ON THE SEPARATION AXIOM R₀

Jingcheng Tong, Detroit, Michigan, USA

Abstract. In this paper a characteristic property of the separation axiom R_0 is established, which shows the symmetry of R_0 in another sense; a new separation axiom R_T is introduced, it is strictly weaker than R_0 and stronger than all the axioms given by D. N. Misra and K. K. Dube [7].

1. Introduction. The separation axiom R_0 was introduced by N. A. Shanin [10]: A topological space (X, τ) is R_0 iff for each $U \in \tau$, $x \in U$ implies $\overline{\{x\}} \subset U$. Many authors have studied the separation axiom R_0 (cf. [1 - 9]). Several characterizations were given in [4], [5], [8]. A few separation axioms weaker then R_0 were given in [7]. In this paper, we give another characterization of R_0 , and a new separation axiom R_T , which is weaker then R_0 and stronger than all the axioms in [7].

2. Characterizations of R_0 . Let X be a topological space, $x \in X$. Let $\{x\}$ denote the intersection of all open sets containing $x, \overline{\{x\}}$ be the closure of $\{x\}$. The following Lemma 1 is Theorem 2.2 (b) in [5], Lemma 2 is a special case of Theorem 2.2 (c).

LEMMA 1. A topological space X is R_0 iff $\overline{\{x\}} \subset \{\hat{x}\}$ for all $x \in X$.

LEMMA 2. A topological space X is R_0 iff $\overline{\{x\}} = \{\hat{x}\}$ for all $x \in X$.

Since $\{x\}$ is the intersection of all closed sets containing x, Lemma 2 suggests a natural definition of R_0 .

Definition 1. A topological space X is R_0 iff for all $x \in X$, the intersection of all open sets containing x coincides with the intersection of all closed sets containing x.

Lemma 1 and the following Theorem 1 show the symmetry of R_0 in another sense.

THEOREM 1. In a topological space X, if for each $x \in X$, we have $\overline{\{x\}} \supset \{\hat{x}\}$, then X is R_0 .

Mathematics subject classifications (1980): Primary 54D10. Key words and phrases: Separation axioms R_0 , R_{ys} , R_y , R_D , R_{UD} . *Proof.* If $y \in \overline{\{x\}}$, then $x \in \{\hat{y}\} \subset \overline{\{y\}}$, hence X is symmetric, X is R_0 .

3. The separation axiom $R_{\rm T}$. There are four separation axioms weaker than R_0 in [7]: R_{ys} , R_y , R_D , R_{UD} . It has been proved that $R_{ys} \Rightarrow R_y \Rightarrow R_{UD}$, $R_D \Rightarrow R_{UD}$. We write the definitions of R_{ys} and R_D in the following.

Definition 2. A topological space X is R_{ys} iff for $x, y \in X, \overline{\{x\}} \neq \overline{\{y\}}$ implies $\overline{\{x\}} \cap \overline{\{y\}} = \emptyset, \{x\}$ or $\{y\}$.

Definition 3. A topological space X is R_D iff for $x \in X$, $\{x\} \cap \cap \{x\} = \{x\}$ implies that $\{x\}' = \{x\} \setminus \{x\}$ is closed.

From Lemma 1,2 and Theorem 1 we know that if X is not R_0 , then there are some x, $\{\hat{x}\} \setminus \overline{\{x\}} \neq \emptyset$, and there are some x, $\overline{\{x\}} \setminus \{\hat{x}\} \neq \emptyset$. This suggests a new separation axiom. In the following definition, a set that contains at most one point is called to be degenerate.

Definition 4. A topological space is R_T iff for each $x \in X$, both $\{\hat{x}\} \setminus \overline{\{x\}}$ and $\overline{\{x\}} \setminus \{\hat{x}\}$ are degenerate.

Obviously $R_0 \Rightarrow R_T$.

Example 1. $R_T \Rightarrow R_0$. Let $X = \{a, b, c, d\}$ with topology $\{\emptyset, \{a\}, \{a, b\}, \{c, d\}, \{a, c, d\}, X\}$. Then X is R_T but not R_0 since $\overline{\{a\}} \setminus \{\hat{a}\} = \{b\}$.

Example 2. R_D ; $R_{ys} \Rightarrow R_T$. Let $X = \{a, b, c\}$ with topology $\{\emptyset, \{a\}, \{a, b\}, \{a, c\}, X\}$. Then X is R_D and R_{ys} , but X is not R_T since $\overline{\{a\}} = X$ and $\{a\} = \{a\}$.

Example 3. $T_0 \Rightarrow R_T$. Let $X = \{a, b, c\}$ with topology $\{\emptyset, \{a\}, \{a, b\}, X\}$. Then X is T_0 but not R_T since $\overline{\{a\}} = X$ and $\{\hat{a}\} = \{a\}$.

THEOREM 2. $R_T \Rightarrow R_D$.

Proof. If X is R_T , and denote $\langle x \rangle = \{\overline{x}\} \cap \{\widehat{x}\}$, then $\{\overline{x}\} = \langle x \rangle \cup \cup D$, $\{\widehat{x}\} = \langle x \rangle \cup E$, where D, E are degenerate sets and $D \notin \{\widehat{x}\}$, $E \notin \{\overline{x}\}$. If $\langle x \rangle = \{x\}$, then $\{\overline{x}\} = \{x\} \cup D$, $\{\widehat{x}\} = \{x\} \cup E$. We prove that $\{\overline{x}\}' = \{\overline{x}\} \setminus \{x\} = D$ is a closed set. Let U be an open set containing $\{\widehat{x}\}$. Then $X \setminus U$ is a closed set, and $(X \setminus U) \cap \{\overline{x}\} = D$ or \emptyset . If $(X \setminus U) \cap \{\overline{x}\} = D$, then D is the intersection of two closed sets hence is also closed. If $(X \setminus U) \cap \{\overline{x}\} = \emptyset$, then $\{\overline{x}\} \subset U$, $D \subset U$. Since $D \notin \{\widehat{x}\}$, there is an open set V such that $x \in V$ and $D \notin V$. Then $\{\overline{x}\} \cap (X \setminus V) = D$ is a closed set. Therefore $\{x\}'$ is closed whenever $\langle x \rangle = \{x\}$, X is R_D .

THEOREM 3. $R_T \Rightarrow R_{ys}$.

Proof. Let X be R_T and $x, y \in X$. If $\{\overline{x}\} \neq \{\overline{y}\}$ and there is an $a \in X$ such that $a \neq x, a \neq y$ but $a \in \{\overline{x}\} \cap \{\overline{y}\}$, then $a \in \{\overline{x}\}, a \in \{\overline{y}\}$ hence $x \in \{\widehat{a}\}, y \in \{\widehat{a}\}$. Since $\{\widehat{a}\} = \langle a \rangle \cup E$, where E is a degenerate set and $E \not\in \{\overline{a}\}$, thereare following four possible cases for $x \in \{\widehat{a}\}, y \in \{\widehat{a}\}$:

(i) $x \in \langle a \rangle$ and $y \in \langle a \rangle$. We have $x \in \overline{\{a\}}$, $y \in \overline{\{a\}}$, but $a \in \overline{\{x\}}$, $a \in \overline{\{y\}}$, hence $\overline{\{x\}} = \overline{\{y\}} = \overline{\{a\}}$, impossible.

(ii) $\{x\} = E$ and $y \in \langle a \rangle$. We have $x \notin \overline{\{a\}}$ and $y \in \overline{\{a\}}$. Since $a \in \overline{\{y\}}$, we have $\overline{\{y\}} = \overline{\{a\}}$. There are two cases to discuss about the relationship between y and $\overline{\{x\}}$. (1) $y \in \overline{\{x\}}$. Then $\overline{\{a\}} = \overline{\{y\}}$. Since $x \notin \overline{\{a\}}$, $x \in X \setminus \overline{\{a\}}$, where $X \setminus \overline{\{a\}}$ is open, $\{x\} \in X \setminus \overline{\{a\}}$, $\overline{\{x\}} \setminus \{x\} \supset \overline{\{a\}} \supset \{y, a\}$, hence $\overline{\{x\}} \setminus \{x\}$ is not a degenerate set, a contradiction to the fact that X is R_T . (2) $y \notin \overline{\{x\}}$. Since $y \in \overline{\{a\}}$ and $a \in \overline{\{x\}}$, we have $y \in \overline{\{x\}}$, a contradiction.

(iii) $x \in \langle a \rangle$ and $\{y\} = E$. Similar to Case (ii).

(iv) $\{x\} = \{y\} = E$. We have $\overline{\{x\}} = \overline{\{y\}}$, impossible.

Therefore if $\overline{\{x\}} \neq \overline{\{y\}}$, we have $\overline{\{x\}} \cap \overline{\{y\}} = \emptyset$, $\{x\}$ or $\{y\}$, X is R_{ys} . Acknowledgement. The author thanks the referee for his

Acknowledgement. The author thanks the referee for his valuable help.

REFERENCES:

- K. Csázár, Untersuchungen über Trennungsaxiome, Publ. Math. 14 (1967), 353-364.
- [2] _____, New results on separation axioms, Proceedings of the International Symposium on Topology and Its Applications, Beograd 1969, 118–120.
- [3] _____, On F. Riesz' separation axiom, Topics in Topology edited by A. Csázár, Colloquia Matematica Societatis Janos Bolyai 8, North Holland 1972, 173-180.
- [4] A. S. Davis, Indexed systems of neighborhoods for general topological spaces, Amer. Math. Monthly 68 (1961), 886--893.
- [5] K. K. Dube, A note on R₀-topological spaces, Mat. Vesnik 11 (26) (1974), 203----208.
- [6] M. W. Lodato, On topologically induced generalized proximity relations, Proc. Amer. Math. Soc. 15 (1964), 417-422.
- [7] D. N. Misra and K. K. Dube, Some axioms weaker than the R₀-axiom. Glasnik Mat. Ser. III 8 (1973), 145-147.
- [8] K. Morita, On the simple extension of a space with respect to a uniformity I, Proc. Japan Acad. 27 (1951), 65-72.
- [9] S. A. Naimpally, On R₀-topological spaces, Ann. Univ. Sci. Budapest Eötvös, Sect. Math. 10 (1967), 53-64.

[10] S. A. Shanin, On separation in topological space, Doklady Akad. Nauk. USSR 38 (1943), 110-113.

(Received November 6, 1981) (Revised April 16, 1982) Department of Mathematics Wayne State University Detroit, Michigan 48202 and Institute of Mathematics Academia Sinica Peking, China

O AKSIOMU SEPARACIJE R₀

Jingcheng Tong, Detroit, Michigan, SAD

Sadržaj

U članku je nađeno karakteristično svojstvo aksioma separacije R_0 . Nadalje je uveden novi aksiom separacije R_T koji je slabijio d R_0 i jači od svih aksioma uvedenih u referenciji [7].