ON THE ZEROS OF POLYNOMIALS AND RELATED ANALYTIC FUNCTIONS

Abdul Aziz and W. M. Shah, Srinagar, India

Abstract. Let $P(z)$ be a polynomial of degree n with real or complex coefficients. In this paper we obtain a ring shaped region containing all the zeros of $P(z)$. Our results include, as special cases, several known extensions of Eneström-Kakeya theorem on the zeros of a polynomial. We shall also obtain zero free regions for certain class of analytic functions.

1. Introduction and statements of results

If $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree n such that

$$
a_{n} \geqslant a_{n-1} \geqslant \ldots \geqslant a_{1} \geqslant a_{0}>0
$$

then according to a famous result due to Eneström and Kakeya [9, p. 136], the polynomial $P(z)$ does not vanish in $|z|>1$.

Applaying this result to $P(t z)$, the following more general result is immediate.

$$
\begin{aligned}
& \text { THEOREM A. If } P(z)=\sum_{j=0}^{n} a_{j} z^{j} \text { is a polynomial of degree } n \text { such that } \\
& \qquad t^{n} a_{n} \geqslant t^{n-1} a_{n-1} \geqslant \ldots \geqslant t a_{1} \geqslant a_{0}>0
\end{aligned}
$$

then all the zeros of $P(z)$ lie in $|z| \leqslant t$.
In the literature $[2,5,7,8]$ there exist some extensions and generalizations of Eneström-Kakeya theorem. Govil and Rahman [5] generalized this theorem to the polynomial with complex coefficients.

While refining the result of Govil and Rahman [5], Govil and Jain [4] proved the following result.

THEOREM B. Let $P(z)=\sum_{k=0}^{n} a_{k} z^{k} \not \equiv 0$ be a polynomial with complex coefficients such that

$$
\left|\arg a_{k}-\beta\right| \leqslant \alpha \leqslant \frac{\pi}{2}, \quad k=0,1, \ldots, n
$$

for some β, and

$$
\left|a_{n}\right| \geqslant\left|a_{n-1}\right| \geqslant \ldots \geqslant\left|a_{1}\right| \geqslant\left|a_{0}\right| .
$$

Mathematics subject classification (1991): 30C10, 30C15.
Key words and phrases: polynomials, zeros, analytic functions.

Then $P(z) \mid$ has all its zeros in the ring shaped region given by

$$
R_{3} \leqslant|\alpha| \leqslant R_{2}
$$

Here

$$
R_{2}=\frac{c}{2}\left(\frac{1}{\left|a_{n}\right|}-\frac{1}{M_{1}}\right)+\left\{\frac{c^{2}}{4}\left(\frac{1}{\left|a_{n}\right|}-\frac{1}{M_{1}}\right)^{2}+\frac{M_{1}}{\left|a_{n}\right|}\right\}^{\frac{1}{2}}
$$

and

$$
R_{3}=\frac{1}{2 M_{2}^{2}}\left[-R_{2}^{2}|b|\left(M_{2}-\left|a_{0}\right|\right)+\left\{4\left|a_{0}\right| R_{2}^{2} M_{2}^{3}+R_{2}^{4}|b|^{2}\left(M_{2}-\left|a_{0}\right|\right)^{2}\right\}^{\frac{1}{2}}\right]
$$

where

$$
\begin{aligned}
M_{1} & =\left|a_{n}\right| R \\
M_{2} & =\left|a_{n}\right| R_{2}^{2}\left[R+R_{2}-\frac{\left|a_{0}\right|}{\left|a_{n}\right|}(\cos \alpha+\sin \alpha)\right] \\
c & =\left|a_{n}-a_{n-1}\right| \\
b & =a_{1}-a_{0}
\end{aligned}
$$

and

$$
R=\cos \alpha+\sin \alpha+\frac{2 \sin \alpha}{\left|a_{n}\right|} \sum_{k=0}^{n-1}\left|a_{k}\right|
$$

As an extension of Theorem A, Dewan and Bikham [3] have recently proved the following result.

THEOREM C. Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n such that for some $t>0$ and $0<k \leqslant n$,

$$
t^{n} a_{n} \leqslant t^{n-1} a_{n-1} \leqslant \ldots \leqslant t^{k} a_{k} \geqslant t^{k-1} a_{k-1} \geqslant \ldots \geqslant t a_{1} \geqslant a_{0}
$$

Then $P(z)$ has all its zeros in the circle

$$
|z| \leqslant \frac{t}{\left|a_{n}\right|}\left\{\left(\frac{2 a_{k}}{t^{n-k}}-a_{n}\right)+\frac{1}{t^{n}}\left(\left|a_{0}\right|-a_{0}\right)\right\} .
$$

The main aim of this paper is to prove the following more general result (Theorem 1) which includes Theorem A, B and C as special cases. These theorems and many other such results can be established from Theorem 1 by a fairly uniform procedure. We shall also study the zeros of certain related analytic functions.

We start by proving the following:
THEOREM 1. Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j} \not \equiv 0$ be a polynomial of degree n. If for some real number $t>0$

$$
\begin{equation*}
\underset{|z|=R}{\operatorname{Max}}\left|t a_{0} z^{n+1}+\left(t a_{1}-a_{0}\right) z^{n}+\ldots+\left(t a_{n}-a_{n-1}\right) z\right| \leqslant M_{1} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Max}_{|z|=R}\left|-a_{n} z^{n+1}+\left(t a_{n}-a_{n-1}\right) z^{n}+\ldots+\left(t a_{1}-a_{0}\right) z\right| \leqslant M_{2} \tag{2}
\end{equation*}
$$

where R is any positive real number. Then all zeros of $P(z)$ lie in the ring shaped region

$$
\begin{equation*}
r_{2} \leqslant|z| \leqslant r_{1} \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
r_{1}=\frac{2 M_{1}^{2}}{\left\{R^{4}\left|t a_{n}-a_{n-1}\right|^{2}\left(M_{1}-\left|a_{n}\right|\right)^{2}+4\left|a_{n}\right| R^{2} M_{1}^{3}\right\}^{\frac{1}{2}}-\left|t a_{n}-a_{n-1}\right|\left(M_{1}-\left|a_{n}\right|\right) R^{2}} \tag{4}
\end{equation*}
$$

and
$r_{2}=\frac{1}{2 M_{2}^{2}}\left[\left\{R^{4}\left|t a_{1}-a_{0}\right|^{2}\left(M_{2}-t\left|a_{0}\right|\right)^{2}+4 M_{2}^{3} R^{2} t\left|a_{0}\right|\right\}^{\frac{1}{2}}-\left|t a_{1}-a_{0}\right|\left(M_{2}-t\left|a_{0}\right|\right) R^{2}\right]$.

Remark 1. It can be easily verified that

$$
\begin{align*}
r_{1} & =\frac{2 M_{1}^{2}}{-\left|t a_{n}-a_{n-1}\right|\left(M_{1}-\left|a_{n}\right|\right) R^{2}+\left\{R^{4}\left|t a_{n}-a_{n-1}\right|^{2}\left(M_{1}-\left|a_{n}\right|\right)^{2}+4\left|a_{n}\right| R^{2} M_{1}^{3}\right\}^{\frac{1}{2}}} \\
& =\frac{\left|t a_{n}-a_{n-1}\right|\left(M_{1}-\left|a_{n}\right|\right) R^{2}+\left\{R^{4}\left|t a_{n}-a_{n-1}\right|^{2}\left(M_{1}-\left|a_{n}\right|\right)^{2}+4\left|a_{n}\right| R^{2} M_{1}^{3}\right\}^{\frac{1}{2}}}{2\left|a_{n}\right| M_{1} R^{2}} \\
& =\frac{\left|t a_{n}-a_{n-1}\right|}{2}\left(\frac{1}{\left|a_{n}\right|}-\frac{1}{M_{1}}\right)+\left\{\frac{\left|t a_{n}-a_{n-1}\right|^{2}}{4}\left(\frac{1}{\left|a_{n}\right|}-\frac{1}{M_{1}}\right)^{2}+\frac{M_{1}}{\left|a_{n}\right| R^{2}}\right\}^{\frac{1}{2}} \tag{6}
\end{align*}
$$

If we take $R=(1 / t)$ in (6), then we get

$$
\begin{equation*}
r_{1}=\frac{\left|t a_{n}-a_{n-1}\right|}{2}\left(\frac{1}{\left|a_{n}\right|}-\frac{1}{M_{1}}\right)+\left\{\frac{\left|t a_{n}-a_{n-1}\right|^{2}}{4}\left(\frac{1}{\left|a_{n}\right|}-\frac{1}{M_{1}}\right)^{2}+\frac{M_{1} t^{2}}{\left|a_{n}\right|}\right\}^{\frac{1}{2}} \tag{7}
\end{equation*}
$$

Suppose now $P(z)=\sum_{j=1}^{n} a_{j} z^{j}$ satisfies the conditions of Theorem B, than it can be easily seen (for reference see [5]) that

$$
\left|a_{j}-a_{j-1}\right| \leqslant\left\{\left(\left|a_{j}\right|-\left|a_{j-1}\right|\right) \cos \alpha+\left(\left|a_{j}\right|+\left|a_{j-1}\right|\right) \sin \alpha\right\},
$$

so that for $R=t=1$, we get from (1),

$$
\begin{aligned}
& \underset{|z|=R}{\operatorname{Max}}\left|t a_{0} z^{n+1}+\left(t a_{1}-a_{0}\right) z^{n}+\ldots+\left(t a_{n}-a_{n-1}\right) z\right| \\
& \quad \leqslant \sum_{j=1}^{n}\left|a_{j}-a_{j-1}\right|+\left|a_{0}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant \sum_{j=1}^{n}\left(\left|a_{j}\right|-\left|a_{j-1}\right|\right) \cos \alpha+\sum_{j=1}^{n}\left(\left|a_{j}\right|+\left|a_{j-1}\right|\right) \sin \alpha+\left|a_{0}\right| \\
& =\left|a_{n}\right|(\cos \alpha+\sin \alpha)+2 \sin \alpha \sum_{j=0}^{n-1}\left|a_{j}\right|-\left|a_{0}\right|(\cos \alpha+\sin \alpha-1) \\
& \leqslant\left|a_{n}\right|(\cos \alpha+\sin \alpha)+2 \sin \alpha \sum_{j=0}^{n-1}\left|a_{j}\right| \\
& =\left|a_{n}\right| r=M_{1}, \quad \text { say }
\end{aligned}
$$

where $r=\cos \alpha+\sin \alpha+\frac{2 \sin \alpha}{\left|a_{n}\right|} \sum_{j=0}^{n-1}\left|a_{j}\right|$.
Also from (7) with $t=1$, we have

$$
r_{1}=\frac{\left|a_{n}-a_{n-1}\right|}{2}\left(\frac{1}{\left|a_{n}\right|}-\frac{1}{M_{1}}\right)+\left\{\frac{\left|a_{n}-a_{n-1}\right|^{2}}{4}\left(\frac{1}{\left|a_{n}\right|}-\frac{1}{M_{1}}\right)^{2}+\frac{M_{1}}{\left|a_{n}\right|}\right\}^{\frac{1}{2}}
$$

Clearly $r_{1} \geqslant 1$ and it follows by a similar argument as above that

$$
\begin{aligned}
\operatorname{Max}_{|z|=R} \mid & -a_{n} z^{n+1}+\left(t a_{n}-a_{n-1}\right) z^{n}+\ldots+\left(t a_{1}-a_{0}\right) z \mid \\
& \leqslant\left|a_{n}\right| r_{1}^{n+1}+r_{1}^{n} \sum_{j=1}^{n}\left|a_{j}-a_{j-1}\right| \\
& \leqslant\left|a_{n}\right| r_{1}^{n}\left\{r_{1}+r-\frac{\left|a_{0}\right|}{\left|a_{n}\right|}(\cos \alpha+\sin \alpha)\right\}=M_{2}, \quad \text { say. }
\end{aligned}
$$

Now, from (7) for $t=1$, we get $r_{1}=R_{2}$ and from (5) for $R=R_{2}, t=1$ we get $r_{2}=R_{3}$. Consequently, it follows by Theorem 1 that all the zeros of $P(z)$ lie in $R_{3} \leqslant|z| \leqslant R_{2}$, which is precisely the conclusion of Theorem B. Similarly, many other such results, in particular Theorem 2 of [3] and Theorem 2 of [4] easily follows from Theorem 1 by a fairly similar procedure.

Next, we use Theorem 1 to prove the following result, which includes Theorem C as a special case and is also an extension of a result due to Mohammad [10].

THEOREM 2. Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n. If for some $t>0$

$$
\begin{equation*}
\operatorname{Max}_{|z|=R}\left|t a_{0} z^{n}+\left(t a_{1}-a_{0}\right) z^{n-1}+\ldots+\left(t a_{n}-a_{n-1}\right)\right| \leqslant M_{3} \tag{8}
\end{equation*}
$$

where R is any positive real number, then all the zeros of $P(z)$ lie in

$$
|z| \leqslant \operatorname{Max}\left\{\frac{M_{3}}{\left|a_{n}\right|}, \frac{1}{R}\right\}
$$

Remark 2. If $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ satisfies the conditions of Theorem C , then for
$R=(1 / t)$, with $a_{-1}=0$, we have

$$
\operatorname{Max}_{|=|=\frac{1}{t}}\left|\sum_{k=0}^{n}\left(t a_{k}-a_{k-1}\right) z^{n-k}\right| \leqslant \sum_{k=0}^{n} \frac{\left|t a_{k}-a_{k-1}\right|}{t^{n-k}}=M_{3}, \quad \text { say. }
$$

Since

$$
\frac{1}{R}=t=\left|\sum_{k=0}^{n} \frac{t a_{k}-a_{k-1}}{a_{n} n^{n-k}}\right| \leqslant \sum_{k=0}^{n} \frac{\left|t a_{k}-a_{k-1}\right|}{\left|a_{n}\right| t^{n-k}}=\frac{M_{3}}{\left|a_{n}\right|} .
$$

It follows by Theorem 2 that all the zeros of $P(z)$ lie in

$$
\begin{equation*}
|z| \leqslant \frac{M_{3}}{\left|a_{n}\right|} \leqslant \sum_{k=0}^{n} \frac{\left|t a_{k}-a_{k-1}\right|}{\left|a_{n}\right| t^{n-k}} . \tag{9}
\end{equation*}
$$

Now a simple calculation shows that

$$
\begin{aligned}
\sum_{k=0}^{n} \frac{\left|t a_{k}-a_{k-1}\right|}{\left|a_{n}\right| t^{n-k}}=\sum_{k=0}^{\lambda} \frac{\left|t a_{k}-a_{k-1}\right|}{\left|a_{n}\right| t^{n-k}} & +\sum_{k=\lambda+1}^{n} \frac{\left|t a_{k}-a_{k-1}\right|}{\left|a_{n}\right| t^{n-k}} \\
& =\frac{t}{\left|a_{n}\right|}\left\{\left(\frac{2 a_{\lambda}}{t^{n-\lambda}}-a_{n}\right)+\frac{1}{t^{n}}\left(\left|a_{0}\right|-a_{0}\right)\right\},
\end{aligned}
$$

and therefore from (9), we precisely get the conclusion of Theorem C.
Again, if $P(z)$ is a polynomial of degree n such that for some $t>0$

$$
0 \leqslant a_{0} \leqslant t a_{1} \leqslant \ldots \leqslant t^{\lambda} a_{\lambda} \geqslant t^{\lambda+1} a_{\lambda+1} \geqslant \ldots \geqslant t^{n} a_{n}
$$

then from (8), we have

$$
\begin{align*}
\underset{|z|=R}{\operatorname{Max}} \mid & \sum_{k=0}^{n}\left(t a_{k}-a_{k-1}\right) z^{n-k}\left|\leqslant \sum_{k=0}^{n}\right| t a_{k}-a_{k-1} \mid R^{n-k} \\
& =\sum_{k=0}^{\lambda}\left(t a_{k}-a_{k-1}\right) R^{n-k}+\sum_{k=\lambda+1}^{n}\left(a_{k-1}-t a_{k}\right) R^{n-k} \\
& =\frac{1}{R}\left(2 a_{\lambda} R^{n-\lambda}-a_{n}\right)+\left(t-\frac{1}{R}\right)\left(\sum_{k=0}^{\lambda} a_{k} R^{n-k}-\sum_{k=\lambda+1}^{n} a_{k} R^{n-k}\right)=M_{4} . \tag{10}
\end{align*}
$$

Using (10) in Theorem 2, we immediately get the following result, which is a generalisation of Eneström-Kakeya Theorem.

Corollary 1. Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n. If for some $t>0$

$$
0 \leqslant a_{0} \leqslant t a_{1} \leqslant \ldots \leqslant t^{\lambda} a_{\lambda} \geqslant t^{\lambda+1} a_{\lambda+1} \geqslant \ldots \geqslant t^{n} a_{n},
$$

than all the zeros of $P(z)$ lie in $|z| \leqslant \operatorname{Max}\left(R_{1}, \frac{1}{R}\right)$, where

$$
R_{1}=\frac{1}{R\left|a_{n}\right|}\left(2 a_{\lambda} R^{n-\lambda}-a_{n}\right)+\left(t-\frac{1}{R}\right) \frac{1}{\left|a_{n}\right|}\left(\sum_{k=0}^{\lambda} a_{k} R^{n-k}-\sum_{k=\lambda+1}^{n} a_{k} R^{n-k}\right) .
$$

If we take $\lambda=n$ in Corollary 1 , we get

Corollary 2. Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n. If for some $t>0$

$$
0 \leqslant a_{0} \leqslant t a_{1} \leqslant \ldots \leqslant t^{n} a_{n}
$$

than all the zeros of $P(z)$ lie in $|z| \leqslant \operatorname{Max}\left(R_{1}, \frac{1}{R}\right)$, where

$$
R_{1}=\frac{1}{R}+\left(t-\frac{1}{R}\right) \sum_{k=0}^{n}\left(\frac{a_{k}}{a_{n}}\right) R^{n-k} .
$$

For $R=\frac{1}{t}$, Corollary 2 reduces to Theorem A.
We now turn to the study of zeros of certain related analytic functions.
THEOREM 3. Let $f(z)=\sum_{j=0}^{\infty} a_{j} z^{j} \not \equiv 0$ be analytic in $|z| \leqslant R$. Iffor some positive real number $t \leqslant R$

$$
\begin{equation*}
\operatorname{Max}_{|z|=R}\left|\sum_{j=1}^{\infty}\left(a_{j-1}-t a_{j}\right) z^{j-1}\right| \leqslant M \tag{11}
\end{equation*}
$$

than $f(z)$ does not vanish in $|z|<r$, where

$$
\begin{equation*}
r=\frac{1}{2 M^{2}}\left[\left\{\left(M r-t\left|a_{0}\right|\right)^{2}\left|a_{0}-t a_{1}\right|^{2}+4 t\left|a_{0}\right| R M^{3}\right\}^{\frac{1}{2}}-\left(M R-t\left|a_{0}\right|\right)\left|a_{0}-t a_{1}\right|\right] \tag{12}
\end{equation*}
$$

By a similar argument as in the proof of Theorem 2, it can be easily verified that if $t\left|a_{0}\right| \leqslant M R$, then from (12),

$$
\begin{equation*}
r \geqslant \frac{t\left|a_{0}\right|}{M} \tag{13}
\end{equation*}
$$

and if $t\left|a_{0}\right|>M R$, then $f(z)$ does not vanish in

$$
\begin{equation*}
|z| \leqslant R . \tag{14}
\end{equation*}
$$

By combining (13) and (14), the following corollary follows immediately.
COROLLARY 3. If $f(z)=\sum_{j=0}^{\infty} a_{j} z^{j} \not \equiv 0$ be analytic in $|z| \leqslant R$ and

$$
\underset{|z|=R}{\operatorname{Max}}\left|\sum_{j=1}^{\infty}\left(a_{j-1}-t a_{j}\right) z^{j-1}\right| \leqslant M
$$

then $f(z)$ does not vanish in

$$
\begin{equation*}
|z|<\operatorname{Min}\left\{\frac{t\left|a_{0}\right|}{M}, R\right\} \tag{15}
\end{equation*}
$$

Finally, we present the following extension of Theorem 5 of [1].
THEOREM 4. Let $f(z)=\sum_{j=0}^{\infty} a_{j} z^{j} \not \equiv 0$ be analytic in $|z| \leqslant t$. If for some finite non-negative integer k

$$
a_{0} \leqslant t a_{1} \leqslant \ldots \leqslant t^{k} a_{k} \geqslant t^{k+1} a_{\lambda+1} \geqslant \ldots
$$

then $f(z)$ does not vanish in

$$
|z|<\frac{t}{\left(2 t^{k}\left|\frac{a_{k}}{a_{0}}\right|-1\right)+\frac{2}{\left|a_{0}\right|} \sum_{j=1}^{\infty}\left|a_{j}-\left|a_{j}\right|\right| t^{j}}
$$

If $a_{j}>0$ and $k=0$, then Theorem 4 reduces to Theorem 5 of [1].

2. Lemmas

For the proofs of these theorems, we need the following lemmas. The first lemma is due to Govil, Rahman and Schmeisser [6].

Lemma 1. If $f(z)$ is analytic in $|z| \leqslant 1, f(0)=a$ where $|a|<1, f^{\prime}(0)=b$, $|f(z)| \leqslant 1$ on $|z|=1$, then for $|z| \leqslant 1$,

$$
|f(z)| \leqslant \frac{(1-|a|)|z|^{2}+|b||z|+|a|(1-|a|)}{|a|(1-|a|)|z|^{2}+|b||z|+(1-|a|)}
$$

The example

$$
f(z)=\frac{a+\frac{b}{1+a} z-z^{2}}{1-\frac{b}{1+a} z-a z^{2}}
$$

shows that the estimate is sharp.
From Lemma 1, one can easily deduce the following:
LEMMA 2. If $f(z)$ is analytic in $|z| \leqslant R, f(0)=0, f^{\prime}(0)=b$ and $|f(z)| \leqslant M$ for $|z|=R$, then

$$
|f(z)| \leqslant \frac{M|z|}{R^{2}} \cdot \frac{M|z|+R^{2}|b|}{M+|b||z|} \quad \text { for }|z| \leqslant R .
$$

3. Proofs of the theorems

Proof of Theorem 1. Consider the polynomial

$$
\begin{equation*}
F(z)=(t-z) P(z)=-a_{n} z^{n+1}+\left(t a_{n}-a_{n-1}\right) z^{n}+\ldots+t a_{0} \tag{16}
\end{equation*}
$$

We have

$$
G(z)=z^{n+1} F(1 / z)=-a_{n}+\left(t a_{n}-a_{n-1}\right) z+\ldots+t a_{0} z^{n+1}
$$

so that

$$
\begin{equation*}
|G(z)| \geqslant\left|a_{n}\right|-|H(z)| \tag{17}
\end{equation*}
$$

where

$$
H(z)=\left(t a_{n}-a_{n-1}\right) z+\left(t a_{n-1}-a_{n-2}\right) z^{2}+\ldots+t a_{0} z^{n+1}
$$

Clearly, $H(0)=0$ and $H^{\prime}(0)=t a_{n}-a_{n-1}$. Since by (1) $|H(z)| \leqslant M_{1}$, for $|z|=R$, therefore, it follows by Lemma 2, that

$$
|H(z)| \leqslant \frac{M_{1}|z|}{R^{2}} \cdot \frac{M_{1}|z|+R^{2}\left|t a_{n}-a_{n-1}\right|}{M_{1}+\left|t a_{n}-a_{n-1}\right||z|}, \quad \text { for }|z| \leqslant R .
$$

Using this in (17) we get

$$
\begin{aligned}
|G(z)| & \geqslant\left|a_{n}\right|-\frac{M_{1}|z|\left(M_{1}|z|+R^{2}\left|t a_{n}-a_{n-1}\right|\right)}{R^{2}\left(M_{1}+\left|t a_{n}-a_{n-1}\right||z|\right)} \\
& =\frac{\left|a_{n}\right| R^{2} M_{1}+R^{2}\left|t a_{n}-a_{n-1}\right|\left(\left|a_{n}\right|-M_{1}\right)|z|-M_{1}^{2}|z|^{2}}{R^{2}\left(M_{1}+\left|t a_{n}-a_{n-1}\right||z|\right)}>0,
\end{aligned}
$$

if

$$
M_{1}^{2}|z|^{2}+R^{2}\left|t a_{n}-a_{n-1}\right|\left(M_{1}-\left|a_{n}\right|\right)|z|-\left|a_{n}\right| R^{2} M_{1}<0 .
$$

This gives $|G(z)|>0$, if

$$
\begin{align*}
|z| & <\frac{\left\{R^{4}\left|t a_{n}-a_{n-1}\right|^{2}\left(M_{1}-\left|a_{n}\right|\right)^{2}+4\left|a_{n}\right| R^{2} M_{1}^{3}\right\}^{\frac{1}{2}}-R^{2}\left|t a_{n}-a_{n-1}\right|\left(M_{1}-\left|a_{n}\right|\right)}{2 M_{1}^{2}} \\
& =\frac{1}{r_{1}} . \tag{4}
\end{align*}
$$

Consequently, all zeros of $G(z)$ lie in $|z| \geqslant \frac{1}{r_{1}}$. As $F(z)=z^{n+1} G(1 / z)$ we conclude that all the zeros of $F(z)$ lie in $|z| \leqslant r_{1}$. Since every zero of $P(z)$ is also a zero of $F(z)$, it follows that all the zeros of $P(z)$ lie in

$$
\begin{equation*}
|z| \leqslant r_{1} . \tag{18}
\end{equation*}
$$

Again, from (16), we have

$$
\begin{equation*}
|F(z)| \geqslant\left|t a_{0}\right|-|T(z)|, \tag{19}
\end{equation*}
$$

where

$$
T(z)=-a_{n} z^{n+1}+\left(t a_{n}-a_{n-1}\right) z^{n}+\ldots+\left(t a_{1}-a_{0}\right) z
$$

Clearly $T(0)=0$ and $T^{\prime}(0)=t a_{1}-a_{0}$. Since by $(2),|T(z)| \leqslant M_{2}$ for $|z|=R$, therefore, it follows by Lemma 2, that

$$
|T(z)| \leqslant \frac{M_{2}|z|}{R^{2}} \frac{M_{2}|z|+R^{2}\left|t a_{1}-a_{0}\right|}{M_{2}+\left|t a_{1}-a_{0}\right||z|}, \quad \text { for }|z| \leqslant R .
$$

So that from (19) we have

$$
\begin{aligned}
|F(z)| & \geqslant\left|t a_{0}\right|-\frac{M_{2}|z|\left(M_{2}|z|+R^{2}\left|t a_{1}-a_{0}\right|\right)}{R^{2}\left(M_{2}+\left|t a_{1}-a_{0}\right||z|\right)} \\
& =\frac{t\left|a_{0}\right| R^{2} M_{2}+R^{2}\left|t a_{1}-a_{0}\right|\left(t\left|a_{0}\right|-M_{2}\right)|z|-M_{2}^{2}|z|^{2}}{R^{2}\left(M_{2}+\left|t a_{1}-a_{0}\right||z|\right)}>0,
\end{aligned}
$$

if

$$
M_{2}^{2}|z|^{2}+R^{2}\left|t a_{1}-a_{0}\right|\left(M_{2}-t\left|a_{0}\right|\right)|z|-t\left|a_{0}\right| R^{2} M_{2}<0 .
$$

Thus $F(z)>0$, if

$$
\begin{align*}
& |z|<\frac{1}{2 M_{2}^{2}}\left[\left\{R^{4}\left|t a_{1}-a_{0}\right|^{2}\left(M_{2}-t\left|a_{0}\right|\right)^{2}+4 t\left|a_{0}\right| R^{2} M_{2}^{3}\right\}^{\frac{1}{2}}\right. \\
& \left.\quad-R^{2}\left|t a_{1}-a_{0}\right|\left(M_{2}-t\left|a_{0}\right|\right)\right] \\
& =r_{2} \tag{5}
\end{align*}
$$

Since every zero of $P(z)$ is also a zero of $F(z)$, we conclude that all zeros of $P(z)$ lie in

$$
\begin{equation*}
|z| \geqslant r_{2} \tag{20}
\end{equation*}
$$

The desired result follows by combining (18) and (20).
Proof of Theorem 2. From (1) and (8) we get

$$
\operatorname{Max}_{|z|=R}\left|t a_{0} z^{n+1}+\left(t a_{1}-a_{0}\right) z^{n}+\ldots+\left(t a_{n}-a_{n-1}\right) z\right| \leqslant M_{3} R=M_{1}, \quad \text { say }
$$

Replacing M_{1} by $M_{3} R$ in (4) it follows from Theorem 1 that

$$
\begin{equation*}
r_{1}=\frac{2 M_{3}^{2}}{\left\{\left|t a_{n}-a_{n-1}\right|^{2}\left(M_{3} R-\left|a_{n}\right|\right)^{2}+4\left|a_{n}\right| M_{3}^{3} R\right\}^{\frac{1}{2}}-\left|t a_{n}-a_{n-1}\right|\left(M_{3} R-\left|a_{n}\right|\right)} \tag{21}
\end{equation*}
$$

Now, first we suppose that $\left|a_{n}\right| \leqslant M_{3} R$, then $M_{3} R-\left|a_{n}\right| \geqslant 0$. Since $\mid t a_{n}-$ $a_{n-1} \mid \leqslant M_{3}$, therefore, we have

$$
\left|t a_{n}-a_{n-1}\right|\left(M_{3} R-\left|a_{n}\right|\right) \leqslant M_{3}\left(M_{3} R-\left|a_{n}\right|\right)
$$

Or, equivalently

$$
\left|a_{n}\right| M_{3}+\left|t a_{n}-a_{n-1}\right|\left(M_{3} R-\left|a_{n}\right|\right) \leqslant M_{3}^{2} R
$$

which on multiplication by $4 M_{3}\left|a_{n}\right|$, gives

$$
4 M_{3}^{2}\left|a_{n}\right|^{2}+4 M_{3}\left|a_{n}\right|\left|t a_{n}-a_{n-1}\right|\left(M_{3} R-\left|a_{n}\right|\right) \leqslant 4\left|a_{n}\right| M_{3}^{3} R
$$

Adding $\left|t a_{n}-a_{n-1}\right|^{2}\left(M_{3} R-\left|a_{n}\right|\right)^{2}$ both sides, we get $\left\{2 M_{3}\left|a_{n}\right|+\left|t a_{n}-a_{n-1}\right|\left(M_{3} R-\left|a_{n}\right|\right)\right\}^{2} \leqslant\left|t a_{n}-a_{n-1}\right|^{2}\left(M_{3} R-\left|a_{n}\right|\right)^{2}+4\left|a_{n}\right| M_{3}^{3} R$. Or,
$2 M_{3}\left|a_{n}\right| \leqslant\left\{\left|t a_{n}-a_{n-1}\right|^{2}\left(M_{3} R-\left|a_{n}\right|\right)^{2}+4\left|a_{n}\right| M_{3}^{3} R\right\}^{\frac{1}{2}}-\left|t a_{n}-a_{n-1}\right|\left(M_{3} R-\left|a_{n}\right|\right)$, from which we conclude that

$$
\begin{equation*}
r_{1} \leqslant \frac{M_{3}}{\left|a_{n}\right|} \tag{22}
\end{equation*}
$$

Hence it follows by Theorem 1 that all the zeros of $P(z)$ lie in the circle $|z| \leqslant$ ($\left.M_{3} /\left|a_{n}\right|\right)$.

Next, we suppose that $\left|a_{n}\right|>M_{3} R$, then this clearly implies from (8),

$$
\left|t a_{0} z^{n+1}+\left(t a_{1}-a_{0}\right) z^{n}+\ldots+\left(t a_{n}-a_{n-1}\right) z\right|<\left|a_{n}\right| \quad \text { for }|z|=R
$$

Using Rouche's theorem, it follows that the polynomial

$$
G(z)=t a_{0} z^{n+1}+\left(t a_{1}-a_{0}\right) z^{n}+\ldots+\left(t a_{n}-a_{n-1}\right) z+a_{n}
$$

does not vanish in $|z|<R$. This implies that the polynomial $F(z)=z^{n+1} G(1 / z)$ does not vanish in $|z|>\frac{1}{R}$. Since every zero of $P(z)$ is also a zero of $F(z)$, we conclude that all zeros of $P(z)$ lie in the circle

$$
\begin{equation*}
|z| \leqslant \frac{1}{R} \tag{23}
\end{equation*}
$$

From (22) and (23) it follows that all the zeros of $P(z)$ lie in

$$
|z| \leqslant \operatorname{Max}\left\{\frac{M_{3}}{\left|a_{n}\right|}, \frac{1}{R}\right\} .
$$

This proves Theorem 2 completely.
Proof of Theorem 3. It is easy to observe that $\lim _{k \rightarrow \infty} a_{k} t^{k}=0$. Now, consider the function

$$
\begin{equation*}
F(z)=(z-t) f(z)=-t a_{0}+z \sum_{j=1}^{\infty}\left(a_{j-1}-t a_{j}\right) z^{j-1}=-t a_{0}+G(z) \tag{24}
\end{equation*}
$$

where

$$
G(z)=z \sum_{j=1}^{\infty}\left(a_{j-1}-t a_{j}\right) z^{j-1}
$$

Here $G(0)=0, G^{\prime}(0)=a_{0}-t a_{1}$ and since

$$
|G(z)| \leqslant R\left|\sum_{j=1}^{\infty}\left(a_{j-1}-t a_{j}\right) z^{j-1}\right| \leqslant M R \quad \text { for }|z|=R
$$

Therefore, it follows by Lemma 2, that

$$
|G(z)| \leqslant \frac{M|z|\left(M|z|+\left|a_{0}-t a_{1}\right| R\right)}{M R+\left|a_{0}-t a_{1}\right||z|} \quad \text { for }|z| \leqslant R
$$

Using this in (24), we get

$$
\begin{aligned}
|F(z)| & \geqslant\left|t a_{0}\right|-\frac{M|z|\left(M|z|+\left|a_{0}-t a_{1}\right| R\right)}{M R+\left|a_{0}-t a_{1}\right||z|} \\
& =\frac{\left|t a_{0}\right| M R+\left(t\left|a_{0}\right|-M R\right)\left|a_{0}-t a_{1}\right||z|-M^{2}|z|^{2}}{M R+\left|a_{0}-t a_{1}\right||z|}>0
\end{aligned}
$$

if

$$
M^{2}|z|^{2}+\left(M R-t\left|a_{0}\right|\right)\left|a_{0}-t a_{1}\right||z|-t\left|a_{0}\right| M R<0
$$

This gives $|F(z)|>0$, if

$$
\begin{equation*}
|z|<\frac{1}{2 M^{2}}\left[\left\{\left(M R-t\left|a_{0}\right|\right)^{2}\left|a_{0}-t a_{1}\right|^{2}+4 t\left|a_{0}\right| M^{3} R\right\}^{\frac{1}{2}}-\left(M R-t\left|a_{0}\right|\right)\left|a_{0}-t a_{1}\right|\right]=r \tag{12}
\end{equation*}
$$

Therefore $F(z)$ does not vanish in $|z|<r$, from which it follows that $f(z)$ does not vanish in $|z|<r$. This completes the proof of Theorem 3.

Proof of Theorem 4. It is clear that $\lim _{j \rightarrow \infty} t^{j} a_{j}=0$. Since

$$
\left|a_{0}\right|=\left|\sum_{j=1}^{\infty}\left(a_{j-1}-t a_{j}\right) t^{j-1}\right| \leqslant \underset{|z|=t}{\operatorname{Max}}\left|\sum_{j=1}^{\infty}\left(a_{j-1}-t a_{j}\right) z^{j-1}\right|=M, \quad \text { say }
$$

Therefore $\frac{\left|a_{0}\right|}{M} \leqslant 1$, and hence

$$
\operatorname{Min}\left\{\frac{t\left|a_{0}\right|}{M}, t\right\}=\frac{t\left|a_{0}\right|}{M} .
$$

Using this in (15), with $R=t$, it follows that $f(z)$ does not vanish in

$$
\begin{equation*}
|z|<\frac{t\left|a_{0}\right|}{M} \tag{25}
\end{equation*}
$$

Now, for $|z|=t$ we have

$$
\begin{aligned}
M= & \underset{|z|=t}{\operatorname{Max}}\left|\sum_{j=1}^{\infty}\left(a_{j-1}-t a_{j}\right) z^{j-1}\right| \leqslant \sum_{j=1}^{\infty}\left|a_{j-1}-t a_{j}\right| t^{j-1} \\
\leqslant & \sum_{j=1}^{\infty}|t| a_{j}\left|-\left|a_{j-1}\right|\right| t^{j-1}+\sum_{j=1}^{\infty}\left|t\left(a_{j}-\left|a_{j}\right|\right)-\left(a_{j-1}-\left|a_{j-1}\right|\right)\right| t^{j-1} \\
= & \sum_{j=1}^{k}\left(t\left|a_{j}\right|-\left|a_{j-1}\right|\right) t^{j-1}+\sum_{j=k+1}^{\infty}\left(\left|a_{j-1}-t\right| a_{j} \mid\right) t^{j-1} \\
& \quad+\sum_{j=1}^{\infty}\left|t\left(a_{j}-\left|a_{j}\right|\right)-\left(a_{j-1}-\left|a_{j-1}\right|\right)\right|^{j-1} \\
= & 2 t^{k}\left|a_{k}\right|-\left|a_{0}\right|+\sum_{j=1}^{\infty}\left|t\left(a_{j}-\left|a_{j}\right|\right)-\left(a_{j-1}-\left|a_{j-1}\right|\right)\right| t^{j-1} \\
\leqslant & 2 t^{k}\left|a_{k}\right|-\left|a_{0}\right|+2 \sum_{j=1}^{\infty}\left|a_{j}-\left|a_{j}\right|\right| t^{j}
\end{aligned}
$$

therefore, it follows from (25), that $f(z)$ does not vanish in

$$
|z|<\frac{t\left|a_{0}\right|}{2 t^{k}\left|a_{k}\right|-\left|a_{0}\right|+2 \sum_{j=1}^{\infty}\left|a_{j}-\left|a_{j}\right|\right| j^{i}}
$$

This proves the Theorem 4 completely.

REFERENCES

[1] A. Aziz and Q.G.Mohammad, On the zeros of a certain class of polynomials and related analytic functions, J. Math. Anal. Appl. 75 (1980), 495-502.
[2] A. Aziz and Q.G.Mohammad, Zero free-regions for polynomials and some generalizations of Eneström-Kakeya Theorem, Canad. Math. Bull. 27 (1984), 265-272.
[3] K. K. Dewan and M. Bidkham, On the Eneström-Kakeya Theorem, J. Math. Anal. Appl. 180 (1993), 29-36.
[4] N. K. Govil and V. K. Jain, On the Eneström-Kakeya Theorem II, J. Approx Theory 22 (1978), 1-10.
[5] N. K. Govil and Q. I. Rahman, On the Eneström-Kakeya Theorem, Tohoku Math. J. 20 (1968), 126-136.
[6] N. K. Govil, Q. I. Rahman and G. Schmeisser, On the derivative of a polynomial, Illinois. Math. Jour 23 (1979), 319-329.
[7] A. Joyal, G. Labelle and Q. I. Rahman, On the location of zeros of polynomials, Canad. Math. Bull. 10 (1967), 53-63.
[8] P. V. Krishnalah, On Kakeya Theorem, J. London. Math. Soc. 20 (1955), 314-319.
[9] M. Marden, Geometry of Polvnomials, Mathematical Surveys Number 3, Amer. Math. Soc., Providence, RI, 1966.
[10] Q. G. Mohammad, On the zeros of polynomials, Amer. Math. Monthly. 72 (1965), 631-633.
(Received June 6, 1997)
(Revised January 19, 1998)

Post-graduate Deparment of Mathematics
University of Kashmir Hazratbal, Srinagar - 190006

Kashmir
India

