TOTALLY SYMMETRIC n-QUASIGROUPS WHICH SATISFY THE THREE SYMMETRIES THEOREM

M. Polonijo, Zagreb

Abstract

Totally symmetric n-quasigrouips in which every product of three symmetries is a symmetry are studied in this paper. The structure of such n-quasigroup is given in the terms of an abelian group.

Let (Q, A) be a totally symmetric n-quasigroup (shortly $\bar{T} S-n-$ -quasigroup), $n>2$, i. e. an n-quasigroup in which $A\left(x_{1}^{n}\right)=x_{n+1}$ implies $A\left(x_{\varphi(1)}^{\varphi(n)}\right)=x_{\varphi(n+1)}$, for any permutation φ on $\{1,2, \ldots, n+$ $+1\}$ and all $x_{1}, x_{2}, \ldots, x_{n+1} \in Q$, [1]. A permutation $R_{a}^{t}: Q \rightarrow Q$, $R_{\mathrm{a}}^{t}(x)=A\left(a_{1}^{i-1}, x, a_{i}^{n-1}\right)$ is usually called the i-th translation in (Q, A) generated by the $(n-1)$-tuple $\mathbf{a}=\left(a_{1}, \ldots, a_{n-1}\right), i=1,2, \ldots, n$. Obviously, for a $T S$ - n-quasigroup, all i-th translations generated by the same $\mathbf{a} \in Q^{n-1}, i=1,2, \ldots, n$, coincide and we will denote them by s_{a}. Further, it is easy to show that s_{a}^{2} is the identity, i, e. $s_{\mathrm{a}}^{2}=1$. Therefore, s_{a} will be called the symmetry in (Q, A) generated by $\mathbf{a} \in Q^{n-1}$.

Let \mathscr{S} be the set of all symmetries in a $T S$ - n-quasigroup (Q, A). We denote by $S(Q)$ the group generated by \mathscr{S}, and by $S^{0}(Q)$ the subgroup of $S(Q)$ generated by the products of the even numbers of symmetries.

In this paper we investigate $T S-n$-quasigroups in which the three symmetries theorem holds, i. e. $T S_{i} n$-quasigroups satisfying the following condition:
(A) Every product of three symmetries is a symmetry.

This axiom gives a new, geometrical justification for the introduced term symmetry".

In the sequel, (Q, A) is a $T S$ - n-quasigroup satisfying (A), in short $A T S$ - n-quasigroup. The elements of Q will be called the points.

[^0]We will prove that the $A T S-n$-quasigroups have a very simple representation in terms of an abelian groun $(Q,+)$ isomorphic to $S^{0}(Q)$ (Theorems 4 and 7). In fact, any $A T S-n$-quasigroup is a C^{n+1} --system (cf [2], [3]) and vice versa (Theorem 6).

PROPOSITION 1. Let (Q, A) be an ATS-n-quasigroup. Then $S^{0}(Q)$ is an abelian group. If the identity is a symmetry, then $S^{0}(Q)=$ $=S(Q)$. If the identity is not a symmetry, then the index of $S^{0}(Q)$ in $S(Q)$ is equal 2 and the coset of $S^{0}(Q)$ is \mathscr{S}.

Proof. For any three symmetries $s_{1}, s_{2}, s_{3} \in \mathscr{F}$, the product $s_{1} s_{2} s_{3}$ is a symmetry, which implies $\left(s_{1} s_{2} s_{3}\right)^{2}=1$. Therefore $s_{1} \cdot s_{2} \cdot s_{3}=$ $=s_{3} s_{2} s_{1}$ and the commutativity of $S^{0}(Q)$ follows immediately. The remaining statements are obious from the fact that any element in $S(Q)$ is a symmetry or a product of two symmetries.

PROPOSITION 2. Let $s_{1}, s_{2}, s_{3}, s_{4} \in \mathscr{S}$ be given symmetries and $x \in Q$ a point.
a) If $s_{1}(x)=s_{2}(x)$, then $s_{1}=s_{2}$.
b) If $s_{2} s_{1}(x)=s_{4} s_{3}(x)$, then $s_{2} s_{1}=s_{4} s_{3}$.

Proof. a) For any point $y \in Q$, there is a symmetry $s \in \mathscr{S}$; for which $s(x)=y$, because (Q, A) is an n-quasigroup. Then

$$
s_{1}(y)=s_{1} s(x)=s_{1} s s_{2} s_{1}(x)=s_{2} s s_{1} s_{1}(x)=s_{2} s(x)=s_{2}(y),
$$

so that $s_{1}=s_{2}$
b) From the assumption $s_{2} s_{1}(x)=s_{4} s_{3}(x)$, we have $s \dot{s}_{2} s_{1}(x)=$ $=s s_{4} s_{3}(x)$, for any symmetry $s \in \mathscr{S}$. Since $s s_{2} s_{1}$ and $s s_{4} s_{3}$ are both symmetries, the statement a) implies $s s_{2} s_{1}=s s_{4} s_{3}$. Therefore $s_{2} s_{1}=s_{4} s_{3}$.

Definition 1. For any two $(a, b),(c, d) \in Q^{2}$ we define $(a, b) \approx$ $\approx(c, d)$ iff there is a symmetry $s \in \mathscr{S}$, such that $s(a)=d$ and $s(b)=\dot{c}$.

Without difficulties, one could prove the following proposition:
PROPOSITION 3. For any four points $a, b, c, d \in Q$ hold:
a) $(a, a) \approx(b, b)$,
b) $(a, a) \approx(b, c)$ iff $b=c$,
c) $(a, b) \approx(c, d)$ implies $(b, a) \approx(d, c)$.

PROPOSITION 4. \approx is an equivalence relation.

Proof. For any two points $a, b \in Q$, there is a symmetry $s \in \mathscr{F}$, such that $s(a)=b$, which means that the relation \approx is reflexive. Obviously, \approx is a symmetric relation. To prove transitivity, let us suppose
that $(a, b) \approx(c, d)$ and $(c, d) \approx(e, f)$, for $a, b, c, d, e, f \in Q$. Then there are symmetries $s_{1}, s_{2}, s_{3} \in \mathscr{S}$ such that

$$
s_{1}(a)=d, s_{1}(b)=c, s_{2}(c)=f=s_{3}(a), s_{2}(d)=e,
$$

which gives

$$
s_{3}(b)=s_{3} s_{1}(c)=s_{3} s_{1} s_{2}(f)=s_{2} s_{1} s_{3}(f)=s_{2} s_{1}(a)=s_{2}(d)=e
$$

and hence $(a, b) \approx(e, f)$, i. e. \approx is transitive.
The equivalence classes, i. e. the elements of Q^{2} / \approx will be denoted by $a b$, where $(a, b) \in a b$.

The following proposition is an easy consequence of Proposition 2.
PROPOSITION 5. For any three points $a, b, c \in Q$, there is exactly one point $d \in Q$, such that $a b=c d$.

COROLLARY. Let $o \in Q$ be a fixed point. For any two points $a, b \in Q$, the equality $o a=o b$ is equivalent to $a=b$.

PROPOSITION 6. For any six points $a, b, c, p, q, r \in Q, a b=$ $=p q$ and $b c=q r$ imply $a c=p r$.

Proof. We have $(a, b) \approx(p, q)$ and $(b, c) \approx(q, r)$ and there are symmetries $s_{1}, s_{2}, s_{3} \in \mathscr{S}$ such that

$$
s_{1}(a)=q, s_{1}(b)=p, s_{2}(b)=r=s_{3}(a), s_{2}(c)=q .
$$

Hence

$$
s_{3}(c)=s_{3} s_{2}(q)=s_{3} s_{2} s_{1}(a)=s_{1} s_{2} s_{3}(a)=s_{1} s_{2}(r)=s_{1}(b)=p,
$$

so that $(a, c) \approx(p, r)$, i. e. $a c=p r$.
Definition 2. For any two $a b, b c \in Q^{2} / \approx$ we define their sum by

$$
a b+b c=a c .
$$

From Propositions 5 and 6, it follows that the addition is well defined on Q^{2} / \approx.

THEOREM 1. $\left(Q^{2} / \approx,+\right)$ is an abelian group.
Proof. Associativity follows immediately. Further, for any two points $a, b \in Q, a a$ is the zero and $b a$ is the inverse of $a b$. The group $\left(Q^{2} / \approx,+\right.$) is abelian, since for all $a b, b c \in Q^{2} / \approx$ and any symmetry $s \in \mathscr{S}$ satisfying $s(c)=b$, we have

$$
a b+b c=a c=b d=b c+c d=b c+a b,
$$

where $d=s(a)$.

Applying the corollary of Proposition 5 and Theorem 1 we get the following theorem.

THEOREM 2. For any fixed point $o \in Q$, let $f_{0}: Q \rightarrow Q^{2} / \approx b e$ the one-to-one mapping given by the equality

$$
f_{0}(x)=o x .
$$

Suppose that the addition \oplus on Q , with respect to the point 0 , is defined by the formula

$$
a \oplus b=f_{0}^{-1}\left(f_{0}(a)+f_{0}(b)\right)
$$

Then (Q, \oplus) is an abelian group.
COROLLARY. Abelian groups (Q, \oplus) do not depend on the choice of the point $0 \in Q$.

THEOREM 3. For any n points $x_{1}, \ldots, x_{n} \in Q$, the equality

$$
x_{1} \oplus x_{2} \oplus \ldots \oplus x_{n}=s_{n-1}\left(A\left(x_{1}^{n}\right)\right)
$$

is valid.
Proof. Let us define the points $y_{0}, y_{1}, \ldots, y_{n-1} \in Q$ such that $y_{0}=x_{1}$ and $y_{i} y_{i+1}=o x_{t+2}$, for all $i=0,1, \ldots, n-2$. It follows that

$$
\begin{gathered}
x_{1} \oplus x_{2} \oplus \ldots \oplus x_{n}=f_{0}^{-1}\left(f_{0}\left(x_{1}\right)+f_{0}\left(x_{2}\right)+\ldots+f_{0}\left(x_{n}\right)\right)= \\
=f_{0}^{-1}\left(o x_{1}+o x_{2}+\ldots+o x_{n}\right)=f_{0}^{-1}\left(o y_{0}+y_{0} y_{1}+\right. \\
\left.+\ldots+y_{n-2} \cdot y_{n-1}\right)=f_{0}^{-1}\left(o y_{n-1}\right)=y_{n-1} .
\end{gathered}
$$

On the other hand, for all $a_{1}, \ldots, a_{n-3} \in Q$ and any $i=0,1, \ldots, n-2$,

$$
s\left[y_{i}, x_{i+2}, a_{1}^{n-3}\right]=s\left[y_{t+1}, o, a_{1}^{n-3}\right]
$$

holds, where $s\left[x_{1}^{n-1}\right]$ denotes s_{x}, for $\mathrm{x}=\left(x_{1}, \ldots, x_{n-1}\right) \in Q^{n-1}$. Hence we obtain

$$
\begin{gathered}
A\left(x_{1}^{n}\right)=s\left[x_{1}^{n-1}\right]\left(x_{n}\right)=s\left[y_{0}, x_{2}, x_{3}^{n-1}\right]\left(x_{n}\right)= \\
=s\left[y_{1}, o, x_{3}^{r-1}\right]\left(x_{n}\right)=s\left[y_{1}, x_{3}, x_{4}^{n}\right](o)=\ldots= \\
=s\left[y_{2}, o, x_{4}^{n}\right](0)=s\left[y_{2}, x_{4}, x_{5}^{n}, o\right](0)= \\
=s\left[y_{n-2}, x_{n}, \stackrel{n-3}{0}\right](0)=s\left[y_{n-1}, \stackrel{n-2}{0}\right](0)=s\left[\begin{array}{c}
n-1 \\
0
\end{array}\right]\left(y_{n-1}\right) .
\end{gathered}
$$

Therefore,

$$
s\left[\begin{array}{c}
n-1 \\
0
\end{array}\right]\left(A\left(x_{1}^{n}\right)\right)=y_{n-1}=x_{1} \oplus x_{2} \oplus \ldots \oplus x_{n} .
$$

COROLLARY. For any two points $x, y \in Q$

$$
x \oplus y=s\left[\begin{array}{c}
n-1 \\
0
\end{array}\right](A(x, y, \stackrel{n-2}{o}))
$$

holds.
THEOREM 4. For any n points $x_{1}, \ldots, x_{n} \in Q$, the equality

$$
A\left(x_{1}^{n}\right)=\ominus x_{1} \ominus x_{2} \ominus \ldots \ominus x_{n} \oplus s\left[\begin{array}{c}
n-1 \\
o
\end{array}\right](0)
$$

is valid.
Proof. Set $o^{\prime}=s\left[\begin{array}{c}n-1 \\ o\end{array}\right]$ (o). For any point $x \in Q$, we get

$$
o^{\prime}=s\left[\begin{array}{c}
n-1 \\
0
\end{array}\right](x \ominus x)=A\left(x, \ominus x, \begin{array}{c}
n-2 \\
0
\end{array}\right),
$$

i. e.

$$
\ominus x=A\left(x, o^{\prime}, \stackrel{n-2}{o}\right)
$$

It implies

$$
\begin{gathered}
o^{\prime} \ominus A\left(x_{1}^{n}\right)=o^{\prime} \oplus A\left(A\left(x_{1}^{n}\right), o^{\prime}, \stackrel{n-2}{o}\right)= \\
=s\left[\begin{array}{c}
n-1 \\
o
\end{array}\right]\left(A\left(o^{\prime}, A\left(A\left(x_{1}^{n}\right), o^{\prime}, \stackrel{n-2}{o}\right), \stackrel{n-2}{o}\right)\right)= \\
=s\left[\begin{array}{c}
n-1 \\
o
\end{array}\right]\left(A\left(x_{1}^{n}\right)\right)= \\
=x_{1} \oplus \ldots \oplus x_{n}
\end{gathered}
$$

which was to be proved.
THEOREM 5. Given an abelian group $(Q,+)$. For a fixed $a \in Q$, let A_{a} be an n-ary operation on Q, defined by

$$
A_{a}\left(x_{1}^{n}\right)=-\sum_{i=1}^{n-1} x_{i}+a
$$

Then $\left(Q, A_{a}\right)$ is an ATS-n-quasigroup.
Proof. Obviously, (Q, A_{a}) is a $T S$ - n-quasigroup. Further, for $\mathbf{u}=\left(u_{1}, \ldots, u_{n-1}\right) \in Q^{n-1}$, set $u=\sum_{i=1}^{n} u_{i}$. Then

$$
s_{u}(x)=A_{a}\left(u_{1}^{n-1}, x\right)=a-u-x .
$$

Therefore, for $\mathbf{v}=\left(v_{1}, \ldots, v_{n-1}\right), \mathbf{w}=\left(w_{1}, \ldots, w_{n-1}\right) \in Q^{n-1}, v=$ $=\sum_{i=1}^{n-1} v_{i}, w=\sum_{i=1}^{n-1} w_{i}$, it follows that

$$
s_{w} s_{u} s_{v}(x)=a-(u-v+w)-x,
$$

i. e. $s_{w} s_{u} s_{v}$ is a symmetry.

In [2] the notion of C^{n+1}-system was introduced as a $T S-n$ --quasigroup (Q, A) which is bisymmetric (i. e. the expression $A\left(\left\{A\left(x_{i 1}^{i n}\right)\right\}_{t=1}^{n}\right)$ is invariant for any permutation of its elements $x_{i j} \in$ $\in Q, i, j=1,2, \ldots, n$). According to the results in [2] (compare [3]) and to our Theorems 4 and 5 the following equivalence holds:

THEOREM 6. TS-n-quasigroup (Q, A) satisfies the axiom (A) if and only if it is a C^{n+1}-system.

THEOREM 7. Let (Q, A) be an ATS-n-quasigroup. Then the abelian groups $S^{0}(Q)$ and (Q, \oplus) are isomorphic.

Proof. Any $p \in S^{\circ}(Q)$ could be written in the form $p=s_{b} s_{a}$, for some $\mathbf{a}=\left(a_{1}, \ldots, a_{n-1}\right), \mathbf{b}=\left(b_{1}, \ldots, b_{n-1}\right) \in Q^{n-1}$. Now, by setting $a=a_{1} \oplus \ldots \oplus a_{n-1}, \quad b=b_{1} \oplus \ldots \oplus b_{n-1}$, it follows that

$$
p(x)=A\left(b_{1}^{n-1}, A\left(a_{1}^{n-1}, x\right)\right)=a \ominus b \oplus x
$$

for all $x \in Q$. Let define $h: S^{0}(Q) \rightarrow Q$, by the equality

$$
h(p)=h\left(s_{\mathrm{b}} s_{\mathrm{a}}\right)=a \ominus b,
$$

for all $p \in S^{0}(Q)$. Obviously, h is an one-to-one mapping and $h\left(p_{2} p_{1}\right)=$ $=h\left(p_{1}\right) \oplus h\left(p_{2}\right)$ is valid, for any two $p_{1}, p_{2} \in S^{0}(Q)$, which proves the statement.

REFERENCES:

[1] V. D. Belousov, n-arnye kvazigruppy, Štiinca, Kišinev 1972.
[2] P. De Vito and F. Zirilli, Curve ellitiche normali e C^{n+1}-sistemi, Ricerche Mat. 27 (1978), 319-322.
[3] M. Polonijo, Structure theorem for C^{n+1}-systems. Glas. Mat. Ser III 16 (36) (1981), 211-217.
(Received December 23, 1981)
Department of Mathematics
(Revised March 9, 1982)

totalno simetrične n-Kyazigrupe koje zadovoljavaju TEOREM O TRI SLMETRIJE

M. Polonijo, Zagreb

Sadržaj

U radu se istražuje struktura onih totalno simetričnih n-kvazigrupa koje imaju svojstvo da je produkt triju simetrija također simetrija. Svaka takva n-kvazigrupa može se izraziti u terminima pripadne Abelove grupe pomaka.

[^0]: Mathematics subject classifications (1980): Primary 20 N 15.
 Key words and phrases: n-quasigroup, total symmetry, three symmetries theorem, C^{n}-system.

 Ovaj rad financirala .je Samoupravna interesna zajednica za znanstveni rad u drustveno-ekom momskoj djelatnosti SRH $=\mathbf{S I Z}$ YI.

