ON H-SMOOTH AND H-CONVEX SETS IN LINEAR SPACES

Z. Gajda, Katowice, Poland

Abstract. In this paper the properties of H-smooth and H-convex sets are investigated. It is shown that any H-convex set is convex. The centric, balanced and convex hulls of an H-smooth set, as well as its radial frontier are studied. A necessary and sufficient condition is given for an H-convex set to be strictly convex.

1. Let X denote a linear space over the field of all real or complex numbers.

If $M \subset X$ is an absorbent set, then the functional $p_M : X \to \mathbf{R}$ defined by

$$p_M(x) := \inf \{ a > 0 : x \in aM \}, x \in X$$

is called the Minkowski functional of M.

The notion of H-smooth and H-convex set in a linear space was introduced by T. Precupanu in [3]. Such sets are of interest because the Minkowski functional p_M corresponding to an absorbent and H-smooth or H-convex set $M \subset X$ is a Hilbertian semi-norm, that is a semi-norm which satisfies the parallelogram law:

$$p_M (x + y)^2 + p_M (x - y)^2 = 2 p_M (x)^2 + 2 p_M (y)^2, x, y \in X$$

(see [2] and [3]).

We modify slightly the definition of an H-smooth set in comparison with those occurring in [1] and [2].

Definition 1. A non-empty subset M of a linear space X is called H-smooth if and only if for any $a, \beta \in \mathbf{R}, a > 0, \beta > 0$ and each $x \in aM, y \in \beta M$ there exist $a_0, \beta_0 \in \mathbf{R}, a_0 \ge 0, \beta_0 \ge 0$ such that

$$a_0^2 + \beta_0^2 \le 2 \left(a^2 + \beta^2 \right); \tag{1}$$

$$x + y \in \alpha_0 M; \tag{2}$$

$$x - y \in \beta_0 M. \tag{3}$$

Mathematics subject classifications (1980): Primary 52 A 05; Secondary 46 C 05. Key words and phrases: Linear space, H-smooth set, H-convex set, centric set, balanced set, convex set, centric, balanced and convex hull of a set, strictly convex set, strictly H-convex set, Minkowski functional, Hilbertian semi-norm.

The conditions of the definition just proposed are easier to check in concrete cases. We shall prove that our definition is actually equivalent to the one in [1]. This fact is useful in the proofs of some theorems concerning properties of H-smooth sets.

LEMMA 1. Let $M \subset X$ be an H-smooth set. Then for any $x \in M$ there exists a $\lambda \in (0, 1]$ such that $-x \in \lambda M$.

Proof. Let us fix an $x \in M$. If x = 0, we can put $\lambda = 1$. Suppose that $x \neq 0$. We write $a := \inf \{\lambda > 0 : x \in \lambda M\}$. Since $x \in M$, we have a < 1. There exists a sequence $(a_n)_{n \in \mathbb{N}}$ of positive numbers such that $a_n \to a$ and $x \in a_n M$ for each $n \in \mathbb{N}$. Put $\beta_n := 2a_n$. Then $2x \in \beta_n M$ for $n \in \mathbb{N}$. From the H-smoothness of the set M it follows that for each $n \in \mathbb{N}$ there exist $a_{0,n} > 0$ and $\beta_{0,n} > 0$ fulfilling the following conditions:

$$a_{0,n}^2 + \beta_{0,n}^2 \leq 2 \left(a_n^2 + \beta_n^2 \right) = 10 \, a_n^2; \tag{4}$$

$$3x = x + 2x \in a_{0,n} M; \tag{5}$$

$$-x = x - 2x \in \beta_{0,n} M. \tag{6}$$

If it were $a_{0,n} = 0$ or $\beta_{0,n} = 0$, we would have x = 0, opposite to our hypothesis. So we have $a_{0,n} > 0$ and $\beta_{0,n} > 0$. Hence and from (5) it follows that $a_{0,n} > 3a$. In view of (4) we obtain

$$\beta_{0,n}^2 \le 10 a_n^2 - a_{0,n}^2 \le 10 a_n^2 - 9a^2 \text{ for } n \in \mathbb{N},$$

that is

$$\beta_{0,n} \leq \sqrt{10 a_n^2 - 9a^2}$$
, for each $n \in \mathbb{N}$.

Letting now *n* tend to infinity we deduce that $\liminf \beta_{0,n} \le a$. Hence and from (6):

$$\inf \left\{ \lambda > 0 : -x \in \lambda M \right\} < \alpha < 1.$$

If a < 1, we have $\inf \{\lambda > 0 : -x \in \lambda M\} < 1$. In such a case there exists an $\lambda \in (0, 1)$ for which $-x \in \lambda M$.

Suppose now that a = 1. Since $x \in M$, $2x \in 2M$, it follows from the H-smoothness of the set M that there exist numbers $a_0 \ge 0$ and $\beta_0 \ge 0$ fulfilling the conditions:

$$3x = x + 2x \in a_0 M; \tag{7}$$

$$-x = x - 2x \in \beta_0 M; \tag{8}$$

$$a_0^2 + \beta_0^2 \le 2(1^2 + 2^2) = 10$$

Since $x \neq 0$ and conditions (7) and (8) hold, we deduce that $a_0 > 0$ and $\beta_0 > 0$. Hence, by (7) we get $a_0 > 3a = 3$. Consequently,

 $\beta_0^2 < 10 - \alpha_0^2 < 10 - 9 = 1$ whence $\beta_0 < 1$ and $-x \in \beta_0 M$. This ends the proof of our lemma.

121

Example 1. An H-smooth set need not be symmetric. For, take $x_0 \in (-1, 1) \setminus \{0\}$, $M := (-1, 1) \setminus \{x_0\}$. If a > 0, $\beta > 0$, $x \in aM$, $y \in \beta M$, then |x| < a, $|y| < \beta$. Hence

$$|x + y|^2 + |x - y|^2 = 2(|x|^2 + |y|^2) < 2(a^2 + \beta^2).$$

One can find numbers $a_0 > 0$, $\beta_0 > 0$ such that $|x + y| < a_0$, $|x - y| < \beta_0$, $a_0^2 + \beta_0^2 < 2(a^2 + \beta^2)$ and $x + y \neq a_0 x_0$, $x - y \neq \beta_0 x_0$. Thus $x + y \in a_0 M$, $x - y \in \beta_0 M$, which shows that M is an H-smooth set. If $x_0 \neq 0$, the set M is not symmetric.

PROPOSITION 1. A non-empty set $M \subset X$ is H-smooth if and only if for each $a \ge 0, \beta \ge 0$ and each $x \in aM$, $y \in \beta M$ there exist numbers $a_0 \ge 0, \beta_0 \ge 0$ fulfilling conditions (1), (2) and (3).

Proof. We have to prove necessity only. Suppose that M is an H-smooth set and take $\alpha > 0$, $\beta > 0$, $x \in \alpha M$, $y \in \beta M$. Let us consider the following four cases:

1. $\alpha > 0$ and $\beta > 0$. Then the existence of numbers $\alpha_0 > 0$, $\beta_0 > 0$ with properties (1), (2) and (3) follows from the definition of H-smoothness.

2. $\alpha = 0$ and $\beta = 0$. In such a case x = y = 0 and we can put $\alpha_0 = \beta_0 = 0$.

3. $a > 0, \beta = 0$. Then y = 0 and putting $a_0 = \beta_0 := a$ we obtain $x + y = x \in a_0 M$, $x - y = x \in \beta_0 M$, $a_0^2 + \beta_0^2 = 2 a^2 = 2 (a^2 + \beta^2)$.

4. $a = 0, \beta > 0$. Then x = 0 and in view of Lemma 1 there exists $\beta_0 \in (0, \beta]$ such that $-y \in \beta_0 M$. Setting $a_0 := \beta$ we have $x + y = y \in a_0 M$, $x - y = -y \in \beta_0 M$, $a_0^2 + \beta_0^2 \le 2\beta^2 = 2(a^2 + \beta^2)$. The above cases exhaust all the possibilities and the proof is completed.

Remark 1. Zero need not belong to an H-smooth set. The set $M := (-1, 1) \setminus \{0\}$ may be used as an example.

PROPOSITION 2. If $M \subset X$ is an H-smooth set, then the set $M_0 := \{0\} \cup M$ is H-smooth.

Proof. Let us take a > 0, $\beta > 0$, $x \in a M_0$, $y \in \beta M_0$. Then the following cases are possible:

1. $x \in aM$, $y \in \beta M$;

2.
$$x = 0 \in 0 \cdot M, y \in \beta M;$$

3.
$$x \in aM$$
, $y = 0 \in 0 \cdot M$;

4. $x = 0 \in 0 \cdot M, y = 0 \in 0 \cdot M.$

On account of Proposition 1 in each of the above cases there exist $a_0 > 0$, $\beta_0 > 0$ such that

 $a_0^2 + \beta_0^2 < 2(\alpha^2 + \beta^2), x + y \in a_0 M \subset a_0 M_0, x - y \in \beta_0 M \subset \beta_0 M_0$ which proves that M_0 is an H-smooth set.

2. Definition 2. An H-smooth and balanced subset of a linear space is said to be H-convex.

In [1] we find the definition of the so called strictly H-convex set. We shall show that this definition does not distinguish any new class of sets. Every H-convex set satisfies the condition which appears in the definition. In the present paper the notion "strictly H-convex set" will be used in another sense.

THEOREM 1. If $M \subset X$ is an H-smooth and absorbent set, then for any $a \ge 0$, $\beta \ge 0$ and any $x \in a$ M, $y \in \beta M$ there exist $a_0 \ge 0$, $\beta_0 \ge 0$ fulfilling conditions (1), (2), (3) and the following condition:

$$\max(\alpha_0,\beta_0) < \alpha + \beta. \tag{9}$$

Proof. The Minkowski functional p_M of the set M is a Hilbertian semi-norm. If $a \ge 0$, $\beta \ge 0$, $x \in aM$, $y \in \beta M$, then $p_M(x) \le a$ and $p_M(y) \le \beta$. Suppose first that $p_M(x) \le a$ or $p_M(y) \le \beta$. In such a case we have

 $p_M (x + y)^2 + p_M (x - y)^2 = 2 (p_M (x)^2 + p_M (y)^2) < 2 (\alpha^2 + \beta^2)$

and

$$p_M(x + y) \leq p_M(x) + p_M(y) < \alpha + \beta,$$

$$p_M(x - y) \leq p_M(x) + p_M(-y) < \alpha + \beta.$$

Then we can find numbers $a_1 > 0$ and $\beta_1 > 0$ such that

 $p_M(x+y) < a_1 < a + \beta, p_M(x-y) < \beta_1 < a + \beta$

and

$$a_1^2 + \beta_1^2 < 2 (a^2 + \beta^2).$$

Hence it follows that there exist numbers $a_0 > 0$, $\beta_0 > 0$, $a_0 < a_1$, $\beta_0 < \beta_1$ for which $x + y \in a_0 M$ and $x - y \in \beta_0 M$. Moreover,

$$a_0^2 + \beta_0^2 < 2 (a^2 + \beta^2), \ a_0 < a + \beta \ \text{ and } \ \beta_0 < a + \beta.$$

It remains to consider the case where $p_M(x) = a$ and $p_M(y) = \beta$. From the H-smoothness of the set M it follows that there exist $a_1 \ge 0$, $\beta_1 \ge 0$, such that

$$a_{1}^{2} + \beta_{1}^{2} < 2(a^{2} + \beta^{2}),$$

$$x + y \in a_{1} M, \ x - y \in \beta_{1} M.$$
(10)

Put $a_0 := p_M (x + y)$, $\beta_0 := p_M (x - y)$. From the definition of the Minkowski functional we get $a_0 < a_1$ and $\beta_0 < \beta_1$. If it were $a_0 < a_1$ or $\beta_0 < \beta_1$, we would have

$$a_1^2 + \beta_1^2 > a_0^2 + \beta_0^2 = p_M (x + y)^2 + p_M (x - y)^2 =$$

= 2 (p_M (x)^2 + p_M (y)^2) = 2 (a^2 + \beta^2),

contrary to (10). Thus $a_0 = a_1, \beta_0 = \beta_1, x + y \in a_0 M$ and $x - y \in \beta_0 M$. Moreover,

$$a_{0}^{2} + \beta_{0}^{2} = 2(a^{2} + \beta^{2}) \text{ and}$$

$$a_{0} = p_{M}(x + y) < p_{M}(x) + p_{M}(y) = a + \beta,$$

$$\beta_{0} = p_{M}(x - y) < p_{M}(x) + p_{M}(-y) = a + \beta.$$

This completes our proof.

The previous theorem remains true in the case where $M \subset X$ is an arbitrary H-smooth set (not necessarily absorbent). Namely, we have the following:

THEOREM 2. If $M \subset X$ is an H-smooth set, then for any $a \ge 0$, $\beta \ge 0$ and any $x \in a$ M, $y \in \beta$ M there exist numbers $a_0 \ge 0$, $\beta_0 \ge 0$ such that conditions (1), (2), (3) and (9) are fulfilled.

Proof. Put $M_0 := \{0\} \cup M$. On account of Proposition 2, M_0 is an H-smooth set. Let Y be the set of all points $x \in X$ for which there exists $\alpha > 0$ such that $x \in \alpha M_0$. Since M_0 is an H-smooth set and $0 \in M$, in view of Lemma 1, one can easily check that Y is a linear subspace of the space X in which M_0 is an absorbent set. From Theorem 1 it follows that for any $\alpha > 0$, $\beta > 0$, $x \in \alpha M$, $y \in \beta M$ there exist $\alpha_1 > 0$, $\beta_1 > 0$ fulfilling condition (10) and

$$x + y \in a_1 M_0, x - y \in \beta_1 M_0, \max(a_1, \beta_1) \leq a + \beta.$$

Put

$$a_{0} := \begin{cases} a_{1}, \text{ for } x + y \in a_{1} M \\ 0, \text{ for } x + y \notin a_{1} M \end{cases} \text{ (i. e. } x + y = 0)$$

$$\beta_{0} := \begin{cases} \beta_{1}, \text{ for } x - y \in \beta_{1} M \\ 0, \text{ for } x - y \notin \beta_{1} M \end{cases} \text{ (i. e. } x - y = 0).$$

The numbers $a_0 > 0$, $\beta_0 > 0$ fulfil conditions (1), (2), (3) and (9).

The example of an H-convex but not convex set, which was given by E. Kramar in [1], and Muntean and Precupanu in [2], is improper. Namely, we have the following

THEOREM 3. Every H-convex set $M \subset X$ is convex.

123

Proof. Take $x, y \in M$ and $t \in [0, 1]$. Then $t x \in tM$ and $(1 - t) y \in (1 - t) M$. From Theorem 2 it follows, in particular, that there exists an $a_0 \ge 0$ such that $tx + (1 - t)y \in a_0 M$ and $a_0 \le t + (1 - t) = 1$. Since M is balanced, we have $tx + (1 - t) y \in M$. This ends the proof.

In the proofs of Theorems 1 and 2 we have made use of the fact that the Minkowski functional of an H-smooth set is a Hilbertian seminorm. Now we shall give another quite elementary proof of the convexity of an H-convex set. Having such a proof one is able to obtain immediately the subadditivity of the Minkowski functional corresponding to an absorbent H-convex set. Now, we proceed with the

Proof. Let $M \subset X$ be an H-convex set. If $x, y \in M$, $t \in (0, 1)$, then $tx \in tM$, $(1 - t)y \in (1 - t)M$. From the H-convexity of the set M it follows that there exists an $a_0 \ge 0$ such that

$$tx + (1 - t) y \in a_0 M$$
 and $a_0^2 \le 2(t^2 + (1 - t)^2)$.

Since the set M is balanced we obtain

$$tx + (1-t) y \in \sqrt{2(t^2 + (1-t)^2)} M.$$

Putting $t = \frac{1}{2}$ we have $\frac{x+y}{2} \in M$. By induction one can prove that $\frac{k}{2^n}x + \left(1 - \frac{k}{2^n}\right)y \in M$ for any $k, n \in \mathbb{N}, k < 2^n$. Fix $x, y \in M, t \in (0, 1)$, put z = tx + (1 - t)y and take arbitrary numbers $r, s \in (0, 1)$ such that r < t < s and $t = \frac{r+s}{2}$.

Since the set $A := \left\{ \frac{k}{2^n} \in (0, 1) : k, n \in \mathbb{N}, k < 2^n \right\}$ is dense in the interval (0, 1) we can choose two sequences $(r_n)_{n \in \mathbb{N}}$ and $(s_n)_{n \in \mathbb{N}}$ such that $r_n, s_n \in A, r_n \leq r, s \leq s_n$ for each $n \in \mathbb{N}$ and $r_n \to r, s_n \to s$. Defining $t_n := \frac{s_n - t}{s_n - r_n}$ we have $t_n \in (0, 1), t = t_n r_n + (1 - t_n) s_n$ for each $n \in \mathbb{N}$ and $t_n \to \frac{s - t}{s - r} = \frac{1}{2}$. Hence:

$$z = tx + (1 - t) y = [t_n r_n + (1 - t_n) s_n]x + [1 - t_n r_n - (1 - t_n) s_n] y = t_n [r_n x + (1 - r_n) y] + (1 - t_n) [s_n x + (1 - s_n) y].$$

Since $r_n x + (1 - r_n) y \in M$ and $s_n x + (1 - s_n) y \in M$ the relation $z \in \sqrt{2(t_n^2 + (1 - t_n)^2)} M$ holds for each $n \in \mathbb{N}$. As a consequence of the fact that $\sqrt{2(t_n^2 + (1 - t_n)^2)} \rightarrow 1$ we obtain inf $\{a > 0 : z \in a M\} \leq 1$, whence $\lambda z \in M$ follows for each $\lambda \in [0, 1)$ because M

is a balanced set. We define $T(x, y) := \{u \in X : u = ax + \beta y, a, \beta \in [0, 1), a + \beta < 1\}$. Obviously T(x, y) = T(y, x) and

$$T(x, y) = \{ u \in X : u = \lambda (tx + (1 - t) y), \lambda \in [0, 1), t \in [0, 1] \}.$$

Hence $T(x, y) \subset M$ for any $x, y \in M$.

Now we are going to prove that for any $x, y \in M$ we have

$$(x, y) := \{tx + (1 - t) y \in X : t \in (0, 1)\} \subset M.$$

If x and y are linearly dependent over **R**, then the fact that M is a balanced set implies $(x, y) \subset M$. Suppose further on that x and y are linearly independent over **R**. Put

$$P := \{ u \in X : u = ax + by, a, b \in \mathbf{R}, a + b < 1 \},$$

$$S := \{ u \in X : u = ax + by, a, b \in \mathbf{R}, a + b > 1 \},$$

 $P \cap S = \emptyset$, $P \cup S = \text{Lin}_{R} \{x, y\}$ and consider two cases.

Case 1. There exists a $v \in S \cap M$. We shall show that $(x, y) \subset C T(x, y) \cup T(y, v)$. There exist $a, b \in \mathbb{R}$ such that a + b > 1 and v = ax + by. At least one of the numbers a and b has to be positive. Suppose e. g. that a > 0.

For $t \in \left(0, \frac{a}{a+b}\right]$ we define $a := \frac{t}{a}, \quad \beta := \frac{a-t(a+b)}{a}$. Then $a \in (0, 1), \quad \beta \in [0, 1), \quad a+\beta < a(a+b)+\beta = 1$,

$$t = aa, 1 - t = ab + \beta$$

and

$$tx + (1 - t) y = aax + (ab + \beta) y = a (ax + by) + \beta y =$$
$$= av + \beta y \in T (v, y).$$

Hence it follows that $(x, y) \subset T(v, y)$ provided $b \leq 0$.

If
$$b > 0$$
, then for $t \in \left[\frac{a}{a+b}, 1\right)$ we define

$$a := \frac{t(a+b)-a}{a}, \quad \beta := \frac{1-t}{b}.$$
Then $a \in [0, 1), \quad \beta \in (0, 1), \quad a \neq \beta < a \neq \beta (a \neq b) = 1, \quad t = a \neq b$

Then $a \in [0, 1)$, $\beta \in (0, 1)$, $a + \beta < a + \beta (a + b) = 1$, $t = a + \beta a$, $1 - t = \beta b$ and

$$tx + (1 - t) y = (\alpha + \beta a) x + \beta by = ax + \beta (ax + by) =$$
$$= ax + \beta v \in T (x, v).$$

Consequently $(x, y) \subset T(v, y) \cup T(x, v)$ which ends the proof of the inclusion announced. Since $T(x, v) \subset M$ and $T(v, y) \subset M$ we obtain $(x, y) \subset M$.

Case 2. $S \cap M = \emptyset$. Take $\alpha > 0$, $\beta > 0$, $\alpha > \beta$. Then $ax \in aM$, $\beta y \in \beta M$ and from the H-convexity of M it follows that there exist $a_0 > 0$, $\beta_0 > 0$ such that $a_0^2 + \beta_0^2 < 2(\alpha^2 + \beta^2)$ and $ax + \beta y \in a_0 M$, $ax - \beta y \in \beta_0 M$. Since $M \cap \text{Lin}_R \{x, y\} \subset P$ we have:

$$ax + \beta y = a_0 (ax + by)$$
 for some $a, b \in \mathbb{R}$, $a + b < 1$,
 $ax - \beta y = \beta_0 (cx + dy)$ for some $c, d \in \mathbb{R}$, $c + d < 1$.

From the linear independence (over **R**) of the vectors x and y we obtain $a = a_0 a$, $\beta = \beta_0 b$, $a = \beta_0 c$, $-\beta = \beta_0 d$. Hence

$$0 < a + \beta = a_0 (a + b) \leq a_0, \ 0 \leq a - \beta = \beta_0 (c + d) \leq \beta_0.$$

If it were $a + \beta < a_0$ or $a - \beta < \beta_0$, we would have

$$a_0^2 + \beta_0^2 > (a + \beta)^2 + (a - \beta)^2 = 2(a^2 + \beta^2),$$

which leads to a contradiciton. So, we have $a_0 = a + \beta$, $\beta_0 = a - \beta$ and, in particular, $ax + \beta y \in (a + \beta) M$, that is

$$\frac{ax+\beta y}{a+\beta}\in M \text{ for } a>0, \ \beta>0, \ a>\beta.$$

Interchanging the roles of x and y we obtain the analogous relation for a > 0, $\beta > 0$, $a < \beta$. Hence, for $t \in (0, 1)$, we have $tx + (1 - t) y \in M$. This ends the proof.

3. Definition 3. The set $M \subset X$ is called centric if $\lambda M \subset M$ for each $\lambda \in [0, 1]$.

Any centric and symmetric set is balanced.

PROPOSITION 3. If $M \subset X$ is an H-smooth and centric set, then M is H-convex.

Proof. We shall prove that M is symmetric. Take an $x \in M$. On account of Lemma 1, there exists a $\lambda \in (0, 1]$ such that $-x \in \lambda M \subset \subset M$, which ends the proof.

THEOREM 4. The set $M \subset X$ is H-convex if and only if it is H-smooth and convex.

Proof. In view of Theorem 3 one has only to prove that the condition is sufficient. For, suppose that M is an H-smooth and convex set and take an arbitrary $x \in M$. From Lemma 1 it follows, in particular, that $-x \in \lambda M$ for some $\lambda > 0$. Hence $-\frac{1}{\lambda} x \in M$ and from the convexity of the set M we obtain

$$\left[-\frac{1}{\lambda}x,x\right]:=\left\{t\left(-\frac{1}{\lambda}x\right)+(1-t)x\in X:t\in[0,1]\right\}\subset M$$

Consequently, $0 \in M$. So we have $\lambda x = \lambda x + (1 - \lambda) \cdot 0 \in M$ for each $x \in M$, $\lambda \in [0, 1]$. This shows that the set M is centric and we can use the previous proposition to complete the proof.

Now we shall investigate some connections between an H-smooth set $M \subset X$ and its centric, balanced and convex hulls i. e. the smallest sets containing M which are centric, balanced or convex, respectively. These results are complementary to those presented in [1] and [2]. A centric hull of the set M will be denoted by Cn M, whereas the symbols Bn M and Conv M will stand for its balanced and convex hull, respectively.

LEMMA 2. The centric hull of an H-smooth set is H-smooth.

Proof. If a > 0, $\beta > 0$, $x \in a \operatorname{Cn} M$, $y \in \beta \operatorname{Cn} M$ then, according to definition of a centric hull, there exist $\lambda, \mu \in [0, 1]$ such that $x \in \epsilon a\lambda M$, $y \in \beta \mu M$. We have $a\lambda > 0$, $\beta \mu > 0$ and from Proposition 1 it follows that there exist numbers $a_0 > 0$, $\beta_0 > 0$, fulfilling the conditions

$$a_0^2 + \beta_0^2 \le 2 (a\lambda)^2 + 2 (\beta\mu)^2 \le 2a^2 + 2\beta^2$$
,

 $x + y \in a_0 M \subset a_0 \operatorname{Cn} M, \ x - y \in \beta_0 M \subset \beta_0 \operatorname{Cn} M.$

Hence Cn M is an H-smooth set.

From Lemma 2 and Proposition 3 it follows:

THEOREM 5. If $M \subset X$ is an H-smooth set, then Cn M = Bn M. In particular, the balanced hull of an H-smooth set is an H-convex set.

THEOREM 6. If $M \subset X$ is an H-smooth set, then Conv M == Bn M. In particular, the convex hull of an H-smooth set is an H-convex set.

Proof. The set Bn M = Cn M is H-convex and so it is convex. Hence Conv $M \subset Bn M = Cn M$. If $x \in M$ then, in view of Lemma 1, we have $\frac{-x}{\lambda} \in M$ for some $\lambda > 0$. Thus $\left[\frac{-x}{\lambda}, x\right] \subset Conv M$ and, in particular, $0 \in Conv M$.

If $x \in Cn M$, then there exist $\lambda \in [0, 1]$ and $y \in M$ such that $x = \lambda y = \lambda y + (1 - \lambda) \cdot 0 \in Conv M$. Consequently, $Cn M \subset Conv M$ whence Conv M = Cn M = Bn M.

Following T. Precupanu, by the radial frontier of a set $M \subset X$ we mean the collection of all points $x \in X \setminus \{0\}$ such that $(x, \rightarrow) \cap \cap M = \emptyset$ and $[x_1, x] \cap M \neq \emptyset$ for each $x_1 \in (0, x)$, where (0, x) := $= \{t \ x \in X : 0 < t < 1\}, \ [x_1, x] := \{t \ x_1 + (1-t) \ x \in X : 0 < t < 1\}, \ (x, \rightarrow) := \{tx \in X : t > 1\}.$

The radial frontier of M will be denoted by Fr M.

LEMMA 3. For any $M \subset X$ equality Fr M = Fr Cn M holds.

Proof. Let us first fix an $x \in \operatorname{Fr} M$. Then $x \neq 0$ and $(x, \to) \cap \cap M = \emptyset$. If it were $(x, \to) \cap \operatorname{Cn} M \neq \emptyset$, it would exist a t > 1 such that $tx \in \operatorname{Cn} M$. Then $tx \in \lambda M$ for some $\lambda \in (0, 1)$ and so we would have $\frac{t}{\lambda} > 1$ and $\frac{t}{\lambda} x \in M$, contrary to our hypothesis. Consequently, $(x, \to) \cap \operatorname{Cn} M = \emptyset$. For any $x_1 \in (0, x)$, we have $[x_1, x] \cap \cap M \neq \emptyset$. Since $M \subset \operatorname{Cn} M$, we get $[x_1, x] \cap \operatorname{Cn} M \neq \emptyset$; hence $x \in \operatorname{Fr} \operatorname{Cn} M$. Now, suppose that $x \in \operatorname{Fr} \operatorname{Cn} M$. Then $x \neq 0$ and $(x, \to) \cap M = \emptyset$, since $M \subset \operatorname{Cn} M$. For any $x_1 \in (0, x)$ one has $[x_1, x] \cap \operatorname{Cn} M \neq \emptyset$. If $x_1 = t_1 x, t_1 \in (0, 1)$ and $tx \in \operatorname{Cn} M$ for some $t \in [t_1, 1]$, then there exists a $\lambda \in (0, 1]$ such that $tx \in \lambda M$ i. e. $\frac{t}{\lambda} x \in M$. Since $(x, \to) \cap M = \emptyset$, it must be $\frac{t}{\lambda} < 1$. On the other hand, $\frac{t}{\lambda} > t > t_1$; consequently $\frac{t}{\lambda} x \in [x_1, x] \cap M$ and $x \in \operatorname{Fr} M$. This ends the proof.

From Lemma 3 and Theorems 5 and 6 it follows:

PROPOSITION 4. If $M \subset X$ is an H-smooth set, then $\operatorname{Fr} M =$ = $\operatorname{Fr} \operatorname{Bn} M = \operatorname{Fr} \operatorname{Conv} M$.

In [2] it has been proved the following lemma

LEMMA 4. If $M \subset X$ is an absorbent set, then

Fr
$$M = \{x \in X : p_M(x) = 1\}.$$

In view of the properties of the Minkowski functional one can therefore obtain

LEMMA 5. If $M \subset X$ is an absorbent and centric set, then

 $M \cup \operatorname{Fr} M = \{x \in X : p_M(x) \leq 1\}$

and

$$M \setminus \operatorname{Fr} M = \{ x \in X : p_M(x) < 1 \}.$$

The authors of [2] have introduced the concept of a radially bounded set, i. e. a set $M \subset X$ with the property that for each $x \in X \setminus \{0\}$ there exists a $a_0 > 0$ such that $x \notin aM$ for $a > a_0$.

For an absorbent set $M \subset X$ the following conditions are equivaent (see [2] Lemma 2):

- (i) M is radially bounded;
- (ii) $p_M(x) = 0$ if and only if x = 0;
- (iii) $\{0\} \cup Fr M$ is an absorbent set.

Consequently, if a set $M \subset X$ is absorbent, H-convex and satisfies one of the two equivalent conditions (i) or (iii), then the Minkowski functional p_M is a Hilbertian norm. It is easy to check that the following lemma is true.

LEMMA 6. If $p: X \to R$ is a Hilbertian norm, then the sets $M_1 := \{x \in X : p(x) = 1\}$ and $M_2 := M_1 \cup \{0\}$ are H-smooth whereas $M_3 := \{x \in X : p(x) \leq 1\}$ is H-convex.

The next two theorems yield a completion of Theorem 2 from [2].

THEOREM 7. Let $M \subset X$ be an absorbent, radially bounded and H-smooth set. Then

- (a) Fr M and $\{0\} \cup$ Fr M are H-smooth sets;
- (b) if M is an H-convex set, then so are $M \cup Fr M$ and $M \setminus Fr M$;
- (c) Bn $M \cup$ Fr M and Bn $M \setminus$ Fr M are H-convex sets;
- (d) Conv $M \cup Fr M$ and Conv $M \setminus Fr M$ are H-convex sets.

Proof. The Minkowski functional of the set M is a Hilbertian norm. Assertions (a) and (b) follow immediately from Lemmas 4, 5 and 6. To prove (c) and (d) let us notice that Bn M = Conv M is an absorbent, radially bounded and H-convex set as well as Fr Conv M == Fr Bn M = Fr M. It remains to use (b).

The result below has been obtained in [2] under the additional assumption that M is a symmetric set. We will show that this assumption may be omitted.

THEOREM 8. If $M \subset X$ is an absorbent, radially bounded set and Fr M is an H-smooth set, then the Minkowski functional p_M of the set M is a Hilbertian norm.

Proof. The equivalence of conditions (i) and (ii) implies that $\{0\} \cup \operatorname{Fr} M$ is an absorbent set and, on account of Proposition 2, this union is H-smooth. Thus, the Minkowski functional $p_{\{0\} \cup \operatorname{Fr} M}$ is a Hilbertian semi-norm. However, $p_{\{0\} \cup \operatorname{Fr} M} = p_M$ (see [2] Lemma 3) and since M is radially bounded, we deal with a norm.

4. Definition 4. An absorbent subset M of a space X is said to be strictly convex if and only if it is convex and for any $x, y \in M$, $x \neq y$ and any $t \in (0, 1)$ there is $p_M(tx + (1 - t)y) < 1$, where p_M denotes the Minkowski functional of M.

Now we are going to give a necessary and sufficient condition for an H-convex set to be strictly convex. In [2] it has been pointed out that each absorbent, H-smooth and radially bounded set is strictly convex. There exist, however, H-convex and strictly convex sets which are not radially bounded. As an example one can take the set $M := \{(x_1, x_2) \in \mathbb{R}^2 : |x_1| < 1\}.$

Definition 5. An absorbent set $M \subset X$ is called strictly H-convex if and only if it is balanced and for any $x, y \in M, x \neq y$ and each $a > 0, \beta > 0$ there exist numbers $a_0 > 0, \beta_0 > 0$ fulfilling the conditions:

$$a_0^2 + \beta_0^2 \le 2(\alpha^2 + \beta^2);$$
 (1)

$$ax + \beta y \in a_0 M; \tag{11}$$

$$ax - \beta y \in \beta_0 M; \tag{12}$$

$$\alpha_0 < \alpha + \beta. \tag{13}$$

Remark 2. Every strictly H-convex set is H-convex.

Proof. Let $M \subset X$ be a strictly H-convex set. It is sufficient to show that M is H-smooth. Take a > 0, $\beta > 0$, $x \in aM$, $y \in \beta M$. Then we have x = au, $y = \beta v$ for some $u, v \in M$. If $u \neq v$, there exist numbers $a_0 > 0$, $\beta_0 > 0$ fulfilling condition (1) and such that

$$x + y = au + \beta v \in a_0M$$
, $x - y = au - \beta v \in \beta_0M$.

If u = v, we put $a_0 := a + \beta$, $\beta_0 := |a - \beta|$ getting

$$a_0^2 + \beta_0^2 = 2 \, (a^2 + \beta^2), \; x + y = (a + \beta) \, u \in a_0 \; M,$$

 $x - y = (\alpha - \beta) u = \beta_0 \operatorname{sgn} (\alpha - \beta) u \in \beta_0 M$. Thus, our remark is proved.

THEOREM 9. Let $M \subset X$ be an absorbent set. The following three conditions are equivalent:

- (a) M is a strictly H-convex set;
- (b) M is a strictly convex and H-convex set;
- (c) M is a strictly convex and H-smooth set.

Proof. $(a) \Rightarrow (b)$. On account of Remark 2 it suffices to prove that M is strictly convex. The set M, being H-convex, is convex. Take $x, y \in M, x \neq y, t \in (0, 1)$. From the strict H-convexity of the set M, setting $a := t, \beta := 1 - t$, we obtain, in particular, $tx + (1 - t)y = ax + \beta y \in a_0 M$, for some $a_0 \ge 0$ with the property $a_0 < a + \beta = 1$. Hence:

$$p_M(tx + (1 - t)y) < 1.$$

 $(b) \Rightarrow (a)$. The set M is balanced. Let us fix $x, y \in M$, $x \neq y$, $a > 0, \beta > 0$. Then $ax \in aM$, $\beta y \in \beta M$ and, according to Theorem 1, there exist numbers $a_1 \ge 0$, $\beta_0 \ge 0$ such that $a_1^2 + \beta_0^2 \le 2(a^2 + \beta^2)$, $ax + \beta y \in a_1 M$, $ax - \beta y \in \beta_0 M$ and $a_1 \le a + \beta$.

Since M is a strictly convex set the following inequality holds:

$$p_M\left(\frac{ax+\beta y}{a+\beta}\right)<1,$$

whence $p_M(ax + \beta y) < a + \beta$. If $a_1 < a + \beta$, we put $a_0 := a_1$. On the other hand, if $a_1 = a + \beta$, we can choose $a_0 > 0$ such that

 $p_M(ax + \beta y) < a_0 < a_1 = a + \beta.$

In both cases, the numbers α_0 and β_0 fulfil conditions (1), (11), (12) and (13).

The equivalence of conditions (b) and (c) is a consequence of Theorem 4.

Acknowledgement. I wish to thank Professor Roman Ger, on whose inspiration this paper has been written and who has concerned himself with my research.

REFERENCES:

- E. Kramar, H-convex sets in linear spaces, Glasnik Mat. Ser. III 14 (34) (1979), 275-281.
- [2] I. Muntean and T. Precupanu, On H-smooth sets in linear spaces, An. Sti. Univ. »Al. I. Cuza« Iasi Sect I. a Matem. 20 (1974), 311-316.
- [3] T. Precupanu, Sur le produits scalaires dans des espaces vectoriels topologiques, Rev. Roum. de Math. Par Appl. 13 (1968), 85-90.
- [4] K. Yosida, Functional analysis, Springer-Verlag, Berlin-New York-Heidelberg, 1978.

(Received July 20, 1981)

Department of Mathematics Silesian University Katowice, Poland

O H-GLATKIM I H-KONVEKSNIM SKUPOVIMA U LINEARNIM PROSTORIMA

Z. Gajda, Katowice, Poljska

Sadržaj

U radu se istražuju svojstva H-glatkih i H-konveksnih skupova. Dokazano je da je H-konveksan skup konveksan. Nadalje se proučavaju centrične, balansirane i konveksne ljuske H-glatkih skupova. Dan je nuždan i dovoljan uvjet da H-konveksan skup bude striktno konveksan.