A')pt,G = (A')po,G + v for some v ERn.

and thus, by 3.10, PI = Po + v, because fixG = {O}.
Without any loss of generality we may assume that PI = -Po.

Suppose that v =I- 0 and let (WI, ... , wn) be an orthonormal basis of Rn with

Wn = II~II'Let f be the linear automorphism with f(Wi) = Wi for i = 1, ... ,11 - 1
andf(wn) = a· Wn, where

{ h((A')o, wn) h((A')o, -wn) }a = max h((A')PI' wn)' h((A')po' -wn) .

Then a < 1 and f fo E <1>.We shall show that

(A')o C f(A').

Let x = L~oXiW; E (A')o; thenf-l(x) = L;':/XiW; + ~wn, whence

-1 1
f (x) - x = xn( - - 1) . Wn,a

and thus

(4.10)

Evidently
IXnl :::; max{h((A')o, wn), h((A')o, -wn)}. (4.12)

Since (A')po = (A')o - ~ and (A')Pl = (A')o + ~,it follows that

and

h((A')PI' wn) = h((A')o, wn) + ~I[vll.
By simple calculation,

.!.. _ 1 - min {[Ivll I[vl[}a - 2h((A')0, wn)' 2h((A')0, -wn)

= [Ivll . (2max{h((A')0, wn), h((A')o, -Wn)} )-1.

Hence, by (4.12),

.!.._I~H
a "'"2[xnl'

which, together with (4.11), implies

1 v v
f- (x) E ~(x - 2'x + 2)'
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This proves (4.10).
Let now C be any G-kernel of f(A'). Since (A')o is G-invariant, by (4.10) it

follows that

Hence

i.e.,

~A(Jfo) > ~A(JO),

contrary to the assumption that fo is a maximizer of ~AI<p. Hence v = 0, i.e.
(A')po,G = (A')PhG.

Applying now Proposition 3.10, we obtain Po = Pl' This proves (4.9). 0
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