ON THE EQUIVALENCE OF SOME PROPERTIES WEAKER THAN COMPACTNESS

J. Swart, Pietermaritzburg, South Africa

Abstract. We give a simple proof of the equivalence of the concepts: generalized absolutely closed, almost compact and nearly C-compact. For Hausdorff spaces the above are equivalent to absolute closure.

Introduction

A Hausdorff space is called *absolutely closed* if it is closed in every Hausdorff space in which it is embedded. This concept was first introduced by Alexandroff and Urysohn [2]. The term *H*-closed was used by Alexandroff and Hopf [1]. In Hausdorff spaces absolute closure is equivalent to the condition that every open filter base has non--void adherence ([5], theorem 2 and [3], part I, p. 108). In not necessarily Hausdorff spaces the above condition was called generalized absolute closure by Chen-Tung Liu [4] and earlier on, property H(i), by Scarborough and Stone [6], who first formulated absolute closure for non-Hausdorff spaces. In Hausdorff spaces almost compactness (definition (\ddot{u}) below) is equivalent to absolute closure ([1], p. 90) and in non-Hausdorff spaces to generalized absolute closure ([6]). Sharma and Namdeo [7] introduced nearly C-compact spaces as a generalization to Viglino's C-compactness [9] an gave an incorrect proof of the equivalence of nearly C-compact and almost compact.

In the theorem below we give a simple proof of the equivalences mentioned above.

Definitions. In an arbitrary topological space X we define

(i) X is generalized absolutely closed if every open filter base has non-void adherence ([6], property H(i) and [4], Definition 1.5).

(ii) X is almost compact if every open cover of X has a finite subfamily whose union is dense in X ([8], property (A) and [7], Definition 4).

(iii) X is nearly C-compact if for each regular closed $F \subset X$ and open cover $\{U_a\}$ of F there exists a finite subfamily of $\{U_a\}$, the closures of whose members cover F ([7], Definition 2).

Mathematics subject classifications (1980): Primary 54 D 30.

Key words and phrases: Absolute closure, generalized absolute closure, almost compact, nearly C-compact, open filter base.

THEOREM. In any topological space X the following are equivalent:

- (1) X is generalized absolutely closed,
- (2) X is almost compact,
- (3) X is nearly C-compact.

Proof. (1) \Rightarrow (2): Suppose there exists an open cover \mathscr{U} of X such that no finite subfamily has a union which is dense in X. Then $\mathscr{F} = \{X - \bigcup \{\overline{U} \mid U \in \mathscr{V}, \mathscr{V} \text{ a finite subfamily of } \mathscr{U}\}\}$ is an open filter base on X with empty adherence.

 $(2) \Rightarrow (3)$: Let F be a regular closed subset of X and \mathscr{U} any open cover of F. Then $\mathscr{U} \cup \{X - F\}$ is an open cover of X and hence there exists a finite subfamily $\{U_1, ..., U_n\}$ of \mathscr{U} such that

$$X = (\bigcup_{i=1}^{n} \overline{U}_{i}) \cup (\overline{X - F})$$

which implies

$$\operatorname{int} F \subset \bigcup_{i=1}^{n} \overline{U}_{i}$$

and hence

$$F \subset \bigcup_{i=1}^{n} \overline{U}_{i}.$$

 $(3) \Rightarrow (1)$: Let \mathscr{F} be any open filter base with adherent set A, let R be any regular open set containing A. The family $(\{X - \overline{F} \mid F \in \mathscr{F}\})$ is an open cover of the regular closed X - R so has a finite subfamily $\{X - \overline{F}_i \mid i = 1, ..., n\}$ satisfying

$$X - R \subset \bigcup_{i=1}^{n} \overline{X - \overline{F_i}} \subset \bigcup_{i=1}^{n} X - F_i$$
$$R \supset \bigcap_{i=1}^{n} F_i \supset F, \text{ some } F \in \mathscr{F}.$$

Thus $R \neq \emptyset$ and hence $A \neq \emptyset$.

COROLLARY. In any Hausdorff space X the following are equivalent:

- (a) X is absolutely closed,
- (b) H is almost compact,
- (c) X is nearly C-compact.

REFERENCES:

- [1] P. Alexandroff and H. Hopf, Topologie I, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, 45, Springer, Berlin 1935.
- [2] P. Alexandroff and P. Urysohn, Mémoire sur les espaces topologiques compacts, Verh. Nederl. Akad. Wetensch. Afd. Natuurk. Sect. I 14 (1929), 1-96.
- [3] N. Bourbaki, Topologie générale, 4th ed., Actualités Sci. Ind. No. 1142, Hermann, Paris 1965.
- [4] Chen-Tung Liu, Absolutely closed spaces, Trans. Amer. Math. Soc. 130 (1968), 86-104.
- [5] C. Chevalley and O. Frink, Bicompactness of Cartesian products, Bull. Amer. Math. Soc. 47 (1941), 612-614.
- [6] C. T. Scarborough and A. H. Stone, Products of nearly compact spaces, Trans. Amer. Math. Soc. 124 (1966), 131-147.
- [7] P. L. Sharma and R. K. Namdeo, On nearly C-compact spaces, Ann. Soc. Sci. Bruxelles Sér. I 91 (1977), No. 2, 79-82.
- [8] A. H. Stone, Hereditarily compact spaces, Amer. J. Math. 82 (1960), 900-916.
- [9] G. Viglino, C-compact spaces, Duke Math. J. 36 (1969), 761-764.

(Received June 4, 1981)

Department of Mathematics, University of Natal, Pietermaritzburg. 3200, South Africa.

EKVIVALENTNOST NEKIH SVOJSTAVA SLABIJIH OD KOMPAKTNOSTI

J. Swart, Pietermaritzburg, Južna Afrika

Sadržaj

U članku je dan jednostavan dokaz da su ekvivalentni ovi pojmovi: generalizirano apsolutno zatvoren, skoro kompaktan i gotovo C-kompaktan. Za Hausdorffove prostore ti su pojmovi ekvivalentni apsolutnoj zatvorenosti.