THE EXACT SEQUENCE OF A SHAPE FIBRATION

Q. Haxhibeqiri, Priština

Abstract. Using the definition of shape fibration for arbitrary topological spaces given in [5] we show when a restriction of shape fibration is again a shape fibration (Theorem 4.1) and when a shape fibration induces an isomorphism of homotopy pro-groups (Theorem 5.7) obtaining also the exact sequence of shape fibration (Theorem 5.9).

1. Introduction

The notion of a shape fibration for maps between compact metric spaces was introduced by S. Mardešić and T. M. Rushing in [11] and [12]. In [10] Mardešić has defined shape fibrations for maps between arbitrary topological spaces. In [5] the author has given an alternative definition of a shape fibration, which is equivalent to Mardešić's definition from [10]. Using some results from [5] and [10] we establish in the present paper the following two facts concerning shape fibrations $p: E \rightarrow B$, which are closed maps of a topological space E to a normal space B.

(i) If $B_0 \subseteq B$ is a closed subset of B, then the restriction of p to $E_0 = p^{-1}(B_0)$ is also a shape fibration whenever E_0 and B_0 are *P*-embedded in *E* and *B* respectively (Theorem 4.1).

(ii) If $e \in E$, b = p(e) and $F = p^{-1}(b)$ is P-embedded in E, then p induces an isomorphism of the homotopy pro-groups

 \mathbf{p}_* : pro- $\pi_n(E, F, e) \rightarrow \text{pro-}\pi_n(B, b)$

(Theorem 5.7).

As a corollary of (ii) one obtains the exact sequence of a shape fibration (Theorem 5.9).

These results generalize the corresponding results for compact metric spaces from [11] and [12]. The paper can be viewed as a continuation of papers [5] and [10].

The author wishes to express his gratitude to professors S. Mardešić and Š. Ungar for the valuable help received during the writing of this paper.

Mathematics subject classifications (1980): 55 P 55, 55 Q 07, 54 B 25, 55 R 65. Key words and phrases: Shape fibration, homotopy lifting, resolution,

2. On resolution of spaces and maps

In this section we recall the definitions of a resolution of a space and of a resolution of a map [10], and we establish some facts needed in the sequel.

2.1. Definition ([10]). A map of systems $\mathbf{q} = (q_{\lambda}): E \to \mathbf{E} = (E_{\lambda}, q_{\lambda\lambda'}, \Lambda)$ is a resolution of the space E provided the following conditions are fulfilled:

(R1) Let P be a polyhedron, \mathscr{V} an open covering of P and $f: E \rightarrow P$ a map. Then there is a $\lambda \in \Lambda$ and a map $f_{\lambda}: E_{\lambda} \rightarrow P$ such that $f_{\lambda}q_{\lambda}$ and f are \mathscr{V} -near, which we denote by $(f_{\lambda}q_{\lambda}, f) \leq \mathscr{V}$.

(R2) Let P be a polyhedron and \mathscr{V} an open covering of P. Then there is an open covering \mathscr{V}' of P with the following property. Whenever $f, f': E_{\lambda} \to P$ are maps satisfying $(fq_{\lambda}, f'q_{\lambda}) < \mathscr{V}'$, then there is a $\lambda' > \lambda$ such that $(fq_{\lambda\lambda'}, f'q_{\lambda\lambda'}) < \mathscr{V}$.

If all E_{λ} 's are polyhedra (ANR's), then $\mathbf{q}: E \rightarrow \mathbf{E}$ is called a polyhedral (ANR) resolution.

2.2. Definition. Let $p: E \to B$ be a map. A resolution of p is a triple $(\mathbf{q}, \mathbf{r}, \mathbf{p})$, which consists of resolutions $\mathbf{q}: E \to \mathbf{E}$ and $\mathbf{r}: B \to \mathbf{B} = (B_{\mu}, r_{\mu\mu'}, M)$ of the spaces E and B respectively and of a map of systems $\mathbf{p} = (p_{\mu}, \pi) : \mathbf{E} \to \mathbf{B}$ satisfying $\mathbf{p} \mathbf{q} = \mathbf{r}p$, i. e. $p_{\mu} q_{\pi(\mu)} = r_{\mu} p$, $\mu \in M$.

If a map $\mathbf{p} = (p_{\lambda}, 1_{A}) : \mathbf{E} \to \mathbf{B} = (B_{\lambda}, r_{\lambda\lambda'}, \Lambda)$ is a level map [5], then $(\mathbf{q}, \mathbf{r}, \mathbf{p})$ is called a *level-resolution*. In this case $\mathbf{p} \mathbf{q} = \mathbf{r} p$ is equivalent to $p_{\lambda} q_{\lambda} = r_{\lambda} p, \lambda \in \Lambda$.

It was shown in [10] that $\mathbf{q}: E \to \mathbf{E}$ is a resolution of E if it satisfies the following conditions:

(B1) For each normal covering \mathscr{U} of E there is a $\lambda \in \Lambda$ and a normal covering \mathscr{U}_{λ} of E_{λ} such that $q_{\lambda}^{-1}(\mathscr{U}_{\lambda})$ refines \mathscr{U} , which is denoted by $q_{\lambda}^{-1}(\mathscr{U}_{\lambda}) \geq \mathscr{U}$.

(B2) For each $\lambda \in \Lambda$ and each open neighborhood U of $\operatorname{Cl}(q_{\lambda}(E))$ in E_{λ} there is a $\lambda' > \lambda$ such that $q_{\lambda\lambda'}(E_{\lambda'}) \subseteq U$.

Conversely, if all E_{λ} are normal, then every resolution $\mathbf{q} : E \to \mathbf{E}$ has properties (B1) and (B2) ([10]), Theorem 6). In particular, every polyhedral resolution has properties (B1) and (B2).

In the sequel we will use a special type of polyhedral resolutions, which we will call *canonical resolutions*. These are polyhedral resolutions $\mathbf{r} = (r_{\mu}) : B \to \mathbf{B} = (B_{\mu}, r_{\mu\mu'}, M)$ such that M is a cofinite directed set, each B_{μ} is the nerv $|N(\gamma_{\mu})|$ of a normal covering γ_{μ} of B and $r_{\mu\mu'} : B_{\mu'} \to B_{\mu}, \mu \leq \mu'$, is a simplical map such that $r_{\mu\mu'}(V') =$ = V implies $V' \subseteq V$, where $V' \in \gamma_{\mu'}$ and $V \in \gamma_{\mu}$. Moreover, $r_{\mu} : B \to$ $\to B_{\mu}$ is the canonical map given by a locally finite partition of unity $(\Psi_{V}, V \in \gamma_{\nu})$ subordinated to γ_{μ} , i. e.

$$r_{\mu}(x) = \sum_{V} \Psi_{V}(x) V, \quad x \in B.$$

2.3. THEOREM. (i) Every topological space B admits a canonical resolution.

(ii) If $\mathbf{r} : B \to \mathbf{B}$ is a canonical resolution of B, then every map $p : E \to B$ of topological spaces admits a polyhedral resolution $(\mathbf{q}, \mathbf{r}, \mathbf{p})$.

A proof is obtained by obvious modifications of the proof of Theorem 11, [10].

The following lemma is needed in the sequel.

2.4. LEMMA. Let B be a normal space and $\mathbf{r} = (r_{\lambda}) : B \to \mathbf{B} = (B_{\lambda}, r_{\lambda\lambda'}, \Lambda)$ a polyhedral resolution of B. Let $B_0 \subset B$ be a closed subset and let $\mathbf{r}_0 = (r_{\lambda} | B_0) : B_0 \to \mathbf{B}_0 = (B_{0\lambda}, r_{\lambda\lambda'} | B_{0\lambda'}, \Lambda)$ be a resolution of B_0 such that every $B_{0\lambda}$ is a closed subset of B_{λ} . Then for every open neighborhood V of B_0 in B and for every $\lambda \in \Lambda$ there is a $\lambda' > \lambda$ and an open neighborhood $V_{\lambda'}$ of $B_{0\lambda'}$ in $B_{\lambda'}$ such that

$$r_{\lambda'}^{-1}(V_{\lambda'}) \subseteq V.$$

Proof. $\mathscr{U} = \{V, B \setminus B_0\}$ is a normal covering of *B*. Since **r** is a polyhedral resolution, it has the property (*B*1). Consequently, there is a $\mu \in \Lambda$ and there is an open covering \mathscr{U}_{μ} of B_{μ} such that $r_{\mu}^{-1}(\mathscr{U}_{\mu})$ refines \mathscr{U} . Let $v \in \Lambda$, $v > \lambda$, μ . Then $\mathscr{U}_{v} = r_{\mu\nu}^{-1}(\mathscr{U}_{\mu})$ is an open covering of B_{v} such that $r_{v}^{-1}(U_{v})$ refines \mathscr{U} . It follows that for each $U \in \mathscr{U}_{v}$

$$U \cap \operatorname{Cl}\left(r_{\nu}\left(B_{0}\right)\right) \neq \emptyset \Leftrightarrow U \cap r_{\nu}\left(B_{0}\right) \neq \emptyset \Rightarrow r_{\nu}^{-1}\left(U\right) \subseteq V \qquad (1)$$

Let us put

$$V_{\mathfrak{p}} = \bigcup \left\{ U \in \mathscr{U}_{\mathfrak{p}} \mid U \cap \operatorname{Cl}\left(r_{\mathfrak{p}}\left(B_{\mathfrak{0}}\right)\right) \neq \emptyset \right\}$$

Clearly, V_{ν} is an open set in B_{ν} and $Cl(r_{\nu}(B_0)) \subseteq V_{\nu}$. Moreover, by (1), one has

$$r_{\nu}^{-1}(V_{\nu}) \subseteq V. \tag{2}$$

The set $V_{\nu} \cap B_{0\nu}$ is an open neighborhood of $\operatorname{Cl}(r_{\nu}(B_0))$ in $B_{0\nu}$. Hence, by property (B2) of \mathbf{r}_0 , there is a $\lambda' > \nu$ such that $r_{\nu\lambda'}(B_{0\lambda}) \subseteq \subseteq V_{\nu} \cap B_{0\nu} \subseteq V_{\nu}$, i. e. $B_{0\lambda'} \subseteq r_{\nu\lambda'}^{-1}(V_{\nu})$. Using normality of $B_{\lambda'}$ one can find an open set $V_{\lambda'}$ in $B_{\lambda'}$ such that $B_{0\lambda'} \subseteq V_{\lambda'} \subseteq \operatorname{Cl}(V_{\lambda'}) \subseteq \subseteq r_{\nu\lambda'}^{-1}(V_{\nu})$. Then $V_{\lambda'}$ is the desired neighborhood of $B_{0\lambda'}$ because, by (2),

$$r_{\lambda'}^{-1}(V_{\lambda'}) \subseteq r_{\lambda'}^{-1} r_{\nu\lambda'}^{-1}(V_{\nu}) = r_{\nu}^{-1}(V_{\nu}) \subseteq V.$$
(3)

2.5. THEOREM. Let $p: E \to B$ be a closed map of a topological space E into a normal space B, let B_0 be a closed subset of B and let $E_0 = p^{-1}(B_0)$ be P-embedded in E. Furthermore, let $(\mathbf{q}, \mathbf{r}, \mathbf{p})$ be a polyhedral level-resolution of p and let $\mathbf{r}_0 = (r_\lambda \mid B_0) : B_0 \to \mathbf{B}_0 = (B_{0\lambda}, r_{\lambda\lambda'} \mid B_{0\lambda'}, \Lambda)$ be a resolution of B_0 such that each $B_{0\lambda}$ is a closed subset of B_{λ} . Then $\mathbf{q}_0 = (q_{0\lambda}) : E_0 \to \mathbf{E}_0 = (E_{0\lambda}, q_{\lambda\lambda'} \mid E_{0\lambda'}, \Lambda)$ is a resolution of E_0 , where $q_{0\lambda} = q_{\lambda} \mid E_0$ and

$$E_{0\lambda} = p_{\lambda}^{-1} (B_{0\lambda}), \qquad \lambda \in \Lambda.$$
(4)

Recall that $E_0 \subseteq E$ is *P*-embedded in *E* provided every normal covering \mathscr{U}_0 of E_0 admits a normal covering \mathscr{U} of *E* such that $\mathscr{U} \mid E_0 =$ = { $U \cap E_0 \mid U \in \mathscr{U}$ } refines \mathscr{U} ([1], Theorem 14.7, p. 178).

In order to prove Theorem 2.5 we need the following proposition.

2.6. PROPOSITION. Let $p: E \rightarrow B$ be a closed map of topological spaces, let $B_0 \subseteq B$ be a closed subset, $E_0 = p^{-1}(B_0)$ and let U be an open neighborhood of E_0 in E. Then there is an open neighborhood V of B_0 in B such that $p^{-1}(V) \subseteq U$.

Proof of 2.6. Since p is a closed mapping and $E \setminus U$ is a closed set in E, it follows that $V = B \setminus p(E \setminus U)$ is an open neighborhood of B_0 in B having the required property $p^{-1}(V) \subseteq U$.

Proof of Theorem 2.5. (q, r, p) is a level-resolution of p and hence

$$p_{\lambda}q_{\lambda} = r_{\lambda}p, \quad \lambda \in \Lambda.$$
 (5)

Since \mathbf{B}_0 is an inverse system, one also has

$$r_{\lambda\lambda'}(B_{0\lambda'}) \subseteq B_{0\lambda}, \qquad \lambda \leqslant \lambda'.$$
 (6)

It readily follows that

$$q_{\lambda\lambda'}(E_{0\lambda'}) \subseteq E_{0\lambda}, \qquad \lambda < \lambda' \tag{7}$$

$$\operatorname{Cl}(q_{1}(E_{0})) \subseteq E_{0\lambda}, \quad \lambda \in \Lambda.$$
 (8)

In order to show that $\mathbf{q}_0 : E_0 \to \mathbf{E}_0$ is a resolution of E_0 , it sufficies to verify the conditions (B1) and (B2) for \mathbf{q}_0 .

Condition (B1). Let \mathscr{U}_0 be a normal covering of E_0 . Since E_0 is *P*-embedded in *E*, there is a normal covering \mathscr{U} of *E* such that $\mathscr{U} | E_0$ refines \mathscr{U}_0 . The polyhedral resolution $\mathbf{q} : E \to \mathbf{E}$ has the property (B1) and therefore there is a $\lambda \in \Lambda$ and an open covering \mathscr{U}_{λ} of E_{λ} such that $q_{\lambda}^{-1}(\mathscr{U}_{\lambda})$ refines \mathscr{U} . Then $\mathscr{U}_{0\lambda} = \mathscr{U}_{\lambda} | E_{0\lambda}$ is a normal covering of $E_{0\lambda}$ and $q_{0\lambda}^{-1}(\mathscr{U}_{0\lambda})$ refines $\mathscr{U} | E_0$ and thus also refines \mathscr{U}_0 .

Condition (B2). Let $\lambda \in \Lambda$ and let $U_{0\lambda}$ be an open neighborhood of Cl $(q_{\lambda}(E_0))$ in $E_{0\lambda}$. Then there is an open set U_{λ} in E_{λ} such that

$$U_{\lambda} \cap E_{0\lambda} = U_{0\lambda}. \tag{9}$$

By normality of E_{λ} , there is also an open set U'_{λ} in E_{λ} such that

$$\operatorname{Cl}\left(q_{\lambda}\left(E_{0}\right)\right)\subseteq U_{\lambda}^{\prime}\subseteq\operatorname{Cl}\left(U_{\lambda}^{\prime}\right)\subseteq U_{\lambda}.$$
(10)

We put

$$U = q_{\lambda}^{-1}(U_{\lambda}') \tag{11}$$

Clearly, U is an open neighborhood of $E_0 = p^{-1}(B_0)$ in E. Hence, by proposition 2.6, there is an open neighborhood V of B_0 in B such that $p^{-1}(V) \subseteq U$, and therefore

$$p(E \setminus U) \subseteq B \setminus V. \tag{12}$$

Using Lemma 2.4 we can find a $\lambda' > \lambda$ and an open neighborhood $V_{\lambda'}$ of $B_{0\lambda'}$ in $B_{\lambda'}$ such that $r_{\lambda'}^{-1}(V_{\lambda'}) \subseteq V$, which implies

$$r_{\lambda'}(B \setminus V) \subseteq B_{\lambda'} \setminus V_{\lambda'}.$$
(13)

Since $U = q_{\lambda}^{-1}(U_{\lambda}') = q_{\lambda'}^{-1}q_{\lambda\lambda'}^{-1}(U_{\lambda}')$, it follows that $q_{\lambda'}(U) \subseteq q_{\lambda\lambda'}^{-1}(U_{\lambda}')$, which together with (10) implies

$$\operatorname{Cl}\left(q_{\lambda'}\left(U\right)\right) \subseteq q_{\lambda\lambda'}^{-1}\left(U_{\lambda}\right). \tag{14}$$

Furthermore, by (5), (12) and (13), we have $p_{\lambda'} q_{\lambda'} (E \setminus U) = r_{\lambda'} p(E \setminus U) \subseteq r_{\lambda'} (B \setminus V) \subseteq B_{\lambda'} \setminus V_{\lambda'}$, which implies

$$\operatorname{Cl} q_{\lambda'}(E \setminus U) \subseteq p_{\lambda'}^{-1}(B_{\lambda'} \setminus V_{\lambda'}) \subseteq p_{\lambda'}^{-1}(B_{\lambda'} \setminus B_{0\lambda'}) = E_{\lambda'} \setminus E_{0\lambda'}.$$
(15)

By normality of $E_{\lambda'}$, there is an open set $U_{\lambda'}$ in $E_{\lambda'}$ such that

$$\operatorname{Cl}\left(q_{\lambda'}\left(E \setminus U\right)\right) \subseteq U_{\lambda'} \subseteq \operatorname{Cl}\left(U_{\lambda'}\right) \subseteq E_{\lambda'} \setminus E_{0\lambda'}.$$
 (16)

Now (14) and (16) imply

$$\operatorname{Cl}\left(q_{\lambda'}\left(E\right)\right)\subseteq q_{\lambda\lambda'}^{-1}\left(U_{\lambda}\right)\cup U_{\lambda'}.$$

Using property (B2) for **q**, we can find a $\lambda'' \ge \lambda'$ such that

$$q_{\lambda'\lambda''}(E_{\lambda''}) \subseteq q_{\lambda\lambda'}^{-1}(U_{\lambda}) \cup U_{\lambda'}.$$
(17)

Finally, (7), (17), (16) and (9) imply

$$\begin{aligned} q_{\lambda\lambda''}\left(E_{0\lambda''}\right) &= q_{\lambda\lambda'} q_{\lambda'\lambda''}\left(E_{0\lambda''}\right) \subseteq q_{\lambda\lambda'}\left(E_{0\lambda'} \cap q_{\lambda'\lambda''}\left(E_{\lambda''}\right)\right) \subseteq \\ &\subseteq q_{\lambda\lambda'}\left(E_{0\lambda'} \cap q_{\lambda\lambda'}^{-1}\left(U_{\lambda}\right)\right) \cup q_{\lambda\lambda'}\left(E_{0\lambda'} \cap U_{\lambda'}\right) \subseteq \\ &\subseteq q_{\lambda\lambda'}\left(E_{0\lambda'}\right) \cap U_{\lambda} \subseteq E_{0\lambda} \cap U_{\lambda} = U_{0\lambda}. \end{aligned}$$

3. Approximate homotopy liftings and shape fibrations

3.1. Definition ([5]). Let $\mathbf{p} = (p_{\lambda}, 1_{\Lambda}) : \mathbf{E} = (E_{\lambda}, q_{\lambda\lambda'}, \Lambda) \rightarrow \mathbf{B} = (B_{\lambda}, r_{\lambda\lambda'}, \Lambda)$ be a level map of systems. We say that \mathbf{p} has the aproximate homotopy lifting property (AHLP) with respect to a class of spaces \mathscr{X} provided for each $\lambda \in \Lambda$ and for arbitrary normal coverings \mathscr{U} and \mathscr{V} of E_{λ} and B_{λ} respectively, there is a $\lambda' > \lambda$ and a normal covering \mathscr{V}' of $B_{\lambda'}$ with the following property. Whenever $X \in \mathscr{X}$ and $h: X \to E_{\lambda'}, H: X \times I \to B_{\lambda'}$ are maps satisfying

$$(p_{\lambda'}h, H_0) \leqslant \mathscr{V}' \tag{1}$$

then there is a homotopy $\widetilde{H}: X \times I \to E_{\lambda}$ such that

$$(q_{\lambda\lambda'} h, \widetilde{H}_0) \leqslant \mathscr{U} \tag{2}$$

$$(p_{\lambda}\widetilde{H}, r_{\lambda\lambda'}H) \leqslant \mathscr{V}.$$
(3)

We call λ a lifting index and \mathscr{V}' a lifting mesh for λ , \mathscr{U} and \mathscr{V} .

3.2. THEOREM. Let $\mathbf{p} : \mathbf{E} \to \mathbf{B}$ be a level map of systems having AHLP with respect to the class of all paracompact spaces X. If all E_{λ} are polyhedra, then \mathbf{p} has the stronger homotopy lifting property obtained from Def. 3.1. by replacing (2) by $q_{\lambda x}$ $h = \tilde{H}_0$.

In the proof we need the following two propositions.

3.3. PROPOSITION. Let P be a polyhedron and \mathcal{U} an open covering of P. Then there is an open covering \mathcal{V} of P, which refines \mathcal{U} and has the property that any two \mathcal{V} -near maps $f, g: X \to P$ from an arbitrary topological space X into P are \mathcal{U} -homotopic.

Proof. Let K be a triangulation of P so fine that the covering $\overline{\{\operatorname{St}(v, K) \mid v \in K^\circ\}}$ refines $\mathscr{U}(K^\circ)$ denotes the set of vertices of K). We claim that $\mathscr{V} = \{\operatorname{St}(v, K) \mid v \in K^\circ\}$ has the desired property. Indeed, let $f, g : H \to P = |K|$ be \mathscr{V} -near maps. Then there is a map $h: X \to P$ such that f and h and also h and g are contiguous maps (see the proof of [2], Theorem 2.2). This means that each $x \in X$ admits simplexes $\sigma_x, \sigma'_x \in K$ such that $f(x), h(x) \in \sigma_x, h(x), g(x) \in \sigma'_x$. Let

$H(x,t) = \begin{cases} \\ \\ \\ \end{cases}$	$H_1(x,t),$	$0 \le t \le \frac{1}{2}$
	$H_2(x,t),$	$\frac{1}{2} \le t \le 1$

where

$$H_1(x, t) = (1 - 2t) f(x) + 2th(x)$$
$$H_2(x, t) = (2 - 2t) h(x) + (2t - 1) g(x)$$

Clearly, *H* connects *f* to *g*. Moreover, for each $x \in X$ $H(\{x\} \times I) \subseteq \subseteq \sigma_x \cup \sigma'_x \subseteq St(v, K)$ for any vertex *v* of $\sigma_x \cap \sigma'_x$. Since $\overline{\{St(v, K) \mid v \in K^o\}}$ refines \mathscr{U} there is a $U \in \mathscr{U}$ such that $H(\{x\} \times I) \subseteq U$.

3.4. PROPOSITION. Let X be a paracompact space and \mathcal{U} an open covering of $X \times I$. Then there is a map $\varphi : X \to (0, 1]$ such that each $x \in X$ admits a $U \in \mathcal{U}$ with $\{x\} \times [0, \varphi(x)] \subseteq U$.

Proof. For $x \in X$ let $U_x \in \mathcal{H}$ be such that $(x, 0) \in U_x$. Then there is an open neighborhood V_x of x in X and a number $t_x \in (0, 1]$ such that $V_x \times [0, t_x] \subseteq U_x$. Clearly, $\mathscr{V} = \{V_x \mid x \in X\}$ is an open covering of X. Let \mathscr{V}' be a locally finite open refinement of \mathscr{V} . For $V' \in \mathscr{V}'$ choose a point $x \in X$ such that $V' \subseteq V_x$. Then put $t_{V'} = t_x$. Let $(\mathscr{V}_{V'}, V' \in \mathscr{V}')$ be a partition of unity subordinated to the covering \mathscr{V}' . Then the desired mapping $\varphi : X \to (0, 1]$ is given by

$$\varphi(x) = \operatorname{Max} \{ t_{V}, \Psi_{V}, (x) \mid V' \in \mathcal{V}' \}.$$

Indeed, for each $x \in X$ there is a $V' \in \mathscr{V}'$ such that $\varphi(x) = t_{v'} \Psi_{v'}(x)$. Since $\varphi(x) > 0$, we have $x \in V'$. Moreover, there is an $x' \in X$ such that $t_{v'} = t_{x'}$ and $V' \subseteq V_{x'}$. Consequently,

$$\{x\}\times\left[0,\varphi\left(x\right)\right]\subseteq V'\times\left[0,t_{V}'\right]\subseteq V_{x'}\times\left[0,t_{x'}\right]\subseteq U_{x}.$$

Proof of Theorem 3.2. Let $\mathbf{p} : \mathbf{E} \to \mathbf{B}$ be a level map of systems having the AHLP with respect to all paracompact spaces. Let $\lambda \in A$ and let \mathscr{V} be a normal covering of B_{λ} . Choose a star-refinement \mathscr{V}^* of \mathscr{V} and let \mathscr{U} be an open covering of E_{λ} which refines $p_{\lambda}^{-1}(\mathscr{V}^*)$ and is so fine that any two \mathscr{U} -near maps into E_{λ} are $p_{\lambda}^{-1}(\mathscr{V}^*)$ -homotopic (Proposition 3.3). Let $\lambda' > \lambda$ be a lifting index and let a normal covering \mathscr{V}' of $B_{\lambda'}$ be a lifting mesh for λ , \mathscr{U} , and \mathscr{V}^* . If $h : X \to E_{\lambda'}$ and $H : X \times I \to B_{\lambda'}$ are maps satisfying $(p_{\lambda'} h, H_0) < \mathscr{V}'$, then there is a homotopy $\widetilde{H'} : X \times I \to E_{\lambda}$ satisfying

$$(p_{\lambda} \widetilde{H}', r_{\lambda\lambda'} H) \leqslant \mathscr{V}^* \tag{4}$$

and $(q_{\lambda\lambda'}h, \widetilde{H}'_0) \leq \mathscr{U}$. By the choice of \mathscr{U} it follows that there is a $p_{\lambda}^{-1}(\mathscr{V}^*)$ -homotopy $\widetilde{H}'': X \times I \to E_{\lambda}$ satisfying

$$\widetilde{H}_{0}'' = q_{\lambda\lambda'} h, \quad \widetilde{H}_{1}'' = \widetilde{H}_{0}'.$$
(5)

Then $p_{\lambda}\widetilde{H}'': X \times I \to B_{\lambda}$ is a \mathscr{V}^* -homotopy. By (4) each $(x, t) \in \mathscr{E} X \times I$ admits a $V^*_{(x,t)} \in \mathscr{V}^*$ such that $p_{\lambda}\widetilde{H}'(x, t), r_{\lambda\lambda'}H(x, t) \in V^*_{(x,t)}$. Consequently, there is an open neighborhood $U_{(x,t)}$ of (x, t) in $X \times I$ such that $p_{\lambda}\widetilde{H}'(U_{(x,t)}) \subseteq V^*_{(x,t)}$ and $r_{\lambda\lambda'}H(U_{(x,t)}) \subseteq V^*_{(x,t)}$. Hence $\mathscr{W} = \{U_{(x,t)} \mid (x, t) \in X \times I\}$ is an open covering of $X \times I$ such that for every $U \in \mathscr{W}$ there is a $V^* \in \mathscr{V}^*$ satisfying $p_{\lambda}\widetilde{H}'(U) \subseteq V^*$ and $r_{\lambda\lambda'}H(U) \subseteq V^*$. Using Proposition 3.4, one can find a map $\varphi: X \to (0, 1]$ such that each $x \in X$ admits a $V^* \in \mathscr{V}^*$ such that

$$p_{\lambda}\widetilde{H}'(\{x\}\times[0,\varphi(x)])\subseteq V^*,\ r_{\lambda\lambda'}H(\{x\}\times[0,\varphi(x)])\subseteq V^*.$$
 (6)

Let us define $\widetilde{H}: X \times I \to E_{\lambda}$ by

$$\widetilde{H}(x,t) = \begin{cases} \widetilde{H}''\left(x,\frac{2t}{\varphi(x)}\right), & 0 < t < \frac{\varphi(x)}{2} \\ \widetilde{H}'(x,2t-\varphi(x)), & \frac{\varphi(x)}{2} < t < \varphi(x) \\ \widetilde{H}'(x,t), & \varphi(x) < t < 1 \end{cases}$$
(7)

Using (7), (5), (4) and (6) one readily shows that $\widetilde{H}_0 = q_{\lambda\lambda'} h$ and $(p_{\lambda} \widetilde{H}, r_{\lambda\lambda'} H) < \mathscr{V}$.

3.5. Definition. A map of topological spaces $p: E \rightarrow B$ is called a *shape fibration* provided there is a polyhedral level-resolution $(\mathbf{q}, \mathbf{r}, \mathbf{p})$ of p such that the level map of systems $\mathbf{p}: \mathbf{E} \rightarrow \mathbf{B}$ has the AHLP with respect to the class of all topological spaces.

By [10], Theorem 4, if p is a shape fibration and (q, r, p) is an arbitrary polyhedral resolution of p, then p has the *AHLP* with respect to all topological spaces. In [5], Theorem 5.3 it was shown that Definition 3.5 is equivalent to the definition of a shape fibration given by Mardešić in [10]. In particular, one can always assume that the index set Λ of the inverse systems **E** and **B** is cofinite.

4. Restrictions of a shape fibration

The main result of this section is the following theorem.

4.1. THEOREM. Let $p: E \rightarrow B$ be a shape fibration, which is a closed map of a topological space E to a normal space B. If $B_0 \subseteq B$ is a closed subset of B and if B_0 and $E_0 = p^{-1}(B_0)$ are P-embedded in B and E respectively, then $p_0 = p | E_0 : E_0 \rightarrow B_0$ is also a shape fibration.

Proof. Let $\mathbf{r}: (B, B_0) \to (\mathbf{B}, \mathbf{Q})$ be a polyhedral resolution of a pair of spaces (B, B_0) ([13], I, § 6.5). Since B_0 is *P*-embedded in *B*, the induced morphisms $\mathbf{r}: B \to \mathbf{B}$ and $\mathbf{r}_1: B_0 \to \mathbf{Q}$ are polyhedral resolutions of *B* and B_0 respectively ([13], I § 6, Theorem 11). By construction of the resolution $\mathbf{r}: (B, B_0) \to (\mathbf{B}, \mathbf{Q})$ ([13], I § 6, Theorem 10), $\mathbf{r}: B \to \mathbf{B}$ is a canonical resolution of *B* in the sense of 2. Let $(\mathbf{q}, \mathbf{r}, \mathbf{p})$ be a polyhedral resolution of $p: E \to B$ given by Theorem 2.3 (*ii*). By [5], Lemma 4.6 and Remark 4.7 we can assume that $(\mathbf{q},$ $\mathbf{r}, \mathbf{p})$ is a polyhedral level-resolution of p. Consequently, $\mathbf{q} = (q_\lambda)$: $: E \to \mathbf{E} = (E_\lambda, q_{\lambda\lambda'}, \Lambda), \quad \mathbf{r} = (r_\lambda) : B \to \mathbf{B} = (B_\lambda, r_{\lambda\lambda'}, \Lambda)$ are polyhedral resolutions of *E* and *B* respectively, and $\mathbf{p} = (p_\lambda, \mathbf{1}_A) : \mathbf{E} \to \mathbf{B}$ is a level map of systems such that

$$p_{\lambda}q_{\lambda}=r_{\lambda}p, \quad \lambda\in\Lambda.$$
 (1)

Furthermore, by the construction given in [13], I § 6, Theorem 10, each Q_{λ} is a closed polyhedral neighborhood of Cl $(r_{\lambda}(B_0))$ in B_{λ} and

$$r_{\lambda\lambda'}(Q_{\lambda'}) \subseteq \operatorname{Int} Q_{\lambda}, \quad \lambda < \lambda'.$$
 (2)

Using the induction on the number of predecessors of $\lambda \in \Lambda$ (A is assumed to be cofinite), one can assign to each λ a closed polyhedral neighborhood C_{λ} of Q_{λ} in B_{λ} such that

$$r_{\lambda\lambda'}(C_{\lambda'}) \subseteq \operatorname{Int} Q_{\lambda}, \quad \lambda < \lambda'. \tag{3}$$

Indeed, let A_k be the set of all $\lambda \in \Lambda$ with exactly k predecessors different from λ . If $\lambda \in \Lambda_0$, we take for C_{λ} an arbitrary closed polyhedral neighborhood of Q_{λ} in B_{λ} . Now assume that we have already defined C_{λ} satisfying (3) for all $\lambda \in \bigcup_{j=0}^{k-1} \Lambda_j$. Let $\lambda \in \Lambda_k$ and let $\lambda_1, \lambda_2, \dots$ $\dots, \lambda_k < \lambda$ be all predecessors of λ different from λ . Then $\lambda_i \in \bigcup_{j=0}^{k-1} \Lambda_j$, $i = 1, 2, \dots, k$, and the closed polyhedral neighborhoods C_{λ_i} have already been constructed. By (2), $r_{\lambda_i}^{-1}$ (Int Q_{λ_i}), $i = 1, 2, \dots, k$, are open neighborhoods of Q_{λ} in B_{λ} . Hence, the same is true for $\bigcap_{i=1}^{k} r_{\lambda_i \lambda}^{-1}$ (Int Q_{λ_i}). Therefore, there exists a closed polyhedral neighborhood C_{λ} of Q_{λ} in B_{λ} such that $C_{\lambda} \subseteq \bigcap_{i=1}^{k} r_{\lambda_i \lambda}^{-1}$ (Int Q_{λ_i}). Clearly, C_{λ} satisfies (3).

By (3), $\mathbf{C} = (C_{\lambda}, r_{\lambda\lambda'} | C_{\lambda'}, .1)$ is an inverse system of polyhedra. Let $\mathbf{r}_2 : B_0 \to \mathbf{C}$ be given by $r_{2\lambda} = r_{\lambda} | B_0 : B_0 \to C_{\lambda}$. We claim that \mathbf{r}_2 is a resolution of B_0 . It suffices to verify the properties (B1) and (B2) for \mathbf{r}_2 .

(B1) Let \mathscr{U}_0 be a normal covering of B_0 . Since B_0 is *P*-embdded in *B*, there is a normal covering \mathscr{U} of *B* such that $\mathscr{U} | B_0$ refines \mathscr{U}_0 . Since $\mathbf{r} : B \to \mathbf{B}$ satisfies (B1), there is a $\lambda \in \Lambda$ and an open covering \mathscr{U}_{λ} of B_{λ} such that $r_{\lambda}^{-1}(\mathscr{U}_{\lambda})$ refines \mathscr{U} . Then $\mathscr{U}_{0\lambda} = \mathscr{U}_{\lambda} | C_{\lambda}$ is an open covering of C_{λ} and $r_{2\lambda}^{-1}(\mathscr{U}_{0\lambda})$ refines \mathscr{U}_0 .

(B2) Let U be an open neighborhood of Cl $(r_{\lambda}(B_0))$ in C_{λ} . Then $U \cap Q_{\lambda}$ is an open neighborhood of Cl $(r_{\lambda}(B_0))$ in Q_{λ} . Since $\mathbf{r}_1 : B_0 \rightarrow \mathbf{Q}$ has the property (B2), there is a $\lambda' > \lambda$ satisfying $r_{\lambda\lambda'}(Q_{\lambda'}) \subseteq \subseteq U \cap Q_{\lambda}$. Then by (3), $\lambda'' > \lambda'$ implies $r_{\lambda\lambda''}(C_{\lambda''}) \subseteq r_{\lambda\lambda'}$ (Int $Q_{\lambda'}) \subseteq U$.

Again, by induction on the number of predecessors of $\lambda \in \Lambda$ different from λ , one can assign to each λ a closed polyhedral neighborhood $B_{0\lambda}$ of C_{λ} in B_{λ} in such a way that

$$r_{\lambda\lambda'}(B_{0\lambda'}) \subseteq \operatorname{Int} Q_{\lambda}, \quad \lambda < \lambda'$$
 (4)

and that

$$\mathbf{r}_{0} = (r \mid B_{0}) : B_{0} \to \mathbf{B}_{0} = (B_{0\lambda}, r_{\lambda\lambda'} \mid B_{0\lambda'}, \Lambda)$$
(5)

is a resolution of B_0 .

We now put $P_{\lambda} = p_{\lambda}^{-1}(C_{\lambda})$ and remark that (3) implies

$$q_{\lambda\lambda'}(P_{\lambda'}) \subseteq \operatorname{Int} P_{\lambda}, \quad \lambda < \lambda'.$$
 (6)

Since $Cl(r_{\lambda}(B_0)) \subseteq C_{\lambda}$ it follows by Theorem 2.5 that

$$\mathbf{q}_1 = (q_\lambda \mid E_0) : E_0 \to \mathbf{P} = (P_\lambda, q_{\lambda\lambda'} \mid P_{\lambda'}, \Lambda)$$
(7)

is a resolution of E_0 .

Arguing as above by induction on the number of predecessors of λ different from λ , one can now assign to each $\lambda \in \Lambda$ a closed polyhedral neighborhood $E_{0\lambda}$ of P_{λ} in E_{λ} so that

$$q_{\lambda\lambda}(E_{0\lambda'}) \subseteq \operatorname{Int} P_{\lambda}, \quad \lambda < \lambda' \tag{8}$$

$$E_{0\lambda} \subseteq p_{\lambda}^{-1} (\operatorname{Int} B_{0\lambda}), \quad \lambda \in A$$
(9)

$$\mathbf{q}_{\mathbf{0}} = (q_{\lambda} \mid E_{\mathbf{0}}) : E_{\mathbf{0}} \to \mathbf{E}_{\mathbf{0}} = (E_{\mathbf{0}\lambda}, q_{\lambda\lambda'} \mid E_{\mathbf{0}\lambda'}, A)$$
(10)

is a polyhedral resolution of E_0 .

Now (1), (5), (9) and (10) imply that $(\mathbf{q}_0, \mathbf{r}_0, \mathbf{p}_0)$ is a polyhedral level-resolution of $p_0 : E_0 \to B_0$, where $\mathbf{p}_0 : \mathbf{E}_0 \to \mathbf{B}_0$ is a level-map of systems given by the maps $p_{0\lambda} = p_{\lambda} | E_{0\lambda} : E_{0\lambda} \to B_{0\lambda}$. The theorem will be proved if we show that $\mathbf{p}_0 : \mathbf{E}_0 \to \mathbf{B}_0$ has the *AHLP* with respect to the class of all topological spaces.

Let $\lambda \in \Lambda$ and let $\mathscr{U}_0, \mathscr{V}_0$ be open coverings of $E_{0\lambda}$ and $B_{0\lambda}$ respectively. Then for each $U \in \mathscr{U}_0$ and each $V \in \mathscr{V}_0$ there are open sets U' in E_{λ} and V' in B_{λ} such that $U' \cap E_{0\lambda} = U$ and $V' \cap B_{0\lambda} = V$. Clearly, $\mathscr{U} = \{E \setminus E_{0\lambda}, U' \mid U \in \mathscr{U}_0\}$ and $\mathscr{V} = \{B \setminus B_0, V' \mid V \in \mathfrak{C}^{\mathcal{V}}_0\}$ are open coverings of E_{λ} and B_{λ} respectively, satisfying $(\mathscr{U} \setminus \{E_{\lambda} \setminus E_{0\lambda}\}) \mid E_{0\lambda} = \mathscr{U}_{0\lambda}$ and $(\mathscr{V} \setminus \{B \setminus B_{0\lambda}\}) \mid B_{0\lambda} = \mathscr{V}_0$. Let $\mathscr{V}' = \{\operatorname{Int} C_{\lambda}, B_{\lambda} \setminus Q_{\lambda}\}$ and let \mathscr{W} be an open covering of B_{λ} such that \mathscr{W} refines both \mathscr{V} and \mathscr{V}' .

Since $(\mathbf{q}, \mathbf{r}, \mathbf{p})$ is a polyhedral level-resolution of the shape fibration p we conclude that \mathbf{p} has the *AHLP* with respect to the class of all topological spaces. Consequently, there is a $\lambda' > \lambda$ and an open covering \mathscr{W}' of $B_{\lambda'}$ such that λ' is a lifting index and \mathscr{W}' is a lifting mesh for λ , \mathscr{U} and \mathscr{W} with respect to \mathbf{p} . We claim that λ' is a lifting index and $\mathscr{W}'_0 = \mathscr{W}' | B_{0\lambda'}$ is a lifting mesh for λ , \mathscr{U}_0 and \mathscr{V}_0 with respect to \mathbf{p}_0 . Indeed, let X be a topological space and let $h: X \to E_{0\lambda'}$, $H: X \times I \to B_{0\lambda'}$ be mappings satisfying

$$(p_{0\lambda'}h,H_0) \leqslant \mathscr{W}_0'.$$

Let $i: E_{0\lambda'} \to E_{\lambda'}$ and $j: B_{0\lambda'} \to B_{\lambda'}$ be the inclusion maps. Then $ih: X \to E_{\lambda'}$ and $jH: X \times I \to B_{\lambda'}$ are mappings satisfying

$$(p_{\lambda'} ih, j H_0) \leq \mathscr{W}'.$$

By the choice of λ' and \mathscr{W}' it follows the existence of a homotopy $\widetilde{H}: X \times I \to E_{\lambda}$ such that

$$(q_{\lambda\lambda'}, ih, \tilde{H}_0) \leqslant \mathscr{U}$$
(11)

and

$$(p_{\lambda} \widetilde{H}, r_{\lambda\lambda'} jH) < \mathscr{W}.$$
(12)

Since \mathscr{W} refines \mathscr{V}' , (12) implies

$$(p_{\lambda} \widetilde{H}, r_{\lambda\lambda'} jH) \leqslant \mathscr{V}'. \tag{12'}$$

(12') implies that for each $(x, t) \in X \times I$ either $\{p_{\lambda} \widetilde{H}(x, t), r_{\lambda\lambda'} j H(x, t)\} \subseteq$ $\subseteq \operatorname{Int} C_{\lambda}$ or $\{p_{\lambda} \widetilde{H}(x, t), r_{\lambda\lambda'} j H(x, t)\} \subseteq B_{\lambda} \setminus Q_{\lambda}$. Since, by (4), $r_{\lambda\lambda'} j H(x, t) \in r_{\lambda\lambda'}(B_{0\lambda'}) \subseteq Q_{\lambda}$, we conclude that $p_{\lambda} \widetilde{H}(x, t) \subseteq \operatorname{Int} C_{\lambda}$. Consequently, \widetilde{H} maps $X \times I$ into $p_{\lambda}^{-1}(C_{\lambda}) = P_{\lambda} \subset E_{0\lambda}$. Now, since $q_{\lambda\lambda'} ih(X) \subseteq E_{0\lambda}$, (11) implies $\widetilde{H}_{0}(X) \subseteq E_{0\lambda'}$ i. e. $q_{\lambda\lambda'} h(X) \cap (E_{\lambda} \setminus E_{0\lambda}) = \emptyset$ and $\widetilde{H}_{0}(X) \cap (E_{\lambda} \setminus E_{0\lambda}) = \emptyset$. Therefore,

$$(q_{\lambda\lambda'} h, \widetilde{H}_0) \leqslant \mathscr{U}_0.$$

Since \mathscr{W} refines \mathscr{V} , (12) implies $(p_{\lambda}\widetilde{H}, r_{\lambda\lambda'}jH) < \mathscr{V}$, or $(p_{0\lambda}\widetilde{H}, r_{\lambda\lambda'}H) < \mathscr{V}$ because $\widetilde{H}(X \times I) \subseteq E_{0\lambda}$. Since $p_{0\lambda}\widetilde{H}(X \times I) \cap (B_{\lambda} \setminus B_{0\lambda}) = \emptyset$ and $r_{\lambda\lambda'}H(X \times I) \cap (B_{\lambda} \setminus B_{0\lambda}) = \emptyset$ it follows that

$$(p_{0\lambda}\widetilde{H}, r_{\lambda\lambda'}H) \leq \mathscr{V}_0.$$

4.2. COROLLARY. Let $p: E \rightarrow B$ be a shape fibration, which is a closed map, let B_0 be a closed subset of B and let $E_0 = p^{-1}(B_0)$. If E and B are (a) paracompact, (b) collectionwise normal or (c) pseudocompact normal spaces, then $p_0 = p | E_0 : E_0 \rightarrow B_0$ is also a shape fibration.

Corollary 4.3 follows immediately from Theorem 4.1 because every closed subset of a space satisfying either one of the conditions (a), (b) or (c) is *P*-embedded in that space (for (a) see [1], Theorem 15.11 and Corollary 17.5, for (b) see [1], Corollary 15.7 and for (c) see [1], Theorem 15.4).

Since every closed set of a compact Hausdorff space is *P*-embedded in that space ([18], p. 372) and since every map of compact Hausdorff spaces is closed, Theorem 4.1. also implies the following corollary.

4.3. COROLLARY. Let $p: E \to B$ be a shape fibration of compact Hausdorff spaces and let B_0 be a closed subset of B, $E_0 = p^{-1}(B_0)$. Then $p_0 = p \mid E_0 : E_0 \to B_0$ is also a shape fibration.

Notice that Corollary 4.3 is a generalization of Proposition 4 of [11].

5. The exact sequence of a shape fibration

The purpose of this section is to show that every shape fibration induces a certain exact sequence of homotopy pro-groups. This fact is obtained as a corollary of the main result of this paper, which says that a shape fibration $p: E \rightarrow B$, which is a closed map of a topological space E into a normal space B, induces an isomorphism of homotopy pro-groups (Theorem 5.7). In the proof we will need the following two facts from [6].

5.1. If Y is an ANR and \mathscr{U} is a given open covering of Y, then there is an open refinement \mathscr{V} of \mathscr{U} such that any two \mathscr{V} -near maps $f, g: X \to Y$ defined on an arbitrary space X are \mathscr{U} -homotopic, which we denote by $f \simeq_{\mathscr{U}} g$ ([6], Theorem 1.1, p. 111).

5.2. If Y is an ANR and \mathscr{U} is a given open covering of Y, then there is an open refinement \mathscr{V} of \mathscr{U} such that for any two \mathscr{V} -near maps $f, g: X \to Y$ defined on a metrizable space X and for any \mathscr{V} homotopy $F: A \times I \to Y$ defined on a closed subspace A of X with $F_0 = f \mid A$ and $F_1 = g \mid A$, there exists a \mathscr{U} -homotopy $H: X \times X \to Y$ such that $H_0 = f$, $H_0 = g$ and $H \mid A \times I = F$ ([6], Theorem 1.2, p. 112).

By a triple of topological spaces (Y, Y_1, Y_0) we mean a topological space Y and two closed subsets $Y_0 \subseteq Y_1 \subseteq Y$.

5.3. LEMMA. Let (Y, Y_1, Y_0) be a triple of ANR-spaces, i. e. Y, $Y_1, Y_0 \in ANR$, and let \mathscr{U} be an open covering of Y. Then there exists an open refinement \mathscr{V} of \mathscr{U} such that any two \mathscr{V} -near maps of metrizable triples $f, g: (X, X_1, X_0) \rightarrow (Y, Y_1, Y_0)$ are \mathscr{U} -homotopic maps of triples.

Proof. Let \mathscr{S} be an open refinement of \mathscr{U} such that for any two \mathscr{S} -near maps $f, g: X \to Y$ and any \mathscr{S} -homotopy $F: X_1 \times I \to Y$ with $F_0 = f \mid X_1$ and $F_1 = g \mid X_1$, there exists a \mathscr{U} -homotopy $H: :X \times I \to Y$ such that $H_0 = f$, $H_1 = g$ and $H \mid H_1 \times I = F$ (5.2). We put $\mathscr{S}_1 = \mathscr{S} \mid Y_1$. Let \mathscr{L} be an open refinement of \mathscr{S}_1 such that for any two \mathscr{L} -near maps $f_1, g_1: X_1 \to Y_1$ and any \mathscr{L} -homotopy $G: X_0 \times I \to Y_1$ with $G_0 = f_1 \mid X_0, G_1 = g_1 \mid X_0$, there exists an \mathscr{S}_1 -homotopy $F': H_1 \times I \to Y_1$ such that $F'_0 = f_1, F'_1 = g_1$ and $F' \mid X_0 \times I = G$ (5.2). We now put $\mathscr{P} = \mathscr{L} \mid Y_0$. Let \mathscr{P}' be an open refinement of \mathscr{P} with the property that any two P'-near maps into Y_0 are \mathscr{P} -homotopic (5.1).

For each $P \in \mathscr{P}'$ there is an open set V_P in Y such that $V_P \cap \cap Y_0 = P$. Then $\mathscr{V}' = \{Y \setminus Y_0, V_P, | P \in \mathscr{P}'\}$ is an open covering of Y and $\mathscr{V}' | Y_0$ refines \mathscr{P}' . Similarly, there is an open covering \mathscr{V}'' of Y such that $\mathscr{V}'' | Y_1$ refines \mathscr{L} . Let \mathscr{V} be an open covering of Y which refines $\mathscr{V}', \mathscr{V}''$ nad \mathscr{L} . Then \mathscr{V} also refines \mathscr{U} , because \mathscr{L} refines \mathscr{U} .

We claim that the covering \mathscr{V} has the required property. Indeed, let $f, g: (X, X_1, X_0) \to (Y, Y_1, Y_0)$ be \mathscr{V} -near maps. Then the maps $f \mid X_0, g \mid X_0 : X_0 \to Y_0$ are $\mathscr{V} \mid Y_0$ -near, and therefore also \mathscr{P}' -near. By the choice of \mathscr{P}' there is a \mathscr{P} -homotopy $G: X_0 \times I \to Y_0$ with $G_0 = f \mid X_0, G_1 = g \mid X_0$. Since \mathscr{P} refines \mathscr{L} we conclude that Gis also an \mathscr{L} -homotopy. From $(f \mid X_1, g \mid X_1) < \mathscr{V} \mid Y_1$ it follows $(f \mid X_1, g \mid X_1) < \mathscr{L}$, because $\mathscr{V} \mid Y_1$ refines \mathscr{L} . By the choice of \mathscr{L} there is an \mathscr{S}_1 -homotopy $F': X_1 \times I \to Y_1$ with $F'_0 = f \mid X_1, F'_1 \mid X_1 =$ $= g \mid X_1$ and $F' \mid X_0 \times I = G$. Furthermore, F' is an \mathscr{S} -homotopy, because \mathscr{S}_1 refines \mathscr{S} . $(f, g) < \mathscr{V}$ imply $(f, g) < \mathscr{S}$, because \mathscr{V} refines \mathscr{S} . By the choice of \mathscr{S} it follows that there is a \mathscr{U} -homotopy $H: X \times$ $\times I \to Y$ with $H_0 = f, H_1 = g$ and $H \mid X_1 \times I = F'$. H is a homotopy of triples, because $H(X_1 \times I) = F'(X_1 \times I) \subseteq Y_1$ and $H(X_0 \times$ $\times I) = F'(X_0 \times I) = G(X_0 \times I) \subseteq Y_0$.

5.4. LEMMA. Let (P, P_1, P_0) be a triple of polyhedra and let \mathcal{U} be an open covering of P. Then there is an open refinement \mathcal{V} of \mathcal{U} such that for any metrizable triple (X, X_1, X_0) , any two \mathcal{V} -near maps of triples $f, g: (X, X_1, X)) \rightarrow (P, P_1, P_0)$ are \mathcal{U} -homotopic as maps of triples.

Proof. Let Q be the polyhedron P endowed with the metric topology. We define Q_1 and Q_0 analogously. Then (Q, Q_1, Q_0) is a triple of ANR-spaces [8] and the identity map $i: (P, P_1, P_0) \rightarrow (Q, Q_1, Q_0)$ is a homotopy equivalence of triples ([8], Theorem 2.2) with a homotopy inverse $j: (Q, Q_1, Q_0) \rightarrow (P, P_1, P_0)$. Let \mathscr{U}' be a star-refinement of \mathscr{U} and let (K, K_1, K_0) be a triangulation of (P, P_1, P_0) so fine that the star-covering $\mathscr{K} = \{St(v, K) \mid v \in K^\circ\}$ of P = |K| refines $\mathscr{U}'([17], p. 125-126)$. Since each star is an open set with respect to the metric topology, we conclude that \mathscr{K} is also an open covering of Q. The fact that (Q, Q_1, Q_0) is a triple of ANR-spaces implies the existence of an open covering \mathscr{V} of Q which refines \mathscr{K} and has the property from Lemma 5.3 for maps from (X, X_1, X_0) into (Q, Q_1, Q_0) (Lemma 5.3). The continuity of $i: P \rightarrow Q$ implies that \mathscr{V} is also an open covering of P. We claim that \mathscr{V} has the required property.

Let $f, g: (X, X_1, X_0) \rightarrow (P, P_1, P_0)$ be two \mathscr{V} -near maps. Then if and ig are two \mathscr{V} -near maps from (X, X_1, X_0) into (Q, Q_1, Q_0) . Consequently, by the choice of the covering \mathscr{V} , there is a \mathscr{K} -homotopy of triples $H: (X \times I, X_1 \times I, X_0 \times I) \rightarrow (Q, Q_1, Q_0)$ with $H_0 =$ $= if, H_1 = ig$. Also $jH: (X \times I, X_1 \times I, X_0 \times I) \rightarrow (P, P_1, P_0)$ is a \mathscr{K} -homotopy of triples, because j and 1_P are contiguous with respect to K. Furthermore,

$$jH: jif \simeq \mathbf{x} jig \tag{1}$$

Since $ji \cong \pi 1_P$ as a homotopy of triples, we have also

$$f \simeq \mathbf{x} f^{i} j i f, \tag{2}$$

$$g \simeq \mathbf{x} jig.$$
 (3)

(2), (1) are (3) imply

 $f \simeq \mathcal{K} \ ijf \simeq \mathcal{K} \ jig \simeq \mathcal{K} \ g.$

Since \mathscr{K} refines \mathscr{U}' it follows that

$$f \simeq_{\mathscr{U}} jif \simeq_{\mathscr{U}} jig \simeq_{\mathscr{U}} g. \tag{4}$$

Finally, (4) implies $f \simeq_{\mathscr{U}} g$, because \mathscr{U}' is a star-refinement of \mathscr{U} . The last homotopy is a homotopy of triples, because such are all the homotopies in (4).

The notion of a resolution of triples $\mathbf{q} : (E, E_1, E_0) \rightarrow (\mathbf{E}, \mathbf{E}_1, \mathbf{E}_0)$ can be defined just like the notion of a resolution of pairs defined in [13]. If we look at the proofs of all the facts used in the proof of Theorem 8, I, § 6 in [13] we see that they remain valid provided we replace everywhere pairs by triples. In particular, the following analogues of Theorem 8 of [13] I § 6 holds.

5.5. PROPOSITION. Let $\mathbf{q} : (E, E_1, E_0) \rightarrow (\mathbf{E}, \mathbf{E}_1, \mathbf{E}_0)$ be a resolution of (E, E_1, E_0) . Then the corresponding inverse system [($\mathbf{E}, \mathbf{E}_1, \mathbf{E}_0$)] in H Top³ is associated with (E, E_1, E_0) (in the sense of Morita [15]) via $[\mathbf{q}] : (E, E_1, E_0) \rightarrow [(\mathbf{E}, \mathbf{E}_1, \mathbf{E}_0)].$

By a slight modification of Lemma 5 and Theorem 9 of [13], \S 6, we also obtain the following fact.

5.6. PROPOSITION. Let $\mathbf{q} : (E, E_1, E_0) \rightarrow (\mathbf{E}, \mathbf{E}_1, \mathbf{E}_0)$ be a morphism in pro-Top³ and let $\mathbf{q} : E \rightarrow \mathbf{E}$, $q_1 = \mathbf{q} | E_1 : E_1 \rightarrow \mathbf{E}_1$ and $\mathbf{q}_0 = \mathbf{q} | E_0 : E_0 \rightarrow \mathbf{E}_0$ be the induced morphisms in pro-Top. If $\mathbf{q} : E \rightarrow \mathbf{E}$ is a resolution of E and $\mathbf{q}_1, \mathbf{q}_0$ have property (B2), then $\mathbf{q} : (E, E_1, E_0) \rightarrow (\mathbf{E}, \mathbf{E}_1, \mathbf{E}_0)$ is a resolution of the triple (E, E_1, E_0) .

We are now able to prove the main result of this paper.

5.7. THEOREM. Let $p: E \rightarrow B$ be a shape fibration which is a closed map of a topological space E into a normal space B. If $e \in E$, b = p(e), $F = p^{-1}(b)$ and if F is P-embedded in E, then p induces an isomorphism of the homotopy pro-groups

$$\mathbf{p}_*$$
: pro- $\pi_n(E, F, e) \rightarrow \text{pro-}\pi_n(B, b).$

Proof. The proof is patterned after the proof of Theorem 2 of [12].

(i) Let $\mathbf{r} : (B, \{b\}) \to (\mathbf{B}, \mathbf{Q})$ be a polyhedral resolution of the pair $(B, \{b\})$. Since $\{b\}$ is *P*-embedded in *B* we obtain (as in the proof of Theorem 4.1) a polyhedral level-resolution $(\mathbf{q}, \mathbf{r}, \mathbf{p})$ of $p : E \to B$ with Λ cofinite and a resolution $\mathbf{r}_1 = \mathbf{r} \mid \{b\} : \{b\} \to \mathbf{Q}$ of $\{b\}$. Then, $\mathbf{q} = (q_{\lambda}) : E \to \mathbf{E} = (E_{\lambda}, q_{\lambda\lambda'}, \Lambda)$ and $\mathbf{r} = (r_{\lambda}) : B \to \mathbf{B} = (B_{\lambda}, r_{\lambda\lambda'}, \Lambda)$

are polyhedral resolutions of *E* and *B* respectively; $\mathbf{p} = (p_{\lambda}, 1_{\Lambda}) : \mathbf{E} \rightarrow \mathbf{B}$ is a level map of systems such that $p_{\lambda}q_{\lambda} = r_{\lambda}p$ for each $\lambda \in \Lambda$ and $\mathbf{r}_{1} = (r_{\lambda} | \{b_{\lambda}\} : \{b\} \rightarrow \mathbf{Q} = (Q_{\lambda}, r_{\lambda\lambda'} | Q_{\lambda\lambda'}, \Lambda)$ is such a resolution that every Q_{λ} is a closed polyhedral neighborhood of $r_{\lambda}(b) = b_{\lambda}$ in B_{λ} with

$$r_{\lambda\lambda'}(Q_{\lambda'}) \subseteq \operatorname{Int} Q_{\lambda}, \quad \lambda < \lambda'.$$
(5)

Let $e_{\lambda} = q_{\lambda}(e)$, $\lambda \in \Lambda$. As in the proof of Theorem 4.1 one can assign (by induction on the number of predecessors of λ) to each $\lambda \in \Lambda$ a closed polyhedral neighborhood C_{λ} of Q_{λ} in B_{λ} such that

$$r_{\lambda\lambda'}(C_{\lambda'}) \subseteq \operatorname{Int} Q_{\lambda}, \quad \lambda < \lambda'$$
 (6)

and that $\mathbf{r}_2 = (r_{\lambda} | \{b\}) : \{b\} \to \mathbf{C} = (C, r_{\lambda\lambda'} | C_{\lambda'}, .1)$ is a polyhedral resolution of $\{b\}$. Again, as in the proof of Theorem 4.1 one constructs neighborhoods D_{λ} of C_{λ} in B_{λ} such that

$$r_{\lambda\lambda'}(D_{\lambda'}) \subseteq \operatorname{Int} Q_{\lambda}, \quad \lambda < \lambda'$$

$$\tag{7}$$

and that $\mathbf{r}_2 = (r_{\lambda} | \{b\}) : \{b\} \to \mathbf{D} = (D_{\lambda}, r_{\lambda\lambda'} | D_{\lambda'}, 1)$ is a polyhedral resolution of $\{b\}$. As in the proof of Theorem 4.1 we put $P_{\lambda} = p^{-1}(C_{\lambda})$ and see that $\mathbf{q}_1 = (q_{\lambda} | F) : F \to \mathbf{P} = (P_{\lambda}, q_{\lambda\lambda'} | P_{\lambda'}, 1)$ is a resolution of $F = p^{-1}(b)$. We then construct closed polyhedral neighborhoods F_{λ} of P_{λ} in E_{λ} such that

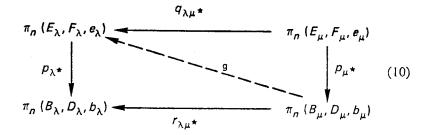
$$q_{\lambda\lambda'}(F_{\lambda'}) \subseteq \operatorname{Int} P_{\lambda}, \quad \lambda < \lambda'$$
 (8)

$$F_{\lambda} \subseteq p_{\lambda}^{-1} (\operatorname{Int} D_{\lambda}), \quad \lambda \in \mathcal{A}$$
(9)

and such that $\mathbf{q}_0: E \to \mathbf{F} = (F_{\lambda}, q_{\lambda\lambda'} \mid F_{\lambda'}, A)$ is a polyhedral resolution of F.

By (9) we conclude that for each $\lambda \in .1$, $p_{\lambda} : (E_{\lambda}, F_{\lambda}, e_{\lambda}) \rightarrow (B_{\lambda}, D_{\lambda}, b_{\lambda})$. Therefore, for each $\lambda \in A, p_{\lambda}$ induces a homomorphism $p_{\lambda^*} : \pi_n (E_{\lambda}, F_{\lambda}, e_{\lambda}) \rightarrow \pi_n (B_{\lambda}, D_{\lambda}, b_{\lambda})$. Furthermore, by Proposition 5.6, we conclude that $\mathbf{q} : (E, F, e) \rightarrow (\mathbf{E}, \mathbf{F}, \mathbf{e})$ is a resolution of the triple (E, F, e), and thus, by Proposition 5.5, the inverse system $[(\mathbf{E}, \mathbf{F}, \mathbf{e})]$ in $H Top^3$ is associated with (E, F, e). Similarly, we conclude that $[(\mathbf{B}, \mathbf{D}, \mathbf{b})]$ is associated with (B, b). Therefore, the homomorphisms p_{λ^*} induce a morphism of homotopy pro-groups \mathbf{p}_* : pro- $\pi_n (E, F, e) \rightarrow pro-\pi_n (B, b) ([14], p. 318)$.

(*ii*) In order to show that \mathbf{p}_* is an isomorphism, it is sufficient, by Morita's lemma ([16], Theorem 1.1), to show that for each $\lambda \in A$ there is a $\mu \in A$, $\mu > \lambda$, and a homomorphism $g: \pi_n(B_\mu, D_\mu, b_\mu) \rightarrow (E_\lambda, F_\lambda, e_\lambda)$ such that the following diagram commutes



Since $(\mathbf{q}, \mathbf{r}, \mathbf{p})$ is a polyhedral resolution of the shape fibration $p: E \rightarrow B$, we can assume that $\mathbf{p}: \mathbf{E} \rightarrow \mathbf{B}$ has the *AHLP* with respect to all topological spaces. Furthermore, since each E_{λ} is a polyhedron, \mathbf{p} has the stronger lifting property in the sense of Theorem 3.2 with respect to all paracompact spaces.

Let $\lambda \in A$ and let $\mathscr{V}_{\lambda} = \{ \operatorname{Int} C_{\lambda}, B_{\lambda} \setminus Q_{\lambda} \}$. Let $\lambda' > \lambda$ be a lifting index for $\lambda, \mathscr{V}_{\lambda}$ and let $\mathscr{V}'_{\lambda'}$ be an open covering of $B_{\lambda'}$, which is a lifting mesh for $\lambda, \mathscr{V}_{\lambda}$. By Lemma 5.4, there is a refinement $\mathscr{V}''_{\lambda'}$ of $\mathscr{V}'_{\lambda'}$ such that any two $\mathscr{V}''_{\lambda'}$ -near maps of triples from $(I^n, \partial I^n, J^{n-1})$ into $(B_{\lambda'}, D_{\lambda'}, b_{\lambda'})$ are $\mathscr{V}'_{\lambda'}$ -homotopic as maps of triples, where $J^{n-1} = (\partial I^{n-1} \times I) \cup \cup (I^{n-1} \times 1)$. Let $\mathscr{V}_{\lambda'} = \{ \operatorname{Int} C_{\lambda'}, B_{\lambda'} \setminus Q_{\lambda'} \}$ and let $\mathscr{W}_{\lambda'}$ be an open covering of $B_{\lambda'}$, which refines both the coverings $\mathscr{V}'_{\lambda'}$ and $\mathscr{V}''_{\lambda'}$. Then $\mathscr{W}'_{\lambda'}$ refines also $\mathscr{V}'_{\lambda'}$ and so $\mathscr{W}_{\lambda'}$ is a lifting mesh for λ and \mathscr{V}_{λ} . Finally, let $\mu \in A$, $\mu > \lambda'$, be a lifting index and let the open covering \mathscr{V}_{μ} of B_{μ} be a lifting mesh for λ' and $\mathscr{W}_{\lambda'}$.

Let $a \in \pi_n$ (B_μ, D_μ, b_μ) be given by a map $\Phi : (I^n, \hat{c}I^n, J^{n-1}) \rightarrow (B_\mu, D_\mu, b_\mu)$ and let $\varphi : J^{n-1} \rightarrow E_\mu$ be the constant map $\varphi (J^{n-1}) = e_\mu$. Notice that $p_\mu \varphi = \Phi \mid J^{n-1}$, and therefore

$$(p_{\mu}\varphi, \Phi \mid J^{n-1}) \leqslant \mathscr{V}_{\mu}. \tag{11}$$

Since $(I^n, J^{n-1}) \approx (I^n, I^{n-1} \times 0)$, one can view φ as a map $I^{n-1} \times X \otimes 0 \to E_{\mu}$ and Φ as a homotopy $I^{n-1} \times I \to B_{\mu}$ with the initial stage equal to $\Phi \mid J^{n-1}$. Therefore, by (11) and by the choice of μ and \mathscr{V}_{μ} there is a map $\widetilde{\Phi} : I^n \to E_{\lambda'}$ such that

$$\Phi \mid J^{n-1} = q_{\lambda'\mu} \varphi = e_{\lambda'} \tag{12}$$

$$(p_{\lambda'}\widetilde{\Phi}, r_{\lambda'\mu}\Phi) \leqslant \mathscr{W}_{\lambda'}.$$
(13)

Since $\mathscr{W}_{\lambda'}$ refines $\mathscr{V}_{\lambda'}$ (13) implies

$$(p_{\lambda'}\widetilde{\Phi}, r_{\lambda'\mu}\Phi) \leqslant \mathscr{V}_{\lambda'} = \{ \operatorname{Int} C_{\lambda'}, B_{\lambda'} \setminus Q_{\lambda'} \}.$$
(13')

By (7) we have $r_{\lambda'\mu} \Phi(\partial I^n) \subseteq r_{\lambda'\mu}(D_\mu) \subseteq Q_{\lambda'\mu}$, which implies $r_{\lambda'\mu} \Phi(\partial I^n) \cap (B_{\lambda'} \setminus Q_{\lambda'}) = \emptyset$. Now (13') implies $p_{\lambda'} \widetilde{\Phi}(\partial I^n) \subseteq C_{\lambda'}$, i. e. $\widetilde{\Phi}(\partial I^n) \subseteq p_{\lambda'}^{-1}(C_{\lambda'}) = P_{\lambda'} \subseteq F_{\lambda'}$. Thus, we conclude, by (12) that

 $\Phi: (I^n, \partial I^n, J^{n-1}) \to (E_{\lambda'}, F_{\lambda'}, e_{\lambda'}).$ Therefore, $[\Phi] \in \pi_n(E_{\lambda'}, F_{\lambda'}, e_{\lambda'}).$ We now define g by

$$g(a) = g([\Phi]) = [q_{\lambda\lambda'}\widetilde{\Phi}] = q_{\lambda\lambda'_*}[\widetilde{\Phi}].$$
(14)

(iii) We will now show that g is independent of the choice of $\widetilde{\Phi}$ and Φ . Let $\Phi': (I^n, \partial I^n, J^{n-1}) \to (B_\mu, D_\mu, b_\mu)$ be another representative of $a = [\Phi]$ and let $\widetilde{\Phi'}$ satisfy (12) and (13) with Φ , $\widetilde{\Phi}$ replaced by $\Phi', \widetilde{\Phi'}$ respectively. Then $\Phi \simeq \Phi'$, and thus there is a homotopy

$$H: (I^n \times I, \partial I^n \times I, J^{n-1} \times I) \rightarrow (B_{\mu}, D_{\mu}, b_{\mu})$$

such that $H_0 = \Phi$ and $H_1 = \Phi'$.

We now consider the map $h: (I^n \times 0) \cup (I^n \times 1) \cup (J^{n-1} \times I) \rightarrow E_{\lambda'}$ given by

$$h \mid I^n \times 0 = \widetilde{\Phi}, \ h \mid I^n \times 1 = \widetilde{\Phi}', \ h \mid J^{n-1} \times I = e_{\lambda'}.$$

It is easy to see that h is continuous and that

$$(p_{\lambda'} h, r_{\lambda' \mu} H) \leqslant \mathscr{W}_{\lambda'}.$$

By the choice of λ' and $\mathscr{W}_{\lambda'}$, it follows the existence of a homotopy $\widetilde{H}: I^n \times I \to E_{\lambda}$ with

$$\widetilde{H} \mid I^{n} \times 0 = q_{\lambda\lambda'} h \mid I^{n} \times 0 = q_{\lambda\lambda'} \widetilde{\Phi}$$
(15)

$$\widetilde{H} \mid I^{n} \times 1 = q_{\lambda\lambda'} h \mid I^{n} \times 1 = q_{\lambda\lambda'} \widetilde{\Phi'}$$
(16)

$$\widetilde{H} \mid J^{n-1} \times I = q_{\lambda\lambda'} h \mid J^{n-1} \times I = e_{\lambda}$$
(17)

$$(p_{\lambda} \widetilde{H}, r_{\lambda \mu} H) \leqslant \mathscr{V}_{\lambda} = \{ \operatorname{Int} C_{\lambda}, B_{\lambda} \setminus Q_{\lambda} \}.$$
(18)

Since $H(\partial I^n \times I) \subseteq D_{\mu}$ (7) implies $r_{\lambda\mu} H(\partial I^n \times I) \subseteq Q_{\lambda}$. Therefore, $r_{\lambda\mu} H(\partial I^n \times I) \cap (B_{\lambda} \setminus Q_{\lambda}) = \emptyset$. By (18) it follows that $p_{\lambda} H(\partial I^n \times I) \subseteq$ Int $C_{\lambda'}$ which implies that $H(\partial I^n \times I) \subseteq F_{\lambda}$. Thus, we conclude that $\widetilde{H}: (I^n \times I, \partial I^n \times I, J^{n-1} \times I) \to (E_{\lambda}, F_{\lambda}, e_{\lambda})$. (15) and (16) imply

$$\widetilde{H}: q_{\lambda\lambda'} \widetilde{\Phi} \simeq q_{\lambda\lambda'} \widetilde{\Phi'}.$$

Consequently,

$$g\left(\left[\Phi\right]\right) = \left[q_{\lambda\lambda'}\widetilde{\Phi}\right] = \left[q_{\lambda\lambda'}\widetilde{\Phi'}\right] = g\left(\left[\Phi'\right]\right).$$

Q. Haxhibeqiri

(iv) We now show that g is a homomorphism of groups. Let a = a' a'' and let $a' = [\Phi']$, $a'' = [\Phi'']$. Then $a = [\Phi]$, where $\Phi : : (I^n, \partial I^n, J^{n-1}) \to (B_{\mu}, D_{\mu}, b_{\mu})$ is given by

$$\Phi(x, s, t) = \begin{cases} \Phi'(x, 2s, t), & 0 < s < \frac{1}{2} \\ \Phi''(x, 2s - 1, t), & \frac{1}{2} < s < 1 \end{cases}$$
(19)

where $x \in I^{n-2}$, $t \in I$. Notice that Φ', Φ'' induce $\widetilde{\Phi'}, \widetilde{\Phi''}: (I^n, \partial I^n, J^{n-1}) \rightarrow (E_{\lambda'}, F_{\lambda'}, e_{\lambda'})$ and the analogues of (12) and (13) hold. Let $\widetilde{\Phi}: (I^n, \partial I^n, J^{n-1}) \rightarrow (E_{\lambda'}, F_{\lambda'}, e_{\lambda'})$ be defined by

$$\widetilde{\Phi}(x, s, t) = \begin{cases} \widetilde{\Phi}'(x, 2s, t), & 0 < s < \frac{1}{2} \\ \widetilde{\Phi}''(x, 2s - 1, t), & \frac{1}{2} < s < 1 \end{cases}$$
(20)

where $x \in I^{n-2}$, $t \in I$. From (19), (20) and from (12), (13) applied to $\tilde{\Phi}'$ and $\tilde{\Phi}''$, one obtains (12) and (13) for $\tilde{\Phi}$, which proves

$$g\left(\left[oldsymbol{\Phi}
ight]
ight) = q_{\lambda\lambda_{st}'}\left(\left[\widetilde{oldsymbol{\Phi}}
ight]
ight).$$

However, by (20), $[\widetilde{\Phi}] = [\widetilde{\Phi}'] [\widetilde{\Phi}'']$, and thus we obtain $g(a' a'') = g(a) = g([\Phi]) = q_{\lambda_*}([\widetilde{\Phi}]) = q_{\lambda_*}([\widetilde{\Phi}']) q_{\lambda_*}([\widetilde{\Phi}'']) = g(a') g(a'')$. Let us establish the commutativity of diagram (10).

(v) First we show that

$$p_{\lambda_*}g=r_{\lambda\mu_*}.$$

If $a = [\Phi] \in \pi_n (B_\mu, D_\mu, b_\mu)$, then

$$p_{\lambda *} g (a) = p_{\lambda *} q_{\lambda \lambda' *} ([\widetilde{\Phi}]) = [p_{\lambda} q_{\lambda \lambda'} \widetilde{\Phi}]$$
(21')

$$r_{\lambda\mu_{*}}(a) = r_{\lambda\mu_{*}}([\Phi]) = [r_{\lambda\mu}\Phi].$$
 (21'')

Since $\mathscr{W}_{\lambda'}$ refines $\mathscr{V}_{\lambda'}^{"}$ (13) implies $(p_{\lambda'}\widetilde{\Phi}, r_{\lambda'\mu}\Phi) \leq \mathscr{V}_{\lambda'}^{"}$. By the choice of $\mathscr{V}_{\lambda'}^{"}$, it follows that there is a $\mathscr{V}_{\lambda'}$ -homotopy $G: (I^{n} \times I, \partial I^{n} \times I, \partial I^{n} \times I, J^{n-1} \times I) \rightarrow (B_{\lambda'}, D_{\lambda'}, b_{\lambda'})$ with $G: p_{\lambda'}\widetilde{\Phi} \simeq r_{\lambda'\mu}\Phi$. Then $r_{\lambda\lambda'}G:$ $:r_{\lambda\lambda'}p_{\lambda'}\widetilde{\Phi} \simeq r_{\lambda\mu}\Phi$. Since $r_{\lambda\lambda'}p_{\lambda'} = p_{\lambda}q_{\lambda\lambda'}$, it follows $p_{\lambda}q_{\lambda\lambda'}\widetilde{\Phi} \simeq r_{\lambda\mu}\Phi$. With this in mind, (21') and (21'') imply (21).

(vi) We now show that $gp_{\mu_*} = q_{\lambda\mu_*}$. Let $\beta \in \pi_n(E_{\mu}, F_{\mu}, e_{\mu})$ be given by a map $\varphi : (I^n, \partial I^n, J^{n-1}) \rightarrow (E_{\mu}, F_{\mu}, e_{\mu})$, i. e. $\beta = [\varphi]$, and let $p_{\lambda_*}(\beta) = [\Phi]$, where $\Phi = p_{\mu} \varphi$. We put $\widetilde{\Phi} = q_{\lambda'\mu} \varphi$. It is easy to see that $\widetilde{\Phi} \mid J^{n-1} = e_{\lambda'}$ and $p_{\lambda'} \widetilde{\Phi} = r_{\lambda'\mu} \Phi$, i. e. (12) and (13) hold. Therefore, $g([\Phi]) = q_{\lambda\lambda'*}([\widetilde{\Phi}])$, which means that $g p_{\mu_*}(\beta) = q_{\lambda\mu_*}(\beta)$. This proves the theorem.

If we pass to the shape groups

$$\check{\pi}_n(E, F, e) = \lim_{\leftarrow} \operatorname{pro} -\pi_n(E, F, e)$$

 $\check{\pi}_n(B, b) = \lim_{\leftarrow} \operatorname{pro} -\pi_n(B, b)$

then we obtain from Theorem 5.7 the following corollary.

5.8. COROLLARY. Let $p: E \rightarrow B$ be a shape fibration, which is a closed map of topological space E into a normal space B. If $e \in E$, b = p(e) and if $F = p^{-1}(b)$ is P-embedded in E, then p induces an isomorphism of the shape groups

$$p_*: \check{\pi}_n(E, F, e) \to \check{\pi}_n(B, b).$$

In [7], 5.2, it is shown that whenever $(\mathbf{E}, \mathbf{F}, \mathbf{e})$ is an object in pro--HCW₀², then the following sequence of homotopy progroups is exact.

...
$$\rightarrow \operatorname{pro-}\pi_n(F, e) \rightarrow \operatorname{pro-}\pi_n(E, e) \rightarrow \operatorname{pro-}\pi_n(E, F, e) \rightarrow \operatorname{pro-}\pi_{n-1}(F, e) \rightarrow$$
.

Hence, Theorem 5.7 yields the following result.

5.9. THEOREM. Let $p: E \rightarrow B$ be a shape fibration, which is a closed map of a topological space E into a normal space B. If $e \in E$, b = p(e), and if $F = p^{-1}$ is P-embedded in E, then the following sequence of homotopy pro-groups is exact

...
$$\rightarrow \operatorname{pro-}\pi_n(F, e) \xrightarrow{\mathbf{i}_*} \operatorname{pro-}\pi_n(E, e) \xrightarrow{\mathbf{p}_*} \operatorname{pro-}\pi_n(B, b) \xrightarrow{\delta} \operatorname{pro-}\pi_{n-1}(F, e) \xrightarrow{\delta} \ldots$$

Hence \mathbf{i}_* and \mathbf{p}_* are morphisms of pro-groups induced by the inclusion map $i: F \to E$ and by the map $p: E \to B$ respectively, and $\boldsymbol{\delta}$ is the composition of the inverse of the isomorphism of pro-groups induced by $p: (E, F, e) \to (B, b, b)$ (Theorem 5.7) and of the boundary morphism $\operatorname{pro-}\pi_n(E, F, e) \to \operatorname{pro-}\pi_{n-1}(F, e)$ induced by the boundary homomorphisms $\pi_n(E_{\lambda}, F_{\lambda}, e_{\lambda}) \to \pi_{n-1}(F_{\lambda}, e_{\lambda})$.

5.10. COROLLARY. Let $p: E \rightarrow B$ be a closed map of metric ANR spaces (not necessarily locally compact), which has the AHLP in the sense of Coram and Duvall [3]. If $e \in E$, b = p(e), $F = p^{-1}(b)$, then the following sequence is exact

..
$$\rightarrow \operatorname{pro-}\pi_n(F, e) \xrightarrow{\mathbf{i}_*} \pi_n(E, e) \xrightarrow{\mathbf{p}_*} \pi_n(B, b) \xrightarrow{\mathbf{\delta}} \operatorname{pro-}\pi_{n-1}(F, e) \rightarrow \dots$$

Proof. By [10], Corollary 4, p is a closed shape fibration and the assertion follows immediately from Theorem 5.9.

Q. Haxhibeqiri

REFERENCES:

- [1] R. Alo and H. Shapiro, Normal topological spaces, Cambridge Univ. Press, London, 1974.
- [2] P. Bacon, Continuous functors, General Topology Appl. 5 (1975), 321-331.
- [3] D. Coram and P. Duvall, Approximate fibrations, Rocky Mountain J. Math. 8 (2) (1977), 275-288.
- [4] Q. Haxhibeqiri, Fibrations for topological spaces (Serbo-Croatian), Ph. D. Thesis, Zagreb, 1980.
- [5] _____, Shape fibrations for topological spaces, Glasnik Mat. Ser. III. 17 (37) (1982), 381-401.
- [6] S. T. Hu, Theory of retracts, Wayne State Univ. Press, Detroit, 1968.
- [7] S. Mardešić, On the Whitehead theorem in shape theory I, Fund. Math. 91 (1976), 51-64.
- [8] _____, Spaces having the homotopy type of CW-complexes, Mimeographed Lecture Notes, Univ. of Kentucky, Lexington, 1978.
- [9] _____, The foundations of shape theory, Mimeographed Lecture Notes, Univ. of Kentucky, Lexington, 1978.
- [10] _____, Approximate polyhedra, resolutions of maps and shape fibrations, Fund. Math. 114 (1981), 53-78.
- [11] and T. B. Rushing, Shape fibrations I, General Topology Appl. 9 (1978), 193-215.
- [12] _____, Shape fibrations II, Rocky Mountain J. Math. 9 (1979), 283—298.
- [13] _____ and J. Segal, Shape theory, North-Holland Publ. Co., Amsterdam, 1982.
- [14] _____ and Š. Ungar, The relative Hurewicz theorem in shape theory, Glasnik Mat. Ser III 9 (29) (1974), 317-327.
- [15] K. Morita, On shapes of topological spaces, Fund. Math. 86 (1975), 251-259.
- [16] _____, The Hurewicz and the Whitehead theorems in shape theory, Sci. Rep. of the Tokyo Kyoiku Daigaku, 12 (1974), 246-258.
- [17] E. H. Spanier, Algebraic Topology, McGraw-Hill Book Company, New York, 1966.
- [18] S. Ungar, n-connectedness of inverse systems and applications to shape theory, Glasnik Mat. Ser III, 13 (33) (1978), 371-396.

(Received October 4, 1981) (Revised February 22, 1982) Department of Mathematics University of Kosovo Priština, Yugoslavia

EGZAKTAN NIZ FIBRACIJE OBLIKA

Q. Haxhibeqiri, Priština

Sadržaj

Koristeći definiciju fibracije oblika između proizvoljnih topoloških prostora iz [5], dokazane su slijedeće činjenice:

Neka je $p: E \rightarrow B$ zatvoreno preslikavanje topološkog prostora E u normalni prostor B koje je fibracija oblika. Tada

(i) Ako je B_0 zatvoren podskup od B, $E_0 = p^{-1}(B_0)$ i ako su E_0 i B_0 *P*-smješteni u *E* odnosno *B*, onda je i restrikcija $p | E_0 : E_0 \rightarrow B_0$ fibracija oblika. (Teorema 4.1).

(ii) Ako je $e \in E$, b = p(e) i $F = p^{-1}(b)$ P-smješten u E, onda p inducira izomorfizam homotopskih pro-grupa

$$\mathbf{p}_*$$
: pro- $\pi_n(E, F, e) \rightarrow \text{pro-}\pi_n(B, b).$

(Teorema 5.7). Kao korolar od (ii) dobivamo slijedeći egzaktan niz fibracije oblika

... $\rightarrow \operatorname{pro-}\pi_n(F, e) \rightarrow \operatorname{pro-}\pi_n(E, e) \rightarrow \operatorname{pro-}\pi_n(B, b) \rightarrow \operatorname{pro-}\pi_{n-1}(F, e) \rightarrow \dots$

(Teorema 5.9).