APPROXIMATION THEOREMS FOR FIELDS AND COMMUTATIVE RINGS

M. Arapović, Sarajevo

Abstract

We give another proof of the approximation theorems for incomparable valuations. The proofs are shorter than the proofs in [5]. They can also be applied to valuations in commutative rings which is not the case for the proofs in [5].

1. Introduction. Let (v, Γ) and (w, Λ) be two valuations on a commutative ring R and $w=\varphi \circ v$ where φ is an order homomorphism of the group Γ onto the group Λ. Then we say that w dominates v and denote $w \geqslant v$. Valuations v and v^{\prime} are called dependent if there exists a valuation w with $w \geqslant v$ and $w \geqslant v^{\prime}$ and $w(R) \neq\{w(1), w(0)\}$; and they are called independent otherwise. Note that $w \geqslant v$ implies that $v^{-1}(\infty)=w^{-1}(\infty)$. It is easy to show that $w \geqslant v$ if and only if $A_{v} \subseteq$ $\subseteq A_{w}$ and $v^{-1}(\infty) \subseteq P_{w} \subseteq P_{v}$, where A_{v} and A_{w} are valuation rings and P_{v} and P_{w} are positive ideals of v and $w([4]$, Proposition 4). Let (R, P) be a Prüfer valuation pair and let R_{1} be an overring of R, i. e. let R_{1} be a ring with $R \subseteq R_{1} \subseteq T(R)$ where $T(R)$ is the total quotient ring of R. Then there exists a prime ideal P_{1} of R such that $P_{1} \subseteq P$ and (R_{1}, P_{1}) is a Prüfer valuation pair ([1], Theorem 2.5). Therefore, if v and w are Prüfer valuations of the total quotient ring $T(R)$, then $w \geqslant v$ if and only if $A_{w} \supseteq A_{v}$, where A_{v} and A_{w} are valuation rings of v and w.

Let v_{i}, v_{j} be two incomparable valuations on a commutative ring R, let A_{i}, A_{j} be corresponding valuation rings, let P_{i}, P_{j} be corresponding positive ideals and let Γ_{i}, Γ_{j} be corresponding value groups. Let $v_{i}^{-1}(\infty)=v_{J}^{-1}(\infty)$ and let P be the maximal prime ideal of A_{i} and A_{j} such that $P \subseteq P_{i}$ and $P \subseteq P_{j}$. Certainly, $P \supseteq v_{l}^{-1}(\infty)=$ $=v_{j}^{-1}(\infty)$ and $P=v_{i}^{-1}(\infty)=v_{j}^{-1}(\infty)$ if and only if the valuations v_{i} and v_{j} are independent, i . e. the valuation $v_{i} \wedge v_{j}$ is trivial. Since the valuations v_{i} and v_{j} are incomparable it follows that $P \neq P_{i}$ and $P \neq P_{j}$. Let $\Delta_{i j}, \Delta_{j i}$ be the isolated subgroups of the groups Γ_{i}, Γ_{j} respectively corresponding to $P . \Delta_{i j}=\Gamma_{i}, \Delta_{j i}=\Gamma_{j}$ if and only if the valuations v_{i} and v_{j} are independent. If $v_{i}^{-1}(\infty) \neq v_{j}^{-1}(\infty)$, then the valuations v_{i} and v_{j} are independent and let again $\Delta_{i j}=\Gamma_{i}$, $\Lambda_{j i}=\Gamma_{j}$. Let $\Theta_{i j}: \Gamma_{i} \rightarrow \Gamma_{i} / \Lambda_{i j}, \Theta_{j i}: \Gamma_{j} \rightarrow \Gamma_{j} / \Lambda_{j i}$ be the natural

[^0]homomorphisms. The groups $\Gamma_{i} / \Delta_{i j}$ and $\Gamma_{j} / \Delta_{j i}$ are ordered isomorphic with the value group of $v_{i} \wedge v_{j}$, and consequently they can be identified.

A pair $\left(\alpha_{i}, \alpha_{j}\right) \in \Gamma_{i} \times \Gamma_{j}$ is called compatible if, by the preceding identification, $\Theta_{i j}\left(\boldsymbol{a}_{i}\right)=\Theta_{j i}\left(\alpha_{j}\right)$. Let $v_{1}, \ldots, v_{s}(s \geqslant 2)$ be pairwise incomparable valuations of $R .\left(\alpha_{1}, a_{2}, \ldots, \alpha_{s}\right) \in \Gamma_{1} \times \Gamma_{2} \times$ $\times \ldots \times \Gamma_{s}$ is called compatible if and only if every pair (α_{i}, α_{j}) $(i \neq j)$ is compatible. If $a_{i}=v_{i}(x), a_{j}=v_{j}(x)(x \in R)$, then the pair $\left(a_{i}, a_{j}\right)$ is compatible, since $\overline{v_{i}(x)}=w(x)=\overline{v_{j}(x)}$, where $w=v_{i} \wedge v_{j}$, $\overline{v_{i}(x)}=\Theta_{i j}\left(v_{i}(x)\right), \overline{v_{j}(x)}=\Theta_{j i}\left(v_{j}(x)\right)$.

If the valuations $v_{1}, v_{2}, \ldots, v_{s}$ are pairwise independent, then every $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}\right) \in \Gamma_{1} \times \Gamma_{2} \times \ldots \times \Gamma_{s}$ is compatible.
2. THEOREM 1. (Approximation theorem in the neighbourhood of zero). Let $v_{1}, v_{2}, \ldots, v_{n}$ be noncomparable valuations of the field $K, V_{1}, V_{2}, \ldots, V_{n}$ valuation rings, $M_{1}, M_{2}, \ldots, M_{n}$ maximal ideals and $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{n}$ value groups of these valuations respectively and let $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \in \Gamma_{1} \times \Gamma_{2} \times \ldots \times \Gamma_{n}$ be compatible. Then there exists $x \in K$ such that $v_{i}(x)=a_{i}(i=1,2, \ldots, n)$.

Proof. We first show that there exists $a_{1} \in K$ such that $v_{1}\left(a_{1}\right)=$ $=0, v_{i}\left(a_{1}\right)<0(i=2,3, \ldots, n)$. We will prove this by induction on n. Let $n=2$. Take $x_{1} \in V_{1} \backslash V_{2}$. If $x_{1} \in V_{1} \backslash M_{1}$, then $v_{1}\left(x_{1}\right)=$ $=0, v_{2}\left(x_{1}\right)<0$. If $x_{1} \in M_{1}$, then for $1+x_{1}$ we have $v_{1}\left(1+x_{1}\right)=$ $=0, v_{2}\left(1+x_{1}\right)<0$ and so we may take $a_{1}=1+x_{1}$. Let $n>2$. Suppose that there exist $a_{1}^{\prime}, a_{1}^{\prime \prime} \in K$ such that $v_{1}\left(a_{1}^{\prime}\right)=0, v_{i}\left(a_{1}^{\prime}\right)<0$ $(i=2,3, \ldots, n-1) ; \quad v_{1}\left(a_{1}^{\prime \prime}\right)=0, \quad v_{i}\left(a_{1}^{\prime \prime}\right)<0(i=3,4, \ldots, n)$ and prove that there exists $a_{1} \in K$ such that $v_{1}\left(a_{1}\right)=0, v_{i}\left(a_{1}\right)<0$ ($i=2,3, \ldots, n$). It is easy to conclude that for some positive integer $m v_{i}\left(a_{1}^{\prime m}\right) \neq v_{i}\left(a_{1}^{\prime \prime}\right)(i=2,3, \ldots, n)$. If $v_{1}\left(a_{1}^{\prime m}+a_{1}^{\prime \prime}\right)=0$, then for $a_{1}=a_{1}^{\prime m}+a_{1}^{\prime \prime}$ we have $v_{1}\left(a_{1}\right)=0, \quad v_{i}\left(a_{1}\right)<0(i=2,3, \ldots, n)$. If $v_{1}\left(a_{1}^{\prime m}+a_{1}^{\prime \prime}\right)>0$, then for $a_{1}=1+\left(a_{1}^{\prime m}+a_{1}^{\prime \prime}\right)$ we have $v_{1}\left(a_{1}\right)=$ $=0, v_{i}\left(a_{1}\right)<0(i=2,3, \ldots, n)$. Therefore, there exists $a_{1} \in K$ such that $v_{1}\left(a_{1}\right)=0, v_{i}\left(a_{1}\right)<0(i=2,3, \ldots, n)$. For $\frac{1}{a_{1}}$ we have $v_{1}\left(\frac{1}{a_{1}}\right)=$ $=0, \quad v_{i}\left(\frac{1}{a_{1}}\right)>0(i=2,3, \ldots, n)$.

Let P_{2}, \ldots, P_{n} be prime ideals of V_{2}, \ldots, V_{n} respectively such that $P_{i} \neq M_{1}(i=2,3, \ldots, n)$. Valuation rings $V_{1},\left(V_{i}\right)_{P_{i}}$ are incomparable $(i=2,3, \ldots, n)$, therefore there exists $a_{1} \in K$ such that $v_{1}\left(a_{1}\right)=$ $=0,\left(v_{i}\right)_{P_{i}}\left(a_{1}\right)>0(i=2,3, \ldots, n)$; and since P_{i} is the maximal ideal of $\left(V_{i}\right)_{P_{j}}(i=2,3, \ldots, n)$ it follows that $a_{1} \in\left(V_{1} \backslash M_{1}\right) \cap$ $\cap\left(\bigcap_{i=2}^{n} P_{i}\right)$.

Let $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \Gamma_{1} \times \ldots \times \Gamma_{n}, \quad a_{1}=0, \quad a_{2}>0, \quad a_{3}>0, \ldots$ $\ldots, a_{n}>0$, be compatible. Take $x_{i} \in V_{i}$ such that $\tau_{i}\left(x_{i}\right)=\alpha_{i}$ and
let P_{i} be the minimal prime ideal of V_{i} that contains $x_{i},(i=2,3, \ldots, n)$. Then $P_{i} \not ⿻ M_{1}(i=2,3, \ldots, n)$. Take $a_{1} \in\left(V_{1} \backslash M_{1}\right) \cap\left(\bigcap_{i=2}^{n} P_{i}\right)$. For some positive integer m we have $v_{1}\left(a_{1}^{m}\right)=0, v_{i}\left(a_{1}^{m}\right)>\alpha_{i}(i=\stackrel{i=2}{2}, 3, \ldots, n)$.

Let $\left(\alpha_{1}, \ldots, a_{n}\right) \in \Gamma_{1} \times \ldots \times \Gamma_{n}$ be compatible. Take $x_{i} \in K$ such that $v_{i}\left(x_{i}\right)=\alpha_{i}(i=1,2, \ldots, n)$. Take $a_{i} \in K(i=1,2, \ldots, n)$ such that $v_{i}\left(a_{i}\right)=0, v_{j}\left(a_{i}\right)>a_{j}-v_{j}\left(x_{i}\right)(i, j=1,2, \ldots, n ; i \neq j)$. For $x=x_{1} a_{1}+x_{2} a_{2}+\ldots+x_{n} a_{n}$ we have $v_{i}(x)=a_{i}(i=1,2, \ldots, n)$.

THEOREM 2. (General approximation theorem). Let v_{1}, v_{2}, \ldots \ldots, v_{n} be pairwise incomparable valuations of the field K, let ($\alpha_{1}, \alpha_{2}, \ldots$ $\left.\ldots, a_{n}\right) \in \Gamma_{1} \times \ldots \times \Gamma_{n}$ be compatible and let $b_{1}, b_{2}, \ldots, b_{n} \in K$. Then there exists $x \in K$ such that $v_{i}\left(x-b_{i}\right)=a_{i}(i=1,2, \ldots, n)$, if and only if

$$
\begin{equation*}
v_{i}\left(b_{i}-b_{j}\right)<a_{i} \Rightarrow a_{i}-v_{i}\left(b_{i}-b_{j}\right) \in A_{i j} . \tag{1}
\end{equation*}
$$

Proof. Suppose that (1) is satisfied. Let $V_{1}, V_{2}, \ldots, V_{n}$ be valuation rings of $v_{1}, v_{2}, \ldots, v_{n}$ respectively, and let $D=\bigcap_{i=1}^{n} V_{i}$. From Theorem 1 it follows that $V_{i}=D_{M_{i}}$, where M_{i} is the center of r_{i} on $D(i=1,2, \ldots, n)$ and if M is a maximal ideal of D, then $M=$ $=M_{i}$ for some i. Suppose first that $b_{i} \in D(i=1,2, \ldots, n)$. We will first prove that there exists $b \in K$ such that $v_{i}\left(b-b_{i}\right) \geqslant \alpha_{i}(i=1,2, \ldots$ $\ldots, n)$. Let $Q_{i}=\left\{b \in D \mid v_{i}(b) \geqslant a_{i}\right\},(i=1,2, \ldots, n)$ and let $i, j \in$ $\in\{1,2, \ldots, n\}, i \neq j$. We will show that $b_{i}-b_{j} \in\left(Q_{i}+Q_{j}\right) V_{k}(k=$ $=1,2, \ldots, n)$. Since $v_{i}\left(b_{i}-b_{k}\right)<a_{i} \Rightarrow a_{i}-v_{i}\left(b_{i}-b_{k}\right) \in \Delta_{i k}$ it follows easily that $b_{i}-b_{k} \in Q_{i} V_{k} \subseteq\left(Q_{i}+Q_{j}\right) V_{k}$, and since $v_{j}\left(b_{j}-\right.$ $\left.-b_{k}\right)<a_{j} \Rightarrow a_{j}-v_{j}\left(b_{j}-b_{k}\right) \in \Lambda_{j k}$ it follows that $b_{j}-b_{k} \in Q_{j} V_{k} \subseteq$ $\subseteq\left(Q_{i}+Q_{j}\right) V_{k},(k=1,2, \ldots, n)$. Therefore $b_{i}-b_{j}=\left(b_{i}-b_{k}\right)+$ $+\left(b_{k}-b_{j}\right) \in\left(Q_{i}+Q_{j}\right) V_{k},(k=1,2, \ldots, n)$. Therefore, $b_{i}-b_{j} \in Q_{i}+$ $+Q_{j}(i, j=1,2, \ldots, n)$ and by Chinese remainder theorem there exists $b \in D$ such that $b_{i}-b \in Q_{i}(i=1,2, \ldots, n)$. Clearly, $v_{i}\left(b-b_{i}\right) \geqslant \alpha_{i}(i=1,2, \ldots, n)$.

Now let $b_{i} \in K(i=1,2, \ldots, n)$. Take $b_{i}^{\prime}, d \in D$ such that $b_{i}=$ $=\frac{b_{i}^{\prime}}{d}(i=1,2, \ldots, n)$, and let $b^{\prime} \in D$ be such that $v_{i}\left(b^{\prime}-b_{i}^{\prime}\right) \geqslant a_{i}+$ $+v_{i}(d)$. Then for $b=\frac{b^{\prime}}{d}$ we have $v_{i}\left(b-b_{i}\right) \geqslant a_{i}(i=1,2, \ldots, n)$.

Take $\beta_{i} \in \bigcap_{j \neq i} A_{i j}, \beta_{i}>0(i=1,2, \ldots, n)$ and $\alpha_{i}^{\prime}=\alpha_{i}+\beta_{i}(i=$ $=1,2, \ldots, n)$. Then there exists $b \in K$ such that $v_{i}\left(b-b_{i}\right) \geqslant a_{i}^{\prime}(i=$ $=1,2, \ldots, n)$. Now, by the approximation theorem in the neighbourhood of zero, there exists $a \in K$ such that $v_{i}(a)=a_{i}(i=1,2, \ldots, n)$. For $x=a+b$ we have $v_{i}\left(x-b_{i}\right)=a_{i}(i=1,2, \ldots, n)$.

Conversely, suppose that there exists $x \in K$ such that $v_{i}(x-$ $\left.-b_{i}\right)=a_{i}(i=1,2, \ldots, n)$. It is easy to check that then (1) holds ([5], Theorem 3, page 136).

Remark. It is easy to conclude that

$$
\begin{gathered}
\left(v_{i}\left(b_{i}-b_{j}\right)<a_{i} \Rightarrow a_{i}-v_{i}\left(b_{i}-b_{j}\right) \in \Delta_{i j}\right) \Leftrightarrow\left(v_{i}\left(b_{i}-b_{j}\right)<a_{i},\right. \\
\left.v_{j}\left(b_{j}-b_{i}\right)<\alpha_{j} \Rightarrow \alpha_{i}-v_{i}\left(b_{i}-b_{j}\right) \in \Delta_{i j}\right) .
\end{gathered}
$$

THEOREM 3. Let $v_{1}, v_{2}, \ldots, v_{n}$ be pairwise incomparable valuations of the field K, let $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \Gamma_{1} \times \ldots \times \Gamma_{n}$ be compatible and let $b_{1}, \ldots, b_{n} \in K$ be such that $v_{i}\left(b_{i}\right)<\alpha_{l} \Rightarrow a_{i}-v_{i}\left(b_{i}\right) \in \bigcap_{i \neq i} \Delta_{i j}$. Then there exists $b \in K$ such that $v_{i}\left(b-b_{i}\right)=a_{i}\left(i=1,2^{j \neq i}, \ldots, n\right)$.

Proof. By the preceding theorem and by the preceding remark it is sufficient to show that

$$
\begin{aligned}
& v_{i}\left(b_{i}-b_{j}\right)<a_{i}, \quad v_{j}\left(b_{j}-b_{i}\right)<a_{j} \Rightarrow a_{i}-v_{i}\left(b_{i}-b_{j}\right) \in \Delta_{i j}, \\
& (i, j=1,2, \ldots, n ; i \neq j) . \text { Suppose that } v_{i}\left(b_{i}-b_{j}\right)<a_{i}, v_{j}\left(b_{j}-b_{i}\right)< \\
& <a_{j} .
\end{aligned}
$$

1) If $v_{i}\left(b_{i}\right) \leqslant v_{i}\left(b_{j}\right)$, then $v_{i}\left(b_{i}\right)<\alpha_{i}$ and consequently a_{i} -$-v_{i}\left(b_{i}\right) \in \Delta_{i j}$, therefore especially $a_{i}-v_{i}\left(b_{i}-b_{j}\right) \in \Lambda_{i j}$.
2) If $v_{j}\left(b_{j}\right) \leqslant v_{j}\left(b_{i}\right)$, then we similarly conclude that $a_{j}-$ $-v_{j}\left(b_{j}-b_{i}\right) \in \Delta_{j i}$ i. e. $\bar{\alpha}_{j}-\overline{v_{j}\left(b_{j}-b_{i}\right)}=\overline{0}$, so that $\bar{a}_{i}-\overline{v_{i}\left(b_{i}-b_{j}\right)}=\overline{0}$, and therefore $a_{i}-v_{i}\left(b_{i}-b_{j}\right) \in \Delta_{i j}$.
3) If $v_{i}\left(b_{i}\right)>v_{i}\left(b_{j}\right)$ and $v_{j}\left(b_{j}\right)>v_{j}\left(b_{i}\right)$, then $\overline{v_{i}\left(b_{i}\right)} \geqslant \overline{v_{i}\left(b_{j}\right)}=$ $=\overline{v_{j}\left(b_{j}\right)} \geqslant \overline{v_{j}\left(b_{i}\right)}$, i. e. $\overline{v_{i}\left(b_{i}\right)}=\overline{v_{i}\left(b_{j}\right)}$, and therefore $a_{i}-v_{i}\left(b_{i}-\right.$ $\left.-b_{j}\right) \in \Delta_{i j}$.
3. Let R be a Prüfer ring, i. e. a ring in which each finitely generated regular ideal is invertible, let $\left\{M_{2}\right\}$ be the set of maximal ideals and let $\left\{P_{2}\right\}$ be the set of prime ideals of R. It is well known that R is a Prüfer ring if and only if $\left(R_{\left[M_{2]}\right]},\left[M_{\lambda}\right] R_{\left[M_{A]}\right]}\right)$ is a valuation pair for every $M_{\lambda} \in\left\{M_{\lambda}\right\}$. Also, $\left(R_{\left[P_{\lambda}\right]},\left[P_{\lambda}\right] R_{\left[P_{\lambda]}\right]}\right)$ is a valuation pair for every $P_{i} \in\left\{P_{\lambda}\right\}$. Conversely, if V is a valuation overring of R, then $V=R_{\left[P_{\lambda 1}\right.}$ for some $P_{\lambda} \in\left\{P_{\lambda}\right\}$ ([3], Chapter X).

Let $\left\{V_{\lambda}\right\}$ be the set of valuation overrings of R and let $\left\{v_{\lambda}\right\}$ be the corresponding valuations. It is easy to see that Theorems 1,2 , and 3 can be applied to valuations $\left\{v_{\lambda}\right\}$.

THEOREM 4. Let R be a Prüfer ring, $V_{1}, V_{2}, \ldots, V_{n}$ pairwise incomparable valuation overrings of R, let $v_{1}, v_{2}, \ldots, v_{n}$ be the corresponding valuations, $\Gamma_{1}, \ldots, \Gamma_{n}$ the corresponding value groups, and let $\left(a_{1}, \ldots, a_{n}\right) \in \Gamma_{1} \times \ldots \times \Gamma_{n}$ be compatible. Then there exists $x \in T(R)$ such that $v_{i}(x)=a_{i}(i=1,2, \ldots, n)$, where $T(R)$ is the total quotient ring of R.

Proof. First let ($\alpha_{1}, a_{2}, \ldots, \alpha_{n}$) $\in \Gamma_{1} \times \ldots \times \Gamma_{n}$ be compatible and such that $a_{1}=0, a_{i}>0(i=2,3, \ldots, n)$. Then there exists $x \in R$ such that $v_{1}(x)=0, v_{i}(x)>a_{i}(i=2,3, \ldots, n)$. Namely, take $x_{i} \in T(R)$ such that $v_{t}\left(x_{i}\right)=a_{i}(i=2,3, \ldots, n)$ and let P_{i} be the minimal prime ideal of V_{i} that contains $x_{l}(i=2,3, \ldots, n)$. Take $x \in\left(V_{1} \backslash M_{1}\right) \cap\left(\bigcap_{i=2}^{n} P_{i}\right) \cap R$, where M_{1} is the positive ideal of V_{1}.

Then for some positive integer m we have $v_{1}\left(x^{m}\right)=0, v_{i}(x)>a_{i}$ ($i=2,3, \ldots, n$).

Let $\left(\alpha_{1}, a_{2}, \ldots, a_{n}\right) \in \Gamma_{1} \times \ldots \times \Gamma_{n}$ be compatible. Take x_{l}, $a_{i} \in T(R)$ such that $v_{i}\left(x_{i}\right)=a_{i}(i=1,2, \ldots, n), v_{i}\left(a_{i}\right)=0, v_{j}\left(a_{i}\right)>$ $>a_{j}-v_{j}\left(x_{i}\right)(i, j=1,2, \ldots, n ;, i \neq j)$. For $x=x_{1} a_{1}+x_{2} a_{2}+\ldots$ $+\ldots+x_{n} a_{n}$ we have $v_{i}(x)=\alpha_{i}(i=1,2, \ldots, n)$.

THEOREM 5. Let R be a Prüfer ring, $V_{1}, V_{2}, \ldots, V_{n}$ pairwise incomparable valuation overrings of R, let v_{1}, \ldots, v_{n} be the corresponding valuations, $\Gamma_{1}, \ldots, \Gamma_{n}$ the corresponding value groups, and let b_{1}, b_{2}, \ldots $\ldots, b_{n} \in T(R)$, where $T(R)$ is the total quotient ring of R. Then there exists $x \in T(R)$ such that $v_{t}\left(x-b_{i}\right)=a_{i}(i=1,2, \ldots, n)$, if and only if

$$
\begin{equation*}
v_{l}\left(b_{l}-b_{j}\right)<a_{i} \Rightarrow a_{i}-v_{l}\left(b_{l}-b_{j}\right) \in A_{l j} . \tag{1}
\end{equation*}
$$

Proof. Let $D=\bigcap_{n}^{n} V_{l}$. Since $R \subseteq D, D$ is a Prüfer ring, and $V_{i}^{\prime}=D_{\left[M_{i}\right]}$, where $M_{i}^{i=1}$ is the center of v_{i} on $D(i=1,2, \ldots, n)$. Moreover, if M is a maximal ideal of D, then $M=M_{i}$ for some i. Suppose first that $b_{i} \in D(i=1,2, \ldots, n)$. We will show that there exists $x \in T(R)$ such that $v_{i}\left(x-b_{i}\right) \geqslant a_{i}(i=1,2, \ldots, n)$. Let $Q_{i}=\{b \in$ $\left.\in D \mid v_{i}(b) \geqslant a_{i}\right\},(i=1,2, \ldots, n)$, and let $i, j \in\{1,2, \ldots, n\}, i \neq j$. We will prove that $b_{i}-b_{j} \in Q_{i}+Q_{j}$. Since $Q_{i}+Q_{j}$ is a regular ideal of D it is sufficient to show that $b_{i}-b_{j} \in\left(Q_{i}+Q_{j}\right) V_{k}$ for every $k \in\{1,2, \ldots, n\}$. Since (1) holds and since an ideal of a Prüfer valuation ring V is v-closed if and only if it is a regular ideal of V, it follows that $b_{i}-b_{k} \in Q_{i} V_{k} \subseteq\left(Q_{i}+Q_{j}\right) V_{k}$ and $b_{j}-b_{k} \in Q_{j} V_{k} \subseteq\left(Q_{i}+\right.$ $\left.+Q_{j}\right) V_{k}(k=1,2, \ldots, n)$. Therefore, $b_{l}-b_{j}=\left(b_{i}-b_{k}\right)+\left(b_{k}-\right.$ $\left.-b_{j}\right) \in\left(Q_{i}+Q_{j}\right) V_{k}(k=1,2, \ldots, n)$, i. e. $b_{i}-b_{j} \in Q_{i}+Q_{j}$. Since $b_{i}-b_{j} \in Q_{i}+Q_{j}(i, j=1,2, \ldots, n)$, by Chinese remainder theorem there exists $b \in D$ such that $b-b_{i} \in Q_{i}(i=1,2, \ldots, n)$. Clearly, $v_{l}\left(b-b_{i}\right) \geqslant a_{l}(i=1,2, \ldots, n)$. The rest of the proof is the same as in Theorem 2.

THEOREM 6. Let R be a Prüfer ring, V_{1}, \ldots, V_{n} pairzuse incomparable valuation overrings of R, v_{1}, \ldots, v_{n} the corresponding valuations, let $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \Gamma_{1} \times \ldots \times \Gamma_{n}$ be compatible and let $b_{1}, \ldots, b_{n} \in T(R)$ be such that $v_{i}\left(b_{i}\right)<\alpha_{i} \Rightarrow a_{i}-v_{i}\left(b_{i}\right) \in \cap \Lambda_{i j}$. Then there exists $b \in T(R)$ such that $v_{i}\left(b-b_{i}\right)=a_{i}(i=1,2, \ldots, n)$.

Proof. Theorem 6 can be proved from Theorem 5 in the same way as Theorem 3 from Theorem 2.

REFERENCES:

[1] M. B. Boisen, Jr. and M. D. Larsen, Prüfer and valuation rings with zero divisors, Pacific J. Math. 40 (1972), 7-12.
[2] M. P. Griffin, Valuations and Prüfer rings, Can. J. Math., 26 (1974), 412-429.
[3] M. D. Larsen and P. F. McCarthy, "Multiplicative theory of ideals", Academic Press, New York, 1971.
[4] M. E. Manis, Valuations on a commutative ring, Proc. Amer. Math. Soc., 20 (1969), 193-198.
[5] P. Ribenboim, "Theorie des Valuations», University of Montreal Press, Montreal, 1964.
(Received March 3, 1981) Department of Mathematics,
(Revised March 12, 1982) University of Sarajevo, 71000. Sarajevo, Yugoslavia.

TEOREME O APROKSIMACII ZA POLJA I KOMUTATIVNE PRSTENE

M. Arapović, Sarajevo

Sadržaj

U ovom radu dajemo drugi dokaz teorema o aproksimaciji za neuporedive valuacije. Dokazi su kraći od dokaza u [5], a mogu se primijeniti i na valuacije u komutativnim prstenima što nije slučaj za dokaze u [5]

[^0]: Mathernatics subject classifications (1980): Primary 12 J 20, 13 A 18; Secondary 13 F 05.

 Key words and phrases: Approximation theorems, field, valuation overrings of a Prüfer ring.

