ON G-PSEUDO-CENTRES OF CONVEX BODIES

Maria Moszyńska and Tomasz Żukowski, Warsaw, Poland

Abstract. As is well known, for every convex body A in R^{n} there is a unique centrally symmetric kernel, that is, a centrally symmetric convex body $C \subset A$ with maximal n-volume. The paper concerns G-kemels of a covex body A for any subgroup G of $\mathrm{O}(n)$, i.e. G-invariant convex subsets of A with maximal n-volume. We prove that only for G generated by the central symmetry σ_{0} every A has a unique G-kemel. If A is strictly convex, then its G-kernel is unique for every G.

Introduction

In 1950 Fáry and Rédei proved that for every convex body A in R^{n} there exists a unique centrally symmetric convex body $C \subset A$ with a maximal volume (see [2]). They referred to the set C as the centrally symmetric kernel of A. Let $p(A)$ be the symmetry centre of the kernel C. We call $p(A)$ the pseudo-centre of A.

The map $p: \mathscr{K}_{0}^{n} \rightarrow \mathrm{R}^{n}$ defined on the class \mathscr{K}_{0}^{n} of all convex bodies in R^{n} is a selector, i.e., $p(A) \in A$ for every A. Evidently
0.1. The map p is equivariant under affine automorphisms, i.e., $f(p(A))=$ $p(f(A))$ for every $f \in \operatorname{GA}(n)$.
0.2. (comp.[2], Satz 5) If A is a simplex, then $p(A)$ is the centroid of A.

Of course, in general, for arbitrary subgroup G of $O(n)$, the situation is quite different than for the group $\left\langle\sigma_{0}\right\rangle$ generated by the reflection at 0 . For instance, a convex body may contain many balls (i.e. translates of an $\mathrm{O}(n)$-invariant body) with a maximal volume.

We shall refer to any G-invariant (up to a translation) convex body contained in A with a maximal volume as a G-kernel of A. We prove that $\left\langle\sigma_{0}\right\rangle$ is the only nontrivial subgroup G of $\mathrm{O}(n)$ such that every convex body in R^{n} has a unique G-kernel (Theorem 3.8); however, if A is strictly convex, then A has a unique G-kernel for arbitrary non-trivial G (Theorem 3.9). Our conjecture is that for arbitrary $G \subset O(n)$

[^0]and for every convex body A there is a representative of the affine type of A with a unique G-kernel. We prove this conjecture under some additional assumption on G (Theorem 4.4).

1. Preliminaries

We use the following terminology and notation:
Let \mathscr{K}^{n} be the class of all convex bodies in R^{n}, i.e. compact convex subsets of R^{n} with non-empty interior.

The support function $h_{A}: S^{n-1} \rightarrow \mathrm{R}$ is defined by

$$
h_{A}(u)=\sup \{x \cdot u ; x \in A\}
$$

where \cdot is the usual scalar product; we write also $h(A, u)$ for $h_{A}(u)$.
The width of A in direction u is $b(A, u):=h(A, u)+h(A,-u)$ and the thickness of A is $d(A):=\inf \left\{b(A, u) ; u \in S^{n-1}\right\}$. Of course, $\operatorname{diam}(A)=\sup \{b(A, u) ; u \in$ S^{n-1}.

It is well known that $d: \mathscr{K}^{n} \rightarrow \mathrm{R}$ is continuous with respect to the Hausdorff limit $\lim _{H}$.

The unit ball in R^{n} is B^{n} and its volume κ_{n}.
The line passing through $a, b \quad(a \neq b)$ is aff (a, b). The linear subspace spanned by $\left(v_{1}, \ldots, v_{k}\right)$ is $\operatorname{lin}\left(v_{1}, \ldots, v_{k}\right)$.

The relative interior of A with respect to aff A is relint A.
We use the symbol \oplus for the euclidean direct sum, i.e. the Minkowski sum of subsets of orthogonal subspaces of R^{n}.

For arbitrary $A, B \subset \mathrm{R}^{n}$, let

$$
\operatorname{dist}(A, B)=\inf \{\|a-b\| ; a \in A, b \in B\}
$$

Let X be a nonempty convex subset of R^{n}. A family $\left\{A_{x} ; x \in X\right\}$ of subsets of R^{n} is concave provided that for every $x_{0}, x_{1} \in X$ and $t \in[0,1]$

$$
A_{(1-t) x_{0}+t x_{1}} \supset(1-t) A_{x_{0}}+t A_{x_{1}}
$$

As usually, $\mathrm{GL}(n), \mathrm{O}(n), \mathrm{SL}(n), \mathrm{GA}(n)$, and $\mathrm{SA}(n)$ are the groups of linear automorphisms, linear isometries, special linear maps (preserving volume), affine automorphisms, and special affine maps (preserving volume) of R^{n}, respectively.

If $f \in \mathrm{GA}(n)$, then $\operatorname{det} f$ and $\|f\|$ are understood as $\operatorname{det} \bar{f}$ and $\|\bar{f}\|$ for the corresponding linear map \bar{f}. Let σ_{0} be the reflection at 0 and τ_{x} the translation by x.

For any group G of transformations of R^{n} and any $x \in \mathrm{R}^{n}$, let $G(x)$ be the orbit of x and let

$$
G^{x}=\tau_{x} G \tau_{x}^{-1}
$$

Further,

$$
\text { fix } G:=\left\{x \in \mathrm{R}^{n} ; g(x)=x \text { for every } g \in G\right\} .
$$

A set $C \subset \mathrm{R}^{n}$ is G-invariant provided that $g(C)=C$ for every $g \in G$. Evidently,

1.1. C is G^{x}-invariant if and only if $C-x$ is G-invariant.

We shall need the following elementary lemma.
1.2. Lemma. Let P_{n} be an n-dimensional parallelepiped in $\mathrm{R}^{n}, n \geqslant 2$, with ($n-1$)-dimensional faces contained in hyperplanes $H_{1}, \ldots, H_{n}, H_{1}^{\prime}, \ldots, H_{n}^{\prime}$, where H_{i} and H_{i}^{\prime} are parallel for all i. Let x_{i} be a unit normal vector of H_{i}. If $\operatorname{dist}\left(H_{i}, H_{i}^{\prime}\right)=\beta$ and $\sin \Varangle\left(x_{i}, \operatorname{lin}\left(x_{1}, \ldots, x_{i-1}\right)\right) \geqslant \alpha>0$ for $i=1, \ldots, n$, then $V_{n}\left(P_{n}\right) \leqslant \frac{\beta^{n}}{\alpha^{n-1}}$.

Proof. We can assume that P_{n} is the Minkowski sum of n segments:

$$
P_{n}=\Sigma_{i=1}^{n} \Delta\left(0, v_{i}\right)
$$

for some basis $\left(v_{1}, \ldots, v_{n}\right)$ of R^{n}.
Let $\gamma=\Varangle\left(x_{n}, \operatorname{lin}\left(x_{1}, \ldots, x_{n-1}\right)\right)$.
Induction on n :
If $n=2$, then $\gamma=\pi-\Varangle\left(\nu_{1}, v_{2}\right)$ and

$$
V_{2}\left(P_{2}\right)=\left\|\nu_{2}\right\| \beta=\frac{\beta^{2}}{\sin \gamma} \leqslant \frac{\beta^{2}}{\alpha}
$$

Let $n \geqslant 3$ and assume the assertion holds for $n-1$. Let

$$
F=\sum_{i=1}^{n-1} \Delta\left(0, v_{i}\right) \quad \text { and } \quad E=\left(\operatorname{lin} v_{n}\right)^{\perp}
$$

Consider the orthogonal projection $\Pi_{E}: \mathrm{R}^{n} \rightarrow E$ and let $P_{n-1}=\Pi_{E}(F)$. Then, evidently, for $i=1, \ldots, n-1$, the intersections $E \cap H_{i}$ and $E \cap H_{i}^{\prime}$ are parallel ($n-2$)-dimensional flats containing $(n-2)$-dimensional faces of P_{n-1}. Moreover, $\operatorname{dist}\left(E \cap H_{i}, E \cap H_{i}^{\prime}\right)=\beta$ and $\sin \Varangle\left(x_{i}, \operatorname{lin}\left(x_{1}, \ldots, x_{i-1}\right)\right) \geqslant \alpha$ for $i=1, \ldots, n-1$.

Hence, by the inductive assumption,

$$
V_{n-1}\left(P_{n-1}\right) \leqslant \frac{\beta^{n-1}}{\alpha^{n-2}}
$$

Since

$$
V_{n}\left(P_{n}\right)=\beta V_{n-1}(F), \quad V_{n-1}(F)=V_{n-1}\left(P_{n-1}\right) \frac{1}{\cos \Varangle\left(x_{n}, v_{n}\right)}
$$

and $v_{n} \perp x_{i}$ for $i=1, \ldots, n$, it follows that

$$
\cos \Varangle\left(x_{n}, v_{n}\right)=\sin \Varangle\left(x_{n}, v_{n}^{\perp}\right)=\sin \Varangle\left(x_{n}, \operatorname{lin}\left(x_{1},, \ldots, x_{n-1}\right)\right) \geqslant \alpha
$$

whence

$$
V_{n}\left(P_{n}\right) \leqslant \frac{\beta}{\alpha} V_{n-1}\left(P_{n-1}\right) \leqslant \frac{\beta^{n}}{\alpha^{n-1}}
$$

This completes the proof.

2. Invariant convex bodies

Let $n \geqslant 2$. We are interested in subgroups of GL(n) for which there exist invariant convex bodies in R^{n}.
2.1. PROPOSITION. For every $G \subset G L(n)$ the following are equivalent:
(i) There exists a G-invariant set $C \in \mathscr{K}_{0}{ }^{n}$,
(ii) $G=f G^{\prime} f^{-1}$ for some $G^{\prime} \subset \mathrm{O}(n)$ and $f \in \mathrm{GL}(n)$.

Proof. (ii) \Longrightarrow (i): Assume (ii). Let $C=f\left(B^{n}\right)$ and let $g \in G$. Then $g=f g^{\prime} f^{-1}$ for some $g^{\prime} \in G^{\prime}$ and thus

$$
g(C)=f g^{\prime} f^{-1} f\left(B^{n}\right)=f\left(B^{n}\right)=C
$$

(i) \Longrightarrow (ii): Let C be G-invariant and let E be the unique ellipsoid with a maximal volume contained in C (see [1] or [4]). Then E is G-invariant and thus E has centre 0 , whence $E=f\left(B^{n}\right)$ for some $f \in \mathrm{GL}(n)$. Let $G^{\prime}:=f^{-1} G f$; then B^{n} is G^{\prime}-invariant and, consequently, $G^{\prime} \subset \mathrm{O}(n)$.

Evidently,

2.2. For every $G \subset G L(n)$ and compact subset C of R^{n}
 C is G-invariant if and only if C is \bar{G}-invariant.

In view of 2.1 and 2.2 , we can restrict our consideration to compact subgroups of $\mathrm{O}(n)$.

We shall need the following.
2.3. Lemma. Let G be a compact subgroup of $\mathrm{O}(n)$. If there is no G-invariant linear subspace of dimension $k \in\{1, \ldots, n-1\}$, then there exists $\alpha_{G}>0$ satisfying the following conditions:
(i) $d(G(x)) \geqslant \alpha_{G}$ for every $x \in S^{n-1}$,
(ii) for every $x_{1} \in S^{n-1}$ there exist $x_{2}, \ldots, x_{n} \in G\left(x_{1}\right)$ such that x_{1}, \ldots, x_{n} are linearly independent and

$$
\sin \Varangle\left(x_{i}, \operatorname{lin}\left(x_{1}, \ldots, x_{i-1}\right)\right) \geqslant \frac{1}{2} \alpha_{G}
$$

for $i=1, \ldots, n$.
Proof. (i): Since there are no G-invariant subspaces, it follows that

$$
\begin{equation*}
\forall x \in S^{n-1} d(G(x))>0 \tag{2.1}
\end{equation*}
$$

Since G is compact, the function $x \mapsto G(x)$ is continuous, and thus, by the continuity of d, also the function $x \mapsto d(G(x))$ is continuous. Therefore, there exists $\alpha_{G}>0$ such that

$$
d(G(x)) \geqslant \alpha_{G} \quad \text { for } \quad \text { every } \quad x \in S^{n-1}
$$

(ii): It suffices to prove that if for some $k \in\{2, \ldots, n\}$ and $x_{1} \in S^{n-1}$ $x_{i} \in G\left(x_{1}\right)$ for $i \leqslant k-1, \quad x_{1}, \ldots, x_{k-1}$ are linearly independent and

$$
\begin{equation*}
\sin \Varangle\left(x_{i}, \operatorname{lin}\left(x_{1}, \ldots, x_{i-1}\right)\right) \geqslant \frac{1}{2} \alpha_{G} \quad \text { for } i=1, \ldots, k-1, \tag{2.2}
\end{equation*}
$$

then there exists $x_{k} \in G\left(x_{1}\right)$ such that $(2.2)_{k}$ and $(2.3)_{k}$ hold.
Assume $(2.2)_{k-1}$ and $(2.3)_{k-1}$. Let H and H^{\prime} be arbitrary two supporting hyperplanes of $G\left(x_{1}\right)$ with normal vectors orthogonal to x_{1}. Let $L_{k}:=\operatorname{lin}\left(x_{1}, \ldots, x_{k-1}\right)$. Without any loss of generality we can assume that

$$
\operatorname{dist}\left(H, L_{k}\right) \geqslant \frac{1}{2} d\left(G\left(x_{1}\right)\right)
$$

Since $G\left(x_{1}\right)$ is compact, there is an $x_{k} \in H \cap G\left(x_{1}\right)$. Clearly, $x_{1}, \ldots x_{k}$ are linearly independent and

$$
\sin \Varangle\left(x_{k}, L_{k}\right)=\operatorname{dist}\left(H, L_{k}\right) \geqslant d\left(G\left(x_{1}\right)\right) \geqslant \frac{1}{2} \alpha_{G} .
$$

2.4. Proposition. Let G be a compact subgroup of $\mathrm{O}(n)$. If there is is no G invariant linear subspace of dimension $k \in\{1, \ldots, n-1\}$, then there exists $\lambda_{G}>0$ such that

$$
V_{n}(C) \leqslant \lambda_{G} d(C)^{n}
$$

for every G-invariant $C \in \mathscr{K}_{0}{ }^{n}$.
Proof. Let $C \in \mathscr{K}_{0}^{n}$ be G-invariant. Then $0 \in C$ and $d(C)>0$. Hence there exist two parallel supporting hyperplanes H and H^{\prime} of C such that $\operatorname{dist}\left(H, H^{\prime}\right)=$ $d(C)$.

Let x_{1} be the unit outer normal vector of H. By Lemma 2.3, there exist $\alpha_{G}>0$ and $x_{2}, \ldots, x_{n} \in G\left(x_{1}\right)$ such that x_{1}, \ldots, x_{n} are linearly independent and

$$
\begin{equation*}
\sin \Varangle\left(x_{n}, L_{n}\right) \geqslant \frac{1}{2} \alpha_{G} \tag{2.3}
\end{equation*}
$$

where $L_{n}=\operatorname{lin}\left(x_{1}, \ldots, x_{n-1}\right)$.
Choose $g_{i} \in G$ such that $g_{i}\left(x_{1}\right)=x_{i}$, for $i=1, \ldots, n$. Let, further,

$$
H_{i}:=g_{i}(H) \text { and } H_{i}^{\prime}:=g_{i}\left(H^{\prime}\right)
$$

Then $\operatorname{dist}\left(H_{i}, H_{i}^{\prime}\right)=d(C), x_{i}$ is a unit normal vector of H_{i}, and each H_{i} and H_{i}^{\prime} support C.

Let P be the parallelepiped with $(n-1)$-dimensional faces contained in H_{1}, \ldots, H_{n}, $H_{1}^{\prime}, \ldots, H_{n}^{\prime}$. Then, evidently,

$$
V_{n}(C) \leqslant V_{n}(P) .
$$

Let $\lambda_{G}:=\left(\frac{2}{\alpha_{G}}\right)^{n-1}$. Applying now Lemma 1.2 for $\alpha:=\frac{1}{2} \alpha_{G}$ and $\beta:=d(C)$, by $(2.3)_{n}$ we obtain

$$
V_{n}(P) \leqslant \lambda_{G} d(C)^{n} .
$$

3. G-pseudo-centres and G-kernels of a convex body

3.1. Proposition. Let G be any transformation group of R^{n} and let $\mathrm{A} \subset \mathrm{R}^{n}$. For every $C \subset \mathrm{R}^{n}$ the following are equivalent:
(i) C is a maximal G-invariant subset of A,
(ii) $C=\bigcap_{g \in G} g(A)$.

Proof. (ii) \Longrightarrow (i):
Evidently $C \subset A$, since id $\in G$. For every $f \in G, f(C)=\bigcap_{g \in G} f g(A) \supset C$ and $f^{-1}(C)=\bigcap_{g \in G} f^{-1} g(A) \supset C$. Thus $f(C)=C$. Hence C is G-invariant.

Moreover, if $C^{\prime} \subset A$ and C^{\prime} is G-invariant, then $C^{\prime} \subset C$; indeed, $C^{\prime}=g\left(C^{\prime}\right) \subset$ $g(A)$ for every $g \in G$, whence $C^{\prime} \subset \bigcap_{g \in G}(A)=C$. Thus C is maximal.
(i) \Longrightarrow (ii):

Evidently, if $C \subset A$ and $g(C)=C$ for every $g \in G$, then $C \subset \bigcap_{g \in G} g(A)$. Since, by (ii) \Rightarrow (i), this intersection is G-invariant, it follows that

$$
C \supset \bigcap_{g \in G} g(A) .
$$

3.2. Definition. For $G \subset O(n), A \in \mathscr{K}_{0}^{n}$, and $x \in A$, let

$$
A_{x, G}:=\bigcap_{g \in G^{x}} g(A) .
$$

If it does not lead to a confusion, we write A_{x} for $A_{x, G}$.
3.3. Proposition. For every $G \subset O(n)$ and $A \in \mathscr{K}_{0}^{n}$, the family $\left(A_{x, G}\right)_{x \in A}$ is concave.

Proof. For every $g \in G$ and $x \in \mathrm{R}^{n}$, let

$$
g_{x}:=\tau_{x} g \tau_{x}^{-1}
$$

Let us first notice that for every $t \in[0,1]$ and $x_{0}, x_{1} \in A$,

$$
\begin{equation*}
(1-t) g_{x_{0}}(A)+t g_{x_{1}}(A)=g_{(1-t) x_{0}+t x_{1}}(A) \tag{3.1}
\end{equation*}
$$

Indeed, if y belongs to the left-hand side, then

$$
y=(1-t) g_{x_{0}}\left(a_{0}\right)+\operatorname{tg}{x_{1}}\left(a_{1}\right) \text { for some } a_{0}, a_{1} \in A ;
$$

thus

$$
y=(1-t)\left(g\left(a_{0}-x_{0}\right)+x_{0}\right)+t\left(g\left(a_{1}-x_{1}\right)+x_{1}\right)=x+g(a-x)
$$

where $x=(1-t) x_{0}+t x_{1}$ and $a=(1-t) a_{0}+t a_{1}$; hence y belongs to the right-hand side. This proves \subset. The inverse inclusion is obvious; thus (3.1) holds.

For every $g \in G$

$$
A_{x_{i}} \subset g_{x_{i}}(A) \quad \text { for } \quad i=0,1
$$

whence

$$
(1-t) A_{x_{0}}+t A_{x_{1}} \subset(1-t) g_{x_{0}}(A)+t g_{x_{1}}(A)
$$

Therefore, by (3.1),

$$
(1-t) A_{x_{0}}+t A_{x_{1}} \subset \bigcap_{g \in G} g_{x}(A)=A_{x}
$$

3.4. Definition. For $G \subset \mathrm{O}(n)$ and $A \in \mathscr{K}_{0}^{n}$, let

$$
P_{G}(A):=\left\{p \in A ; V_{n}\left(A_{p}\right) \geqslant V_{n}\left(A_{x}\right) \text { for every } x \in A\right\} .
$$

We shall refer to $P_{G}(A)$ as the set of G-pseudo-centres of A.
A convex body $C \subset A$ will be called a G-kernel of A if G is G^{p}-invariant for some $p \in P_{G}(A)$.

In view of 3.3 , for every $G \subset \mathrm{O}(n)$ and $A \in \mathscr{K}_{0}^{n}$,

$$
P_{G}(A) \neq \emptyset
$$

i.e., by 3.1 , there exists at least one G-kernel of A.

Let us prove a little more.
3.5. PROPOSITION. For every $G \subset O(n)$ and $A \in \mathscr{K}_{0}^{n}$,

$$
P_{G}(A) \cap \operatorname{int} A \neq \emptyset
$$

Proof. Let $p \in P_{G}(A)$. Since $A_{p, G} \supset A_{p, \mathrm{O}(n)}$ and $A_{p, \mathrm{O}(n)}$ is a ball, it follows that

$$
A_{p, G} \neq \emptyset
$$

Let x_{0} be the gravity center of $A_{p, G}$. Then

$$
x_{0} \in \operatorname{int} A \cap \operatorname{fix} G^{p}
$$

If $x_{0}=p$, then $p \in P_{G}(A) \cap \operatorname{int} A$. If $x_{0} \neq p$, then $x_{0}, p \in$ fix G^{p}, whence

$$
A_{x_{0}}=\bigcap_{g \in G} g(A)=A_{p}
$$

Thus $V_{n}\left(A_{x_{0}}\right)=V_{n}\left(A_{p}\right)$ and, therefore, $x_{0} \in P_{G}(A) \cap \operatorname{int} A$.
The following two statements describe some properties of G-pseudo-centres.
3.6. PROPOSITION. For every $A \in \mathscr{K}_{0}^{n}$ the set $P_{G}(A)$ is convex.

Proof. If $x, y \in P_{G}(A)$ and $x \neq y$, then $V_{n}\left(A_{x}\right)=V_{n}\left(A_{y}\right)$ and thus, by the Brunn-Minkowski inequality ([3],p.309), $V_{n}\left(A_{z}\right)=V_{n}\left(A_{x}\right)$ for every $z \in \Delta(x, y)$. Thus $\Delta(x, y) \subset P_{G}(A)$.
3.7. Proposition. Let $G \subset O(n)$ and let E_{1} and E_{2} be G-invariant linear subspaces of R^{n} with $\mathrm{R}^{n}=E_{1} \oplus E_{2}$. If $G_{i}=\left\{g \mid E_{i} ; g \in G\right\}$ and A_{i} is a convex body in E_{i} for $i=1,2$, then

$$
P_{G}\left(A_{1} \oplus A_{2}\right)=P_{G_{1}}\left(A_{1}\right) \oplus P_{G_{2}}\left(A_{2}\right)
$$

Proof. Let $n_{i}=\operatorname{dim} E_{i}$ for $i=1,2$ and let $A=A_{1} \oplus A_{2}$. Since $g(A)=g\left(A_{1}\right) \oplus$ $g\left(A_{2}\right)$ for every $g \in G$, it follows that for every $x=x_{1}+x_{2}$ with $x_{i} \in A_{i}, i=1,2$,

$$
A_{x_{1}+x_{2}, G}=\left(A_{1}\right)_{x_{1}, G_{1}} \oplus\left(A_{2}\right)_{x_{2}, G_{2}}
$$

Hence,

$$
\begin{equation*}
V_{n}\left(A_{x, G}\right)=V_{n_{1}}\left(\left(A_{1}\right)_{x_{1}, G_{1}}\right) \cdot V_{n_{2}}\left(\left(A_{2}\right)_{x_{2}, G_{2}}\right) . \tag{3.2}
\end{equation*}
$$

Let $p \in P_{G}(A)$. Then $p=p_{1}+p_{2}$ for some $p_{i} \in A_{i}, i=1,2$, and, for every $x_{1} \in A_{1}$,

$$
V_{n}\left(A_{p_{1}+p_{2}, G}\right) \geqslant V_{n}\left(A_{x_{1}+p_{2}, G}\right)
$$

thus, by (3.2),

$$
V_{n_{1}}\left(A_{p_{1}, G_{1}}\right) \geqslant V_{n_{1}}\left(A_{x_{1}, G_{1}}\right),
$$

i.e. $p_{1} \in P_{G_{1}}\left(A_{1}\right)$. Similarly, $p_{2} \in P_{G_{2}}\left(A_{2}\right)$. Hence

$$
P_{G}(A) \subset P_{G_{1}}\left(A_{1}\right) \oplus P_{G_{2}}\left(A_{2}\right)
$$

Let now $p_{i} \in P_{G_{i}}\left(A_{i}\right)$ for $i=1,2$ and let $p=p_{1}+p_{2}$. Then, for every $x=x_{1}+x_{2}$ with $x_{i} \in A_{i}$,

$$
V_{n_{i}}\left(A_{p_{i}, G_{i}}\right) \geqslant V_{n_{i}}\left(A_{x_{i}, G_{i}}\right),
$$

whence, $V_{n}\left(A_{p, G}\right) \geqslant V_{n}\left(A_{x, G}\right)$, by (3.2); hence $p \in P_{G}(A)$.
Thus

$$
P_{G_{1}}\left(A_{1}\right) \oplus P_{G_{2}}\left(A_{2}\right) \subset P_{G}(A) .
$$

As was proved by Fáry and Rédei in [2], if $G=\left\langle\sigma_{0}\right\rangle$, then every convex body A has a unique G-pseudo-centre, $p_{G}(A)$. Thus, in this particular case we obtain a selector $p_{G}: \mathscr{K}_{0}^{n} \longrightarrow \mathrm{R}^{n}$.

We shall now prove that the group generated by central symmetry is the only group G with this uniqueness property.
3.8. Theorem. Let $G \neq\left\langle\sigma_{0}\right\rangle$. Then there exists $A \in \mathscr{K}_{0}^{n}$ with non-unique G-kernel and thus with

$$
\operatorname{card} P_{G}(A)>1
$$

Proof. By the assumption, there exists a line L passing through 0 which is not G-invariant, and thus $g(L) \neq L$ for some $g \in G$.

Let $\beta=\Varangle(L, g(L))$; then $\beta \in\left(0, \frac{\pi}{2}\right]$. Take $a \in L$ such that

$$
\begin{equation*}
\|a\|=\frac{2 \sqrt{2}}{\sin \frac{\beta}{2}} \tag{3.3}
\end{equation*}
$$

Let $b=-a$ and let B be the unit ball in the hyperplane $H=L^{\perp}$.
Let A be defined by

$$
A:=B \oplus \Delta(a, b)
$$

Then

$$
\begin{equation*}
\operatorname{diam}(A \cap g(A))=\frac{2}{\sin \frac{\beta}{2}} \sqrt{1+\sin ^{2} \frac{\beta}{2}} . \tag{3.4}
\end{equation*}
$$

Indeed, let $E_{1}=\operatorname{lin}(L \cup g(L))$ and $E_{2}=\left(E_{1}\right)^{\perp}$. Since $\mathrm{R}^{n}=E_{1} \oplus E_{2}$, it is easy to see that

$$
\operatorname{diam}(A \cap g(A))=\sqrt{4+\operatorname{diam}\left(E_{1} \cap A \cap g(A)\right)^{2}}
$$

and

$$
\operatorname{diam}\left(E_{1} \cap A \cap g(A)\right)=\frac{2}{\sin \frac{\beta}{2}},
$$

which proves (3.4).
In view of (3.3) and (3.4), $\operatorname{diam}\left(A_{0, G}\right) \leqslant \operatorname{diam}(A \cap g(A))$. Let $\delta:=\|a\|-$ $\operatorname{diam}\left(A_{0, G}\right)$ and $v:=\frac{a-b}{\|a-b\|}$. Then $A_{0, G}$ and $A_{0, G}+\delta \cdot v$ are two different G-kernels of A.

It is an open problem to characterize the class of convex bodies with exactly one G-kernel for every G. The following theorem gives a partial solution.
3.9. THEOREM. If A is strictly convex, then for every non-trivial subgroup G of $\mathrm{O}(n)$ there exists a unique G-kernel of A.

Proof. Suppose that C_{0} and C_{1} are G-kernels of A. By Proposition 3.3 the family $\left(A_{x, G}\right)_{x \in A}$ is concave; by the Brunn-Minkowski theorem ([3], p.309) it follows that $C_{1}=C_{0}+v$ for some $v \in \mathrm{R}^{n}$ and all the sets $C_{t}:=(1-t) C_{0}+t C_{1}$ have the same volume for $t \in[0,1]$. By the strong convexity of A,

$$
\operatorname{relint} \Delta(c, c+v) \subset \operatorname{int} A
$$

for every $c \in C_{0}$. Hence $C_{\frac{1}{2}} \subset$ int A.
Let $\varepsilon:=\operatorname{dist}\left(C_{\frac{1}{2}}, b d A\right)$ and

$$
C:=C_{\frac{1}{2}}+\varepsilon B^{n}
$$

Obviously, C is G-invariant and, since $\varepsilon>0$, it follows that $V_{n}(C)>V_{n}\left(C_{i}\right)$, contrary to the assumption.

Evidently, for any $G \subset \mathrm{O}(n)$, if a convex body A has a unique G-pseudocentre, then it has a unique G-kernel. The converse implication in general fails; for example, if G is generated by the symmetry with respect to a line L and $\sigma_{L}(A)=A$, then the body A is the unique G-kernel of itself but $P_{G}(A)=A \cap L$.
3.10. Proposition. If $\operatorname{fix} G=\{0\}$, then for every $A \in \mathscr{K}_{0}^{n}$ and every $p_{0}, p_{1} \in$ $P_{G}(A)$

$$
A_{p_{0}, G}=A_{p_{1}, G} \Longrightarrow p_{0}=p_{1}
$$

i.e. the uniqueness of G-kernel implies the uniqueness of G-pseudo-centre.

Proof. We may assume that $p_{0}=0$. Let $p=p_{1} \neq 0$. Then there exists $g \in G$ with $g(p) \neq p$. Let us consider the isometry $f:=g_{p} g^{-1}$. Evidently, for every x,

$$
f(x)=x+p-g(p)
$$

i.e., f is a translation by a non-zero vector.

Since $A_{p, G}$ is invariant under g_{p} and g, it follows that $f\left(A_{p, G}\right)=A_{p, G}$. This contradicts the compactness of A.

In view of 3.9 and 3.10 , if fix $G=\{0\}$, then every strictly convex body A has a unique G-pseudo-centre, $p_{G}(A)$.

4. The uniqueness of G-kernel for an affine image

As we have seen, generally a convex body may have many G-kernels (see 3.8). However, our conjecture is that for arbitrary $G \subset \mathrm{O}(n)$, the affine class of any convex
body has a representative with a unique G-kernel. We prove this conjecture under additional assumption on G, which, in view of 3.10 , implies that the uniqueness of G-kernel is equivalent to the uniqueness of G-pseudo-centre.

For any $G \subset O(n)$, let us consider the function $\phi_{G}: \mathscr{K}_{0}^{n} \longrightarrow \mathrm{R}$ defined by the formula:

$$
\begin{equation*}
\phi_{G}(A):=\frac{\sup _{x \in A} V_{n}\left(A_{x, G}\right)}{V_{n}(A)} \tag{4.1}
\end{equation*}
$$

We start with two lemmas which hold without any restriction on G.
4.1. Lemma. Let $G \subset O(n)$. For every similarity $f: \mathrm{R}^{n} \longrightarrow \mathrm{R}^{n}$,

$$
\phi_{G}(f(A))=\phi_{G}(A)
$$

4.2. Lemma. For every $G \subset O(n)$ the function ϕ_{G} is continuous.

Proof. In view of 4.1 , without any loss of generality we may assume that $V_{n}(A)=1$. Then

$$
\phi_{G}(A)=V_{n}\left(A_{p}\right)
$$

where p is an arbitrary point of $P_{G}(A)$.
By 3.5 , we may assume that $p \in \operatorname{int} A$. Thus it suffices to prove that the function $\psi_{G}:\left\{(A, x) ; A \in \mathscr{K}_{0}^{n}, x \in \operatorname{int} A\right\} \longrightarrow \mathrm{R}$ defined by the formula

$$
\begin{equation*}
\psi_{G}(A, x):=V_{n}\left(A_{x, G}\right) \tag{4.2}
\end{equation*}
$$

is continuous.
Let $A=\lim _{H} A_{k}$ and $x=\lim x_{k}$, where $A, A_{k} \in \mathscr{K}_{0}^{n}, x \in \operatorname{int} A$, and $x_{k} \in \operatorname{int} A_{k}$ for $k \in \mathrm{~N}$. We replace A and $\left(A_{k}\right)_{k \in \mathrm{~N}}$ by A^{\prime} and $\left(A_{k}^{\prime}\right)_{k \in \mathrm{~N}}$:

$$
A^{\prime}:=A-x \quad \text { and } \quad A_{k}^{\prime}=A_{k}-x_{k} .
$$

Then $0 \in A^{\prime} \cap \bigcap_{k=1}^{\infty} A_{k}^{\prime}, A^{\prime}=\lim _{H} A_{k}^{\prime}$, and, by (4.2),

$$
\psi_{G}(A, x)=\psi_{G}\left(A^{\prime}, 0\right) \quad \text { and } \quad \psi_{G}\left(A_{k}, x_{k}\right)=\psi_{G}\left(A_{k}^{\prime}, 0\right)
$$

Hence, it remains to prove that

$$
\lim \psi_{G}\left(A_{k}^{\prime}, 0\right)=\psi_{G}\left(A^{\prime}, 0\right)
$$

i.e.,

$$
\lim V_{n}\left(\bigcap_{g \in G} g\left(A_{k}^{\prime}\right)\right)=V_{n}\left(\bigcap_{g \in G} g\left(A^{\prime}\right)\right)
$$

Since V_{n} is continuous, it suffices to show that

$$
\begin{equation*}
\lim _{H} \bigcap_{g \in G} g\left(A_{k}^{\prime}\right)=\bigcap_{g \in G} g\left(A^{\prime}\right) \tag{4.3}
\end{equation*}
$$

There exist $\alpha>0$ and $\beta>1$ such that

$$
\alpha B^{n} \subset A^{\prime} \subset \beta B^{n} \quad \text { and } \quad \alpha B^{n} \subset A_{k}^{\prime} \subset \beta B^{n} \quad \text { for every } k
$$

Let $\varepsilon>0$. Since $A^{\prime}=\lim A_{k}^{\prime}$, there exists $k_{o} \in \mathrm{~N}$ such that

$$
A_{k}^{\prime} \subset A^{\prime}+\frac{\alpha \varepsilon}{\beta} \cdot B^{n} \quad \text { and } \quad A^{\prime} \subset A_{k}^{\prime}+\frac{\alpha \varepsilon}{\beta} \cdot B^{n} \quad \text { for } k \geqslant k_{0}
$$

But, it is easy to check that

$$
A^{\prime}+\frac{\alpha \varepsilon}{\beta} \cdot B^{n} \subset\left(1+\frac{\varepsilon}{\beta}\right) \cdot A^{\prime}
$$

and similarly for $A_{k}^{\prime}, k \in \mathrm{~N}$.
Thus

$$
A_{k}^{\prime} \subset\left(1+\frac{\varepsilon}{\beta}\right) \cdot A^{\prime} \quad \text { and } \quad A^{\prime} \subset\left(1+\frac{\varepsilon}{\beta}\right) \cdot A_{k}^{\prime} \quad \text { for } k \geqslant k_{0} .
$$

Hence, for every $g \in G$,

$$
g\left(A_{k}^{\prime}\right) \subset\left(1+\frac{\epsilon}{\beta}\right) \cdot g\left(A^{\prime}\right)
$$

and therefore

$$
\bigcap_{g \in G} g\left(A_{k}^{\prime}\right) \subset\left(1+\frac{\varepsilon}{\beta}\right) \bigcap_{g \in G} g\left(A^{\prime}\right) \subset \bigcap_{g \in G} g\left(A^{\prime}\right)+\varepsilon B^{n} \quad \text { for } k \geqslant k_{0}
$$

Similarly,

$$
\bigcap_{g \in G} g\left(A^{\prime}\right) \subset \bigcap_{g \in G} g\left(A_{k}^{\prime}\right)+\varepsilon B^{n} \quad \text { for } k \geqslant k_{0} .
$$

This proves (4.3).
The next lemma requires an additional assumption on G.
4.3. LEMMA. Let $G \subset O(n)$. If there is no G-invariant linear subspace of dimension $k \in\{1, \ldots, n-1\}$, then for every $A \in \mathscr{K}_{0}^{n}$ and every $\varepsilon>0$ there exists $\gamma>0$ such that for every $f \in \operatorname{SA}(n)$

$$
\begin{equation*}
\|f\|>\gamma \Longrightarrow \phi_{G}(f(A))<\varepsilon \tag{4.4}
\end{equation*}
$$

Proof. Let us first notice that it suffices to prove the assertion for the unit n-ball.
Indeed, let it hold for B^{n}. Take $A \in \mathscr{K}_{0}^{n}$ and $\varepsilon>0$. By 4.1, we may assume that $V_{n}(A)=1$. Take $\alpha>0$ such that $A \subset \alpha \cdot B^{n}$ and let $\varepsilon^{\prime}=\frac{\varepsilon}{\alpha^{n} K_{n}}$. Then, by the assumption, there exists $\gamma>0$ such that for every $f \in \operatorname{SA}(n)$ with $\|f\|>\gamma$

$$
\phi_{G}\left(f\left(B^{n}\right)\right)<\varepsilon^{\prime}
$$

Thus

$$
\phi_{G}(f(A))=V_{n}\left(\left(f(A)_{x, G}\right) \leqslant \alpha^{n} \kappa_{n} \cdot \phi_{G}\left(f\left(B^{n}\right)\right) \leqslant \varepsilon\right.
$$

which proves the assertion for arbitrary convex body A.
Hence, we assume $A=B^{n}$. By Proposition 2.4, there exists $\lambda_{G}>0$ such that for every G-invariant $C \in \mathscr{K}_{0}^{n}$

$$
\begin{equation*}
V_{n}(C) \leqslant \lambda_{G} \cdot d(C)^{n} \tag{4.5}
\end{equation*}
$$

Take an $\varepsilon>0$ and let

$$
\begin{equation*}
\gamma:=\left(\frac{\lambda_{G}}{\varepsilon}\right)^{\frac{n-1}{n}} \cdot 2^{n-1} . \tag{4.6}
\end{equation*}
$$

We may assume without any loss of generality that $f \in \operatorname{SL}(n)$. Let $\|f\|>\gamma$ and let a_{1}, \ldots, a_{n} be the half-axes of the ellipsoid $f\left(B^{n}\right)$, with $a_{1} \geqslant \ldots \geqslant a_{n}$. Then

$$
a_{n} \leqslant\left(a_{2} \cdot \ldots \cdot a_{n}\right)^{\frac{1}{n-1}}=\left(V_{n}\left(f\left(B^{n}\right)\right) \cdot\left(\kappa_{n} a_{1}\right)^{-1}\right)^{\frac{1}{n-1}},
$$

and, since $V_{n}\left(f\left(B^{n}\right)\right)=\kappa_{n}$, it follows that $\left(a_{n}\right)^{n-1} \leqslant\left(a_{1}\right)^{-1}$, i.e.,

$$
\begin{equation*}
a_{1} \leqslant\left(a_{n}\right)^{1-n} . \tag{4.7}
\end{equation*}
$$

But $\|f\|=a_{1}$; thus, by the assumption, $a_{1}>\gamma$, which, together with (4.6) and (4.7), yields

$$
2^{n-1} \cdot\left(\frac{\lambda_{G}}{\varepsilon}\right)^{\frac{n-1}{n}}<\left(a_{n}\right)^{1-n}
$$

and, consequently,

$$
\begin{equation*}
\left(2 a_{n}\right)^{n}<\frac{\varepsilon}{\lambda_{G}} \text {. } \tag{4.8}
\end{equation*}
$$

Let C be a G-kernel of $f\left(B^{n}\right)$. Then $\phi_{G}\left(f\left(B^{n}\right)\right)=V_{n}(C)$, and thus, by (4.5) and (4.8),

$$
\phi_{G}\left(f\left(B^{n}\right)\right) \leqslant \lambda_{G}(d(C))^{n} \leqslant \lambda_{G} d\left(f\left(B^{n}\right)\right)^{n}=\lambda_{G}\left(2 a_{n}\right)^{n}<\varepsilon .
$$

4.4. Theorem. Let $G \subset \mathrm{O}(n)$. If there is no G-invariant linear subspace of dimension $k \in\{1, \ldots, n-1\}$, then for every $A \in \mathscr{K}_{0}^{n}$ there exists an affine automorphism f_{0} of R^{n} such that $f_{0}(A)$ has a unique G-pseudo-centre.

Proof. Let $\phi:=\phi_{G}$. Take $A \in \mathscr{K}_{0}^{n}$ and $\varepsilon>0$. By Lemma 4.3, there exists $\gamma>0$ such that $\phi(f(A))<\varepsilon$ whenever $f \in \operatorname{SA}(n)$ and $\|f\|>\gamma$.

By the continuity of ϕ (Lemma 4.2), also the function $\hat{\phi}_{A}: \operatorname{SA}(n) \longrightarrow \mathrm{R}$ defined by

$$
\hat{\phi}_{A}(f):=\phi(f(A))
$$

is continuous and, therefore, it attains its maximum in the compact subset $\Phi:=\{f \in$ $\operatorname{GA}(n) ;\|f\| \leqslant \gamma,|\operatorname{det} f| \leqslant 1\}$ of $\operatorname{GA}(n)$. Let f_{0} be a maximizer of $\hat{\phi}_{A} \mid \Phi$. We have to show that

$$
\begin{equation*}
P_{G}\left(f_{0}(A)\right) \text { is a singleton. } \tag{4.9}
\end{equation*}
$$

Let $A^{\prime}=f_{0}(A)$ and $p_{i} \in P_{G}\left(A^{\prime}\right)$ for $i=0,1$. Then, by the Brunn-Minkowski Theorem combined with 3.3,

$$
\left(A^{\prime}\right)_{p_{1}, G}=\left(A^{\prime}\right)_{p_{0}, G}+v \text { for some } v \in \mathrm{R}^{n} .
$$

and thus, by $3.10, p_{1}=p_{0}+v$, because fix $G=\{0\}$.
Without any loss of generality we may assume that $p_{1}=-p_{0}$.
Suppose that $v \neq 0$ and let $\left(w_{1}, \ldots, w_{n}\right)$ be an orthonormal basis of R^{n} with $w_{n}=\frac{v}{\|v\|}$. Let f be the linear automorphism with $f\left(w_{i}\right)=w_{i}$ for $i=1, \ldots, n-1$ and $f\left(w_{n}\right)=\alpha \cdot w_{n}$, where

$$
\alpha=\max \left\{\frac{h\left(\left(A^{\prime}\right)_{0}, w_{n}\right)}{h\left(\left(A^{\prime}\right)_{p_{1}}, w_{n}\right)}, \frac{h\left(\left(A^{\prime}\right)_{0},-w_{n}\right)}{h\left(\left(A^{\prime}\right)_{p_{0}},-w_{n}\right)}\right\}
$$

Then $\alpha<1$ and $f f_{0} \in \Phi$. We shall show that

$$
\begin{equation*}
\left(A^{\prime}\right)_{0} \subset f\left(A^{\prime}\right) \tag{4.10}
\end{equation*}
$$

Let $x=\sum_{i=0}^{n} x_{i} w_{i} \in\left(A^{\prime}\right)_{0}$; then $f^{-1}(x)=\sum_{i=1}^{n-1} x_{i} w_{i}+\frac{x_{n}}{\alpha} w_{n}$, whence

$$
f^{-1}(x)-x=x_{n}\left(\frac{1}{\alpha}-1\right) \cdot w_{n}
$$

and thus

$$
\begin{equation*}
f^{-1}(x) \in \Delta\left(x-\left|x_{n}\right|\left(\frac{1}{\alpha}-1\right) \cdot w_{n}, x+\left|x_{n}\right|\left(\frac{1}{\alpha}-1\right) \cdot w_{n}\right) . \tag{4.11}
\end{equation*}
$$

Evidently

$$
\begin{equation*}
\left|x_{n}\right| \leqslant \max \left\{h\left(\left(A^{\prime}\right)_{0}, w_{n}\right), h\left(\left(A^{\prime}\right)_{0},-w_{n}\right)\right\} . \tag{4.12}
\end{equation*}
$$

Since $\left(A^{\prime}\right)_{p_{0}}=\left(A^{\prime}\right)_{0}-\frac{v}{2}$ and $\left(A^{\prime}\right)_{p_{1}}=\left(A^{\prime}\right)_{0}+\frac{\nu}{2}$, it follows that

$$
h\left(\left(A^{\prime}\right)_{p_{0}},-w_{n}\right)=h\left(\left(A^{\prime}\right)_{0},-w_{n}\right)+\frac{1}{2}\|v\|
$$

and

$$
h\left(\left(A^{\prime}\right)_{p_{1}}, w_{n}\right)=h\left(\left(A^{\prime}\right)_{0}, w_{n}\right)+\frac{1}{2}\|v\|
$$

By simple calculation,

$$
\begin{aligned}
& \frac{1}{\alpha}-1=\min \left\{\frac{\|v\|}{2 h\left(\left(A^{\prime}\right)_{0}, w_{n}\right)}, \frac{\|v\|}{2 h\left(\left(A^{\prime}\right)_{0},-w_{n}\right)}\right\} \\
& =\|v\| \cdot\left(2 \max \left\{h\left(\left(A^{\prime}\right)_{0}, w_{n}\right), h\left(\left(A^{\prime}\right)_{0},-w_{n}\right)\right\}\right)^{-1}
\end{aligned}
$$

Hence, by (4.12),

$$
\frac{1}{\alpha}-1 \leqslant \frac{\|v\|}{2\left|x_{n}\right|}
$$

which, together with (4.11), implies

$$
f^{-1}(x) \in \Delta\left(x-\frac{v}{2}, x+\frac{v}{2}\right) .
$$

Therefore

$$
f^{-1}(x) \in \operatorname{conv}\left(\left(A^{\prime}\right)_{p_{0}} \cup\left(A^{\prime}\right)_{p_{1}}\right) \subset A^{\prime}
$$

This proves (4.10).
Let now C be any G-kernel of $f\left(A^{\prime}\right)$. Since $\left(A^{\prime}\right)_{0}$ is G-invariant, by (4.10) it follows that

$$
V_{n}\left(\left(A^{\prime}\right)_{0}\right) \leqslant V_{n}(C) .
$$

Hence

$$
\phi\left(A^{\prime}\right)=\frac{V_{n}\left(\left(A^{\prime}\right)_{0}\right)}{V_{n}\left(A^{\prime}\right)}=\frac{V_{n}\left(\left(A^{\prime}\right)_{0}\right)}{\frac{1}{\alpha} V_{n}\left(f\left(A^{\prime}\right)\right)}<\frac{V_{n}(C)}{V_{n}\left(f\left(A^{\prime}\right)\right)}=\phi\left(f\left(A^{\prime}\right)\right),
$$

i.e.,

$$
\hat{\phi}_{A}\left(f f_{0}\right)>\hat{\phi}_{A}\left(f_{0}\right),
$$

contrary to the assumption that f_{0} is a maximizer of $\hat{\phi}_{A} \mid \Phi$. Hence $v=0$, i.e. $\left(A^{\prime}\right)_{P_{0}, G}=\left(A^{\prime}\right)_{p_{1}, G}$.

Applying now Proposition 3.10, we obtain $p_{0}=p_{1}$. This proves (4.9).

REFERENCES

[1] L. Danzer, D. Laugwitz, H. Lenz, Über das Löwnersche Ellipsoid und sein Analogon unter den einem Eikörper einbeschriebenen Ellipsoiden, Arch. Mat., 8 (1957), 214-219.
[2] I. Fáry, L. Rédei, Der zentralsymmetrische Kern und die zentralsymmetrische Hülle von konvexen Körpern, Math. Ann., 122 (1950), 205-220.
[3] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, 1993, Cambridge University Press.
[4] V. L. Zaguskin, On circumscribed and inscribed ellipsoids of extremal volume, Uspechi Mat.Nauk 13(84) (1958), 89-93.

[^0]: Mathematics subject classification (1991): 52A20, 52A38, 52A99.
 Key words and phrases: convex body, G-invariant convex body, n-volume, G-kemel, G-pseudocentre.

