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Abstract. It is known that the variety Mn generated by all monoids
of order n is finitely based if n ≤ 3 and non-finitely based if n ≥ 6. The
present article establishes the finite basis property of the variety M4. This
leaves M5 as the last open case in the finite basis problem for the vari-
eties Mn.

1. Introduction

1.1. Finite basis problem. A basis for a semigroup S is a set of identities
satisfied by S that axiomatizes all identities of S. A semigroup is finitely

based if it has a finite basis. By 1970, the finite basis property has been
established for several important classes of semigroups such as commutative
semigroups ([18]), idempotent semigroups ([2, 6, 7]), and finite groups ([17]).
However, examples of non-finitely based finite semigroups ([18]) have also been
discovered by then, and presently, the problem of deciding when a finite semi-
group is finitely based remains open. This led researchers to investigate, over
the years, the finite basis problem for various explicit classes of semigroups
that either exist very naturally or play important roles in other parts of math-
ematics. Some of these examples include the semigroup Bn of binary relations
on {1, 2, . . . , n} and its subsemigroup Rn of reflexive binary relations, and the
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semigroup Tn of transformations of {1, 2, . . . , n} and its subsemigroup En of
extensive transformations. These semigroups are non-finitely based for all
except the first few values of n:

• Bn is finitely based if and only if n = 1 ([23]);
• Tn is finitely based if and only if n ≤ 2 ([23]);
• Rn and En are finitely based if and only if n ≤ 4 ([9, 14, 25]).

Refer to the surveys by Shevrin and Volkov ([20]) and Volkov ([24]) for more
information on the finite basis problem for finite semigroups in general.

1.2. Main result. The finite basis property of finite semigroups has also
been investigated collectively. For each n ≥ 1, let Sn denote the variety gen-
erated by all semigroups of order n and let Mn denote the variety generated
by all monoids of order n. In the 1980s, Volkov ([23]) considered the vari-
ety Sn and proved that it is non-finitely based whenever n ≥ 5. In fact, since
the Brandt monoid of order six is well known to be inherently non-finitely
based ([19]), the varieties Sn and Mn are non-finitely based for all n ≥ 6. On
the other hand, it follows from Luo and Zhang ([16]) that the varieties Sn

and Mn are finitely based if n ≤ 3. Recently, Li et al. ([15]) proved that
the variety S4 is finitely based. Consequently, the variety Sn is finitely based
if and only if n ≤ 4. The finite basis property of the varieties M4 and M5

currently remains unknown.
The objective of the present article is to prove that the variety M4 is

finitely based. To simplify the statement of the main result, define the deletion

closure of an identity U ≈ V , written U
∗
≈ V , to be the identity system

that contains U ≈ V and any nontrivial identity obtained by eliminating all
occurrences of some letters in U ≈ V . For instance, the deletion closure

xhxkx2 ∗
≈ hx2kx represents the system

xhxkx2 ≈ hx2kx, xhx3 ≈ hx3, x2kx2 ≈ x2kx, x4 ≈ x3.

Note that if a monoid satisfies an identity U ≈ V , then it also satisfies the

deletion closure U
∗
≈ V .

Theorem 1.1. The identities

x13hxkx
∗
≈ xhxkx, xhx2kx

∗
≈ x3hkx, xhy2x2ky

∗
≈ xhx2y2ky,

xhykxytxdy
∗
≈ xhykyxtxdy, xhykxytydx

∗
≈ xhykyxtydx

(0)

constitute a finite basis for the variety M4.

The finite basis property of the varieties Sn and Mn, with the exception
of the open case M5, is summarized in the following table:

n ≤ 4 n = 5 n ≥ 6
Sn is finitely based Yes No No
Mn is finitely based Yes ? No
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It is of interest to note that while semigroups of order five are all finitely
based ([11, 22]), the variety S5 they generate is not.

1.3. Hereditarily finitely based varieties. A finitely based variety that sat-
isfies the stronger property of containing only finitely based semigroups is said
to be hereditarily finitely based. Since each finite basis involves finitely many
identities with finitely many variables, membership in a hereditarily finitely
based variety provides a sufficient condition for the finite basis property that
can be verified in polynomial time. When identifying finitely based semi-
groups from a given fixed class C, one obvious first step is to find out which
semigroups from C belong to known hereditarily finitely based varieties. For
instance, this technique was employed in the classification of all finitely based
semigroups of order six ([12, 13]).

Recently, Luo and Zhang proved that the variety S3 is hereditarily finitely
based ([16]); the varieties Sn and Mn thus satisfy the same property whenever
n ≤ 3. Since the varieties S4 and M4 are finitely based, it is natural to
question if they are also hereditarily finite based. The answer to this question
is, however, known for some time to be negative ([8, Corollary 3.17]). It follows
that the finite basis property of the varieties S4 and M4 cannot be deduced by
recognizing them as subvarieties of some hereditarily finitely based varieties.
Exhibiting explicit finite bases seems unavoidable in establishing the finite
basis property for S4 and M4; the same situation likely applies to the open
case M5 if it turns out to be finitely based.

1.4. Organization. After some background material is given in Section 2,
it is shown in Section 3 that the variety M4 is generated by only five monoids
of order at most four. This enables one to easily verify that the varietyM4 sat-
isfies the identities (0). Restrictions on identities satisfied by the variety M4

are established in Section 4; these results are then employed in Section 5 to
complete the proof of Theorem 1.1.

2. Preliminaries

The following semigroups are required in the present article, especially in
giving a simple generating set for the variety M4:

• the cyclic group Cn = 〈a | an = 1〉 of order n;
• the nilpotent semigroup Nn = 〈a | an+1 = an〉 of order n;
• the semigroup T2 = {α, β, γ, ǫ} of transformations of {1, 2}, where

1α = 2α = 1, 1β = 2β = 2, 1γ = 2, 2γ = 1, and 1ǫ = 1, 2ǫ = 2;

• the semigroup T ▽

2 anti-isomorphic to T2.

For any semigroup S, let S1 denote the monoid obtained by adjoining a unit
element to S.
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2.1. Identities and bases. Let Σ+ and Σ∗ respectively denote the free
semigroup and free monoid over a countably infinite alphabet Σ. Elements
of Σ are called letters and elements of Σ∗ are called words. An identity is
written as U ≈ V where U, V ∈ Σ+. A semigroup S satisfies an identity
U ≈ V if, for any substitution ϕ : Σ → S, the elements Uϕ and V ϕ of S
coincide. A set Θ of identities satisfied by a semigroup S is a basis for S
if Θ implies every identity satisfied by S. A semigroup is finitely based if it
possesses a finite basis.

2.2. Content and occurrence. The content of a word U , denoted by
con(U), is the set of letters occurring in U . The number of occurrences of
a letter x in a word U is denoted by occ(x, U). The length of a word U is thus

|U | =
∑

{occ(x, U) |x ∈ con(U)}.

For example, if U = x2zxy2xtzx3t4, then con(U) = {x, y, z, t}, occ(x, U) = 7,
occ(y, U) = occ(z, U) = 2, occ(t, U) = 5, and |U | = 7 + 2 + 2 + 5 = 16.

Lemma 2.1 ([1, Lemma 6.1.4]). Let U ≈ V be any identity satisfied by

the monoid N 1
3 . Then for each x ∈ Σ, precisely one of the following holds :

(i) occ(x, U) = occ(x, V ) ≤ 2;
(ii) occ(x, U), occ(x, V ) ≥ 3.

Consequently, con(U) = con(V ).

Lemma 2.2. Let U ≈ V be any identity satisfied by both the groups C3
and C4. Then occ(x, U) ≡ occ(x, V ) (mod 12) for all x ∈ Σ. Consequently,
occ(x, U) ≡ occ(x, V ) (mod 2) for all x ∈ Σ.

Proof. It is well known and easily verified that if U ≈ V is any identity
satisfied by the group Cn, then occ(x, U) ≡ occ(x, V ) (mod n) for all x ∈ Σ.
The result then follows because C12 ∼= C3 × C4.

2.3. Initial part, final part, and precedence. The initial part of a word U ,
denoted by ini(U), is the word obtained by retaining the first occurrence of
each letter in U . The final part of a word U , denoted by fin(U), is the word
obtained by retaining the last occurrence of each letter in U . For example, if
U = x2zxy2xtzx3t4, then ini(U) = xzyt and fin(U) = yzxt.

For any distinct letters x and y of a word U , let occ(ẋ, y, U) denote
the number of occurrences of x preceding the first occurrence of y, and let
occ(y, ẋ, U) denote the number of occurrences of x following the last occur-
rence of y. In particular,

• if m = occ(ẋ, y, U), then

U = A0xA1xA2 · · ·xAmyB

for some A0, A1, . . . , Am, B ∈ Σ∗ such that x, y /∈ con(A0A1 · · ·Am);
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• if m = occ(x, ẏ, U), then

U = AxB0yB1yB2 · · · yBm

for some A,B0, B1, . . . , Bm ∈ Σ∗ such that x, y /∈ con(B0B1 · · ·Bm).

Lemma 2.3. Let U ≈ V be any identity satisfied by both the monoids T2
and T ▽

2 . Then

(i) ini(U) = ini(V );
(ii) fin(U) = fin(V );
(iii) occ(ẋ, y, U) ≡ occ(ẋ, y, V ) (mod 2) for all x, y ∈ Σ;
(iv) occ(y, ẋ, U) ≡ occ(y, ẋ, V ) (mod 2) for all x, y ∈ Σ.

Proof. Parts (i) and (iii) follow from Edmunds [4, Lemma 4.5], while
parts (ii) and (iv) hold by symmetry.

3. A small set of generators for M4

In this section, let

M = {C3, C4,N
1
3 , T2, T

▽

2 }.

For any class C of semigroups, let varC denote the variety generated by C.

Proposition 3.1. M4 = varM.

Corollary 3.2. The variety M4 satisfies the identities (0).

Proof. It is routinely checked that the monoids in M satisfy the identi-
ties (0). The result then follows from Proposition 3.1.

Lemma 3.3. Any semigroup that satisfies any of the following identity

systems belongs to the variety varM:

x15 ≈ x3, xy ≈ yx;(3.1)

x3 ≈ x2, xyx ≈ x2y;(3.2)

x3 ≈ x2, xyx ≈ yx2;(3.3)

x3 ≈ x, xyx2 ≈ xy, xyxy ≈ xy2x;(3.4)

x3 ≈ x, x2yx ≈ yx, xyxy ≈ yx2y.(3.5)

Proof. It suffices to show that each of the five identity systems defines
a subvariety of varM.

The identities (3.1) define the variety var{D1}, where D = 〈a | a15 = a3〉;
see Almeida [1, Corollary 6.1.5]. Since the monoid D1 is isomorphic to the
submonoid of C3 × C4 × N 1

3 generated by the element (a, a, a), the inclusion
var{D1} ⊆ varM holds.

The identities (3.2) define the variety var{N 1
2 ,L

1
2}, where L2 is the

left-zero semigroup of order two; see Lee [10, Lemma 3.3(iv)]. Since the
monoids N 1

2 and L1
2 are isomorphic to submonoids of N 1

3 and T ▽

2 respectively,
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the inclusion var{N 1
2 ,L

1
2} ⊆ varM holds. By symmetry, the identities (3.3)

also define a subvariety of varM.
The identities (3.4) define the variety var{T ▽

2 } ([5, part 9 of the first
proposition]), which is obviously a subvariety of varM. By symmetry, the
identities (3.5) also define a subvariety of varM.

Up to isomorphism, there exist 35 monoids of order four ([21]). Multipli-
cation tables of these 35 monoids are lexicographically listed below; the un-
derlying set of each monoid is {1, 2, 3, 4}, and each table is given by a 4 × 4
array where the (i, j)-entry denotes the product of the elements i and j:

1111
1112
1113
1234
(3.1)

1111
1112
1123
1234
(3.1)

1111
1112
1133
1234
(3.1)

1111
1112
1233
1234
(3.3)

1111
1112
3333
1234
(3.2)

1111
1122
1133
1234
(3.2)

1111
1122
1233
1234
(3.1)

1111
1122
1234
1243
(3.1)

1111
1212
1133
1234
(3.1)

1111
1212
3333
1234
(3.2)

1111
1222
1223
1234
(3.1)

1111
1222
1233
1234
(3.1)

1111
1222
1234
1243
(3.1)

1111
1222
1234
1444
(3.2)

1111
1224
1234
1244
(3.3)

1111
1224
1234
1442
(3.1)

1111
1224
1234
4444
(3.2)

1111
1234
1324
4444
(3.4)

1111
1234
1342
1423
(3.1)

1111
1234
3333
3412
(3.4)

1111
1234
3333
4444
(3.2)

1114
1124
1234
1144
(3.3)

1114
1124
1234
4441
(3.1)

1114
1224
1234
1144
(3.3)

1114
1224
1234
1444
(3.3)

1114
1224
1234
4441
(3.1)

1114
1234
1324
1444
(3.5)

1114
1234
1324
4441
(3.1)

1133
1234
1331
1432
(3.5)

1133
1234
3311
3411
(3.1)

1133
1234
3311
3412
(3.1)

1134
1234
1334
1434
(3.3)

1134
1234
3341
4413
(3.1)

1234
2143
3412
4321
(3.1)

1234
2143
3421
4312
(3.1)

Below each table is listed an identity system from Lemma 3.3 that is satisfied
by the monoid. Therefore the inclusion M4 ⊆ varM holds. The inclusion
varM ⊆ M4 is obvious because each monoid in M is of order at most four.
In particular, if An denotes the n-th monoid from above, then the monoids

A2
∼= N 1

3 , A20
∼= T ▽

2 , A29
∼= T2, A33

∼= C1
3 , and A35

∼= C4

generate the variety M4.

4. Identities formed by words in canonical form

4.1. Identities satisfied by M4. The following lemma, the proof of which
is routine, contains some useful identities deducible from the identities (0).

Lemma 4.1. The identities (0) imply the identities

xhx12kxtx
∗
≈ xhkxtx, xhxkx12tx

∗
≈ xhxktx,(4.1a)

xhx2kx ≈ x3hkx, x3hx ≈ xhx3,(4.1b)
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xhy2x2ky
∗
≈ xhx2y2ky,(4.1c)

xhykxytxdy
∗
≈ xhykyxtxdy, xhykxytydx

∗
≈ xhykyxtydx.(4.1d)

Lemma 4.2. The identities (4.1) imply the following identities :

(4.2) AxB · y2nCx2m ·DyE ≈ AxB · Cx2mC11y2nC ·DyE

for any m,n ≥ 1 and A,B,C,D,E ∈ Σ∗ with con(C) ⊆ con(AB) ∩ con(DE).

Proof. There are two cases depending on the values of m and n.
Case 1: m = n = 1. The following is established by induction on k ≥ 0:

(†k) If |C| = k, then the identities (4.1) imply the identity (4.2).

If k = 0, then the identity (4.1c) clearly implies the identity (4.2). Hence (†0)
holds. Suppose that (†k) holds for some k > 0. Let |C| = k + 1, so that
C = zZ for some z ∈ Σ and Z ∈ Σ+ with |Z| = k. Then (†k+1) holds because

AxB · y2Cx2 ·DyE = AxB · y2zZx2 ·DyE

(4.1d)
≈ AxB · yzyZx2 ·DyE

(4.1a)
≈ AxB · z12yzyZx2z12 ·DyE

(4.1a)
≈ AxB · z12yzyZx2zy12z11 ·DyE

= AxB · z11(zy)2Zx2(zy)y11z11 ·DyE

(4.2)
≈ AxB · z11Zx2Z11(zy)2Z(zy)y11z11 ·DyE

(4.1d)
≈ AxB · z11Zx2zZ11y2zZy12z12 ·DyE

(4.1a)
≈ AxB · z11Zx2zZ11y2zZ ·DyE

(4.1b)
≈ AxB · zZx2z11Z11y2zZ ·DyE

(4.1d)
≈ AxB · zZx2(zZ)11y2zZ ·DyE

= AxB · Cx2C11y2C ·DyE.

Case 2: m,n ≥ 1. Then

AxB · y2nCx2m ·DyE
(4.1b)
≈ Ax2m−1B · y2Cx2 ·Dy2n−1E

(4.2)
≈ Ax2m−1B · Cx2C11y2C ·Dy2n−1E

(4.1b)
≈ AxB · Cx2mC11y2nC ·DyE,

where the second deduction holds by Case 1.
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4.2. Stacks. Suppose that a word U can be written in the form

(4.3) U = U0

m∏

i=1

(xeiUi) = U0 x
e1U1 · · ·x

emUm,

where x ∈ Σ, e1, e2, . . . , em ≥ 1, U0, Um ∈ Σ∗, and U1, U2, . . . , Um−1 ∈ Σ+ are
such that x /∈ con(U0U1 · · ·Um). Then

• the factors xe1 , xe2 , . . . , xem are called x-stacks, or simply stacks, of U ;
• the first x-stack xe1 and the last x-stack xem are collectively called
exterior x-stacks of U ;

• the non-exterior x-stacks xe2 , xe3 , . . . , xem−1 are called interior x-stacks
of U ;

• ei is the exponent of the stack xei .

Note that if m ∈ {1, 2} in (4.3), then U has no interior x-stacks. If m = 1
in (4.3), then U = U0x

e1U1, so that the first x-stack coincides with the last
x-stack; in this case, xe1 is also called a lone stack of U .

4.3. Exterior vectors. The exterior vector of a word U , denoted by ext(U),
is the vector with the exterior stacks of U as its components. For instance, if

U = x3 · y ·x2 · z5 · y · t · y4 · x · y2 · z2 · y

= A · B · C ·D · E · F · G ·H · I · J ·K,
(4.4)

then

ext(U) = (A,B,D, F,H, J,K) = (x3, y, z5, t, x, z2, y).

Note that since each entry of ext(U) is an exterior stack of U , no more than
two entries in ext(U) share the same letter.

The separation degree of a letter x in a word U , denoted by sep(x, U), is
the number of exterior stacks of U that occur between two exterior x-stacks
of U . If xe is a lone stack of U , then define sep(x, U) = 0. The separation

degree of a word U is the number

sep(U) =
∑

{sep(x, U) | x ∈ con(U)}.

Example 4.3. For the word U in (4.4),

(i) sep(x, U) = |{B,D, F}| = 3;
(ii) sep(y, U) = |{D,F,H, J}| = 4;
(iii) sep(z, U) = |{F,H}| = 2;
(iv) sep(t, U) = 0;
(v) sep(U) = 3 + 4 + 2 + 0 = 9.

4.4. Canonical form. A word U that contains at least two distinct letters
is said to be in canonical form if

(4.5) U = xe0
0

m∏

i=1

(Ui x
ei
i ),
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where x0, x1, . . . , xm ∈ Σ, e0, e1, . . . , em ≥ 1, and U1, U2, . . . , Um ∈ Σ∗ satisfy
all of the following:

(CF1) ext(U) = (xe0
0 , xe1

1 , . . . , xem
m ), so that con(U) =

⋃m

i=0{xi};
(CF2) ext(U) is not of the form (. . . , xp, . . . , yq, xr, . . . , ys, . . .) with q and r

even;
(CF3) the letters of Ui are in strict alphabetical order with xi−1, xi /∈ con(Ui);
(CF4) if xi−1 = xi, then Ui 6= ∅ and ei−1 = 1;
(CF5) (a) if xei

i is a lone stack of U , then ei ≤ 14;
(b) if xei

i is a non-lone first stack of U , then ei ≤ 2;
(c) if xei

i is a non-lone last stack of U and occ(xi, U) = ei + 1, then
ei ≤ 13;

(d) if xei
i is a non-lone last stack of U and occ(xi, U) ≥ ei + 2, then

ei ≤ 12.

Remark 4.4. If Ui = ∅, then xi−1 6= xi because x
ei−1

i−1 and xei
i are stacks.

Since U1 = Um = ∅ by (CF3), it follows that x0 6= x1 and xm−1 6= xm. In
particular,

(i) if m = 1, then U = xe0
0 xe1

1 where xe0
0 and xe1

1 are lone stacks;
(ii) if m = 2, then U = xe0

0 xe1
1 xe2

2 where xe0
0 is a first stack, xe1

1 is a lone
stack, and xe2

2 is a last stack;
(iii) if m ≥ 3, then U = xe0

0 xe1
1 · · ·x

em−1

m−1 x
em
m , where xe0

0 and xe1
1 are first

stacks and x
em−1

m−1 and xem
m are last stacks.

Lemma 4.5. Let U be any word. Then there exists some word U in canon-

ical form such that the identities (0) imply the identity U ≈ U.

Proof. By Lemmas 4.1 and 4.2, it suffices to convert the word U , using
the identities (4.1) and (4.2), into a word in canonical form. It is clear that the
word U can be written in the form (4.5) that satisfies (CF1) with each Ui being
a product of interior stacks of U . Then the letters of Ui can be permutated
within Ui by the identities (4.1d) in any manner. In particular, any occurrence
of xi−1 in Ui can be moved to the left and combined with the xi−1-stack that
immediately precedes Ui, and any occurrence of xi in Ui can be moved to the
right and combined with the xi-stack that immediately follows Ui, that is,

U = · · ·x
ei−1

i−1 Ui x
ei
i · · ·

(4.1d)
≈ · · ·x

p+ei−1

i−1 U ′
i x

q+ei
i · · ·

where p = occ(xi−1, Ui), q = occ(xi, Ui), and U ′
i is obtained by removing

all occurrences of xi−1 and xi from Ui. Therefore generality is not lost by
assuming that xi−1, xi /∈ con(Ui) to begin with.

Suppose that xr and yq are adjacent entries in ext(U) that violate (CF2),
that is,

ext(U) = ( . . . , xp, . . . , yq, xr, . . . , ys, . . . )
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where x 6= y and q and r are even. Then

U = · · ·xp · · ·Ui−1
︸ ︷︷ ︸

H

· yqUi x
r · Ui+1 · · · y

s · · ·
︸ ︷︷ ︸

K

with x
ei−1

i−1 = yq and xei
i = xr. The factors Ui−1, Ui, and Ui+1 are products

of interior stacks of U . In particular, con(Ui) ⊆ con(H) ∩ con(K). Hence

U
(4.2)
≈ · · ·xp · · ·Ui−1 · Ui x

rU11
i yqUi · Ui+1 · · · y

s · · ·
︸ ︷︷ ︸

U{1}

,

that is, the word U is converted by the identities (4.2) into the word U{1},
where ext(U{1}) is obtained from ext(U) by interchanging the entries yq

and xr . Note that the entries xr and yq in ext(U{1}) no longer vio-
late (CF2). Further, it is clear that sep(U{1}) < sep(U) or, more precisely,
sep(U{1}) = sep(U)− 2.

For any k > 1, if two adjacent entries in ext(U{k}) violate (CF2), then
following the interchanging procedure described in the previous paragraph,
the identities (4.2) can be used to convert U{k} into a word U{k+1}, where
ext(U{k+1}) is obtained from ext(U{k}) by interchanging two adjacent entries
and sep(U{k+1}) = sep(U{k}) − 2. Since this interchanging procedure de-
creases the separation degree of a word by two, it can only be repeated on U
at most t ≤ ⌊sep(U)/2⌋ times. The word U{t} then satisfies (CF2). Therefore
generality is not lost by assuming that the word U satisfies (CF1) and (CF2)
to begin with.

Since the factor Ui of U is a product of interior stacks of U , its letters can
be ordered alphabetically by the identities (4.1d), resulting in a word of the

form U ′
i = yf11 yf22 · · · yfrr . If y2j is a factor of U ′

i , then the identities (4.1b) can

be used to gather y2j with the last yj-stack of U . This can be repeated until

no letter occurs more than once in U ′
i . Hence (CF3) is satisfied.

Suppose that xi−1 = xi. Then Ui 6= ∅ because x
ei−1

i−1 and xei
i are stacks

of U . Further, if ei−1 ≥ 2, then

U = · · ·x
ei−1

i−1 Ui x
ei
i · · · = · · ·x

ei−1

i Ui x
ei
i · · ·

(4.1d)
≈ · · ·xi Ui x

ei+ei−1−1
i · · · since Ui is a product of interior stacks of U

= · · ·xi−1Ui x
ei+ei−1−1
i · · · ,

that is, the identities (4.1d) can be used to reduce the exponent of the
stack x

ei−1

i−1 to 1. Hence (CF4) is satisfied. Finally, it is easily shown that
(CF5a)–(CF5d) are satisfied by applying the identities (4.1a) and (4.1b).

5. Proof of Theorem 1.1

By Corollary 3.2, the variety M4 satisfies the identities (0). Therefore to
show that the variety M4 is defined by the identities (0), it suffices to show
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that any identity U ≈ V satisfied by M4 is implied by the identities (0). Note
that con(U) = con(V ) by Lemma 2.1.

First suppose that con(U) = con(V ) = {x}. If the identity U ≈ V is
trivial, then it is clearly implied by the identities (0). Therefore assume that
U 6= V , whence by Lemma 2.1, there exist some p, q ≥ 0 such that U = x3+p

and V = x3+q. Further, it follows from Lemma 2.2 that p ≡ q (mod 12).
Hence the identity U ≈ V is implied by the identity x15 ≈ x3 from (0).

Therefore it remains to consider the case in which | con(U)|, | con(V )| ≥ 2.
Then by Lemma 4.5, the words U and V can be assumed to be in canonical
form, say

U = xe0
0

m∏

i=1

(Ui x
ei
i ) and V = yf00

n∏

i=1

(Vi y
fi
i )

where m,n ≥ 1. The results in the remainder of this section gradually prove
that U = V . The proof of Theorem 1.1 is then complete.

Lemma 5.1. Suppose that (x0, x1, . . . , xk) = (y0, y1, . . . , yk). Then the

exterior stack xek
k of U is lone if and only if the exterior stack yfkk of V is

lone.

Proof. By symmetry, it suffices to assume that the exterior stack xek
k

of U is lone, and then show that the exterior stack yfkk of V is also lone.

Seeking a contradiction, suppose that the exterior stack yfkk of V is not lone.
Since the exterior stack xek

k of U is lone, the letter xk does not appear in
the list x0, x1, . . . , xk−1. Therefore the letter yk = xk does not appear in

(y0, y1, . . . , yk−1) = (x0, x1, . . . , xk−1), whence yfkk is a non-lone first stack
of V , say yk = yℓ for some ℓ > k. For convenience, write x = xk = yk = yℓ.
Then by assumption,

U = xe0
0

( k−1∏

i=1

(Ui x
ei
i )

)

Uk

︸ ︷︷ ︸

A

· xek ·

( m∏

i=k+1

(Ui x
ei
i )

)

︸ ︷︷ ︸

B

where x = xk /∈ con(AB), and

V = xf0
0

( k−1∏

i=1

(Vi x
fi
i )

)

Vk

︸ ︷︷ ︸

A′

· xfk ·

( ℓ−1∏

i=k+1

(Vi y
fi
i )

)

︸ ︷︷ ︸

B′

Vℓ · x
fℓ ·

( n∏

i=ℓ+1

(Vi y
fi
i )

)

︸ ︷︷ ︸

C′

where the letter x = yk = yℓ does not appear in the list yk+1, . . . , yℓ−1 and
x /∈ con(A′C′).

First suppose that k + 1 = ℓ, so that B′ = ∅. Then Vℓ 6= ∅ by (CF4).
Choose any letter z ∈ con(Vℓ), so that z 6= x by (CF3). Then

occ(z, U) = occ(z, A) + occ(z,B)
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and occ(z, V ) = occ(z, A′) + occ(z, Vℓ) + occ(z, C′).

Since occ(z, U) ≡ occ(z, V ) (mod 2) by Lemma 2.2, it follows that

(A) occ(z, A) + occ(z,B) ≡ occ(z, A′) + occ(z, Vℓ) + occ(z, C′) (mod 2).

But Lemma 2.3 implies that

(B) occ(z, A) = occ(ż, x, U) ≡ occ(ż, x, V ) = occ(z, A′) (mod 2),
(C) occ(z,B) = occ(x, ż, U) ≡ occ(x, ż, V ) = occ(z, C′) (mod 2).

Therefore occ(z, Vℓ) = 0 (mod 2) by (A)–(C), whence occ(z, Vℓ) is positive
and even. But this contradicts (CF3), so the assumption that k + 1 = ℓ is
impossible.

It thus remains to assume that k + 1 < ℓ. Then B′ contains the exterior
stack y

fk+1

k+1 of V . It is shown that each of the following collectively exhaustive

cases leads to a contradiction. Hence the assumption that the stack yfkk is
non-lone is impossible.

Case 1: y
fk+1

k+1 is a last non-lone stack of V . Then

(D) yk+1 is precisely one of x0, x1, . . . , xk−1,
(E) occ(yk+1, C

′) = 0,

and since yk+1 /∈ con(Vk+1) by (CF3),

(F) occ(yk+1, B
′) = fk+1.

By Lemma 2.3(ii),

fin(U) = fin(V ) = · · · yk+1 · · ·x · · · ,

so that yk+1 /∈ con(B). Therefore by (D), the yk+1-stack of U is lone and
occurs in A, whence occ(yk+1, U) = occ(yk+1, A). Further,

occ(yk+1, V ) = occ(yk+1, A
′) + occ(yk+1, B

′) + occ(yk+1, C
′)

= occ(yk+1, A
′) + fk+1 by (E) and (F).

Therefore, as occ(yk+1, U) ≡ occ(yk+1, V ) (mod 2) by Lemma 2.2,

(G) occ(yk+1, A) ≡ occ(yk+1, A
′) + fk+1 (mod 2).

But Lemma 2.3(iii) implies that

(H) occ(yk+1, A) = occ(ẏk+1, x, U) ≡ occ(ẏk+1, x, V ) = occ(yk+1, A
′)

(mod 2).

Thus fk+1 ≡ 0 (mod 2) by (G) and (H), whence fk+1 = 2p for some p ≥ 1.
Now clearly occ(x, U) = occ(yk+1, ẋ, U). On the other hand, x /∈ con(Vk+1)
by (CF3), so that occ(x, V ) = fk + occ(yk+1, ẋ, V ). Hence, by Lemma 2.2,

occ(yk+1, ẋ, U) ≡ fk + occ(yk+1, ẋ, V ) (mod 2).

It then follows from Lemma 2.3(iv) that fk ≡ 0 (mod 2), whence fk = 2 by

(CF5)(b). Therefore the stacks xfk = x2 and y
fk+1

k+1 = y2pk+1 of V violate (CF2),
contradicting the assumption that the word V is in canonical form.
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Case 2: y
fk+1

k+1 is a first stack of V . Then by Lemma 2.3(i),

ini(U) = ini(V ) = · · ·x · · · yk+1 · · · ,

so that every yk+1-stack of U occurs in B, that is,

(I) occ(yk+1, U) = occ(yk+1, B).

Hence by Lemma 2.3(ii),

fin(V ) = fin(U) = · · ·x · · · yk+1 · · · .

It follows that the factor C′ of V must contain the letter yk+1. Therefore

(J) the stack y
fk+1

k+1 of V is a non-lone first stack, while the last yk+1-stack
of V occurs in C′.

Subcase 2.1: k + 1 = ℓ− 1. Then

V = xf0
0

( k−1∏

i=1

(Vi x
fi
i )

)

Vk

︸ ︷︷ ︸

A′

· xfk · Vk+1y
fk+1

k+1
︸ ︷︷ ︸

B′

Vℓ · x
fℓ ·

( n∏

i=ℓ+1

(Vi y
fi
i )

)

︸ ︷︷ ︸

C′

.

Since yk+1 = yℓ−1 /∈ con(Vℓ) by (CF3),

(K) occ(yk+1, V ) = fk+1 + occ(yk+1, C
′).

Further, since occ(yk+1, U) ≡ occ(yk+1, V ) (mod 2), by Lemma 2.2, it follows
from (I) and (K) that

(L) occ(yk+1, B) ≡ fk+1 + occ(yk+1, C
′) (mod 2).

But Lemma 2.3(iv) implies that

occ(yk+1, B) = occ(x, ẏk+1, U) ≡ occ(x, ẏk+1, V ) = occ(yk+1, C
′) (mod 2),

whence fk+1 ≡ 0 (mod 2) by (L). Thus fk+1 = 2p for some p ≥ 1. Now

(M) occ(x, U) = occ(ẋ, yk+1, U)

by (I). On the other hand, x /∈ con(Vk+1Vℓ) by (CF3), so that

(N) occ(x, V ) = occ(ẋ, yk+1, V ) + fℓ.

Since occ(x, U) ≡ occ(x, V ) (mod 2), by Lemma 2.2, it follows from (M)

and (N) that

occ(ẋ, yk+1, U) ≡ occ(ẋ, yk+1, V ) + fℓ (mod 2),

whence fℓ ≡ 0 (mod 2) by Lemma 2.3(iii). Thus fℓ = 2q for some q ≥ 1.

Consequently, the stacks y
fk+1

k+1 = y2pk+1 and xfℓ = x2q of V violate (CF2),
contradicting the assumption that the word V is in canonical form.
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Subcase 2.2: k + 1 < ℓ− 1. Then

V =

A′

︷ ︸︸ ︷

xf0
0

( k−1∏

i=1

(Vi x
fi
i )

)

Vk · xfk ·

B′

︷ ︸︸ ︷

Vk+1 y
fk+1

k+1 · Vk+2 y
fk+2

k+2 · · · Vℓ · x
fℓ ·

·

( n∏

i=ℓ+1

(Vi y
fi
i )

)

︸ ︷︷ ︸

C′

,

and yk+1 6= yk+2 by (J). Seeking a contradiction, suppose that

(†) y
fk+2

k+2 is a non-lone last stack of V .

Then the first yk+2-stack of V occurs in A′, so that

(O) yk+2 coincides with precisely one of x0, x1, . . . , xk−1.

Since yk+2 /∈ con(Vk+2) by (CF3), it follows from (†) that

(P) occ(yk+2, B
′) = occ(yk+2, Vk+1) + fk+2.

It is clear that occ(yk+2, C
′) = 0 by (†). Therefore

occ(yk+2, V ) = occ(yk+2, A
′) + occ(yk+2, B

′) + occ(yk+2, C
′)

= occ(yk+2, A
′) + occ(yk+2, Vk+1) + fk+2 + 0

by (P), whence

(Q) occ(yk+2, V ) = occ(ẏk+2, yk+1, V ) + fk+2.

Now

fin(U) = fin(V ) by Lemma 2.3(ii)

= · · · yk+2 · · ·x · · · yk+1 · · · by (J) and (O).

Therefore, as xek is a lone stack of U ,

(R) every occurrence of yk+2 in U precedes xek while every occurrence of
yk+1 in U follows xek .

Hence

(S) occ(yk+2, U) = occ(ẏk+2, yk+1, U).

Since occ(yk+2, U) ≡ occ(yk+2, V ) (mod 2) by Lemma 2.2, it follows from (Q)

and (S) that

occ(ẏk+2, yk+1, U) ≡ occ(ẏk+2, yk+1, V ) + fk+2 (mod 2).

It then follows from Lemma 2.3(iii) that fk+2 ≡ 0 (mod 2), whence fk+2 = 2q
for some q ≥ 1.

It is clear that (R) implies that

(T) occ(yk+1, U) = occ(yk+2, ẏk+1, U).

Further, yk+1 /∈ con(Vk+2) by (CF3), so that (J) and (†) imply that

(U) occ(yk+1, V ) = fk+1 + occ(yk+2, ẏk+1, V ).
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Therefore Lemma 2.2, (T), and (U) imply that

occ(yk+2, ẏk+1, U) ≡ fk+1 + occ(yk+2, ẏk+1, V ) (mod 2).

It then follows from Lemma 2.3(iv) that fk+1 ≡ 0 (mod 2), whence fk+1 = 2

by (CF5)(b). Now the stacks y
fk+1

k+1 = y2k+1 and xfk+1 = x2q of V violate
(CF2), contradicting the assumption that the word V is in canonical form.

The assumption (†) thus cannot hold, whence y
fk+2

k+2 is a first stack of V . Note
that if all yk+2-stacks of V occur in B′, then

ini(V ) = · · ·x · · · yk+2 · · · and fin(V ) = · · · yk+2 · · ·x · · · .

But since ini(U) = ini(V ) and fin(U) = fin(V ) by Lemma 2.3, every occur-
rence of yk+2 in U is sandwiched by two occurrences of x; this is impossible
because xek is a lone stack of U . Consequently,

(V) y
fk+2

k+2 is a first stack of V and the last yk+2-stack of V occurs in C′.

By repeating the arguments that deduced (V), it can be shown that for

each i ∈ {k + 2, k + 3, . . . , ℓ − 1}, the exterior stack yfii of V is a first stack,
while the last yi-stack of V occurs in C′. By repeating the same argument on

the stacks y
fℓ−1

ℓ−1 and xfℓ = yfℓℓ , both fℓ−1 and fℓ can be shown to be positive
even integers; these stacks then violate (CF2).

Lemma 5.2. Suppose that (x0, x1, . . . , xk−1) = (y0, y1, . . . , yk−1). Then

xk = yk.

Proof. It is notationally less cumbersome to write x = xk and y = yk.
Suppose that x 6= y. Then

U = xe0
0

( k−1∏

i=1

(Ui x
ei
i )

)

Uk

︸ ︷︷ ︸

A

· xek ·

( m∏

i=k+1

(Ui x
ei
i )

)

︸ ︷︷ ︸

B

and

V = xf0
0

( k−1∏

i=1

(Vi x
fi
i )

)

Vk

︸ ︷︷ ︸

A′

· yfk ·

( n∏

i=k+1

(Vi y
fi
i )

)

︸ ︷︷ ︸

B′

.

It is shown that each of the following collectively exhaustive cases leads to a
contradiction. Hence the assumption that x 6= y is impossible.
Case 1: xek is a first stack of U and yfk is a first stack of V . Then x /∈ con(A)
and y /∈ con(A′), so that

(A) ini(U) = ini(A)x · · · and ini(V ) = ini(A′)y · · · .

But ini(U) = ini(V ) by Lemma 2.3(i) and ini(A) = ini(x0x1 · · ·xk−1) = ini(A′).
Therefore the contradiction x = y follows from (A).
Case 2: xek is a last stack of U and yfk is a last stack of V . By Case 1, it is
not possible for xek to be lone in U and yfk to be lone in V simultaneously.
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Therefore by symmetry, it suffices to assume that the stack xek is not lone
in U , whence

(B) x appears precisely once in the list x0, x1, . . . , xk−1,

say x = xj for some j ∈ {0, 1, . . . , k − 1}. Hence

U = xe0
0

( j−1
∏

i=1

(Ui x
ei
i )

)

Uj

︸ ︷︷ ︸

A1

· xej ·

( k−1∏

i=j+1

(Ui x
ei
i )

)

Uk

︸ ︷︷ ︸

A2

· xek ·

( m∏

i=k+1

(Ui x
ei
i )

)

︸ ︷︷ ︸

B

and

V = xf0
0

( j−1
∏

i=1

(Vi x
fi
i )

)

Vj

︸ ︷︷ ︸

A′
1

· xfj ·

( k−1∏

i=j+1

(Vi x
fi
i )

)

Vk

︸ ︷︷ ︸

A′
2

· yfk ·

( n∏

i=k+1

(Vi y
fi
i )

)

︸ ︷︷ ︸

B′

,

where A = A1x
ejA2 and A′ = A′

1x
fjA′

2. By Lemma 5.1, the stack xfj of V
cannot be lone. Thus by (B), the last x-stack of V occurs in B′, so that
fin(V ) = · · · y · · ·x · · · . Therefore fin(U) = · · · y · · ·x · · · by Lemma 2.3(ii),
whence the last y-stack of U occurs in A1 or A2. If this last y-stack of U is
not lone, then precisely two of x0, . . . , xj−1, xj+1, . . . , xk−1 coincide with y,
whence there are three exterior y-stacks in V , which is clearly impossible.
Therefore the y-stack in U is lone; in this case, Lemma 5.1 is violated.
Case 3: xek is a first stack of U and yfk is a last stack of V . By Cases 1
and 2, neither the stack xek of U nor the stack yfk of V can be lone, thus

(C) x /∈ con(A) and x ∈ con(B);
(D) the first y-stack of V occurs in A′ (so that y appears precisely once in

the list x0, x1, . . . , xk−1) and y /∈ con(B′).

Since

ini(V ) = ini(U) by Lemma 2.3(i)

= · · · y · · ·x · · · by (C) and (D),

the first x-stack of V follows the first y-stack of V . If x ∈ con(A′), so that
the first x-stack of V occurs in A′, then x is precisely one of x0, x1, . . . , xk−1,
violating (C). Therefore

(E) x /∈ con(A′) and x ∈ con(B′).

It follows from (D) and (E) that fin(V ) = · · · y · · ·x · · · . But fin(U) = fin(V )
by Lemma 2.3(ii), so that fin(U) = · · · y · · ·x · · · . Therefore

(F) the last y-stack of U precedes the last x-stack of U , say y = xℓ for
some ℓ > k.



THE VARIETY GENERATED BY ALL MONOIDS OF ORDER FOUR 389

Hence

U = xe0
0

( k−1∏

i=1

(Ui x
ei
i )

)

Uk

︸ ︷︷ ︸

A

· xek ·

( ℓ−1∏

i=k+1

(Ui x
ei
i )

)

Uℓ

︸ ︷︷ ︸

B1

· yeℓ ·

( m∏

i=ℓ+1

(Ui x
ei
i )

)

︸ ︷︷ ︸

B2

and

V = xf0
0

( k−1∏

i=1

(Vi x
fi
i )

)

Vk

︸ ︷︷ ︸

A′

· yfk ·

( n∏

i=k+1

(Vi y
fi
i )

)

︸ ︷︷ ︸

B′

,

where B = B1y
eℓB2 with the last x-stack of U occurring in B2. Since xek

is the first x-stack of U , none of the exterior stacks in B1 can be an x-stack,
whence

(G) x does not appear in the list xk+1, . . . , xℓ−1.

Subcase 3.1: k < ℓ−1. Then x
eℓ−1

ℓ−1 is an exterior stack of U that occurs in B1

and xℓ−1 6= x by (G). Further, xℓ−1 6= y by (D). Suppose that x
eℓ−1

ℓ−1 is a last
stack of U , so that fin(U) = · · ·xℓ−1 · · · y · · · . Then fin(V ) = · · ·xℓ−1 · · · y · · ·
by Lemma 2.3(ii), whence the last xℓ−1-stack of V occurs in A′, say xℓ−1 = xq

for some q ≤ k − 1. If there are two exterior xℓ−1-stacks in V , say xℓ−1 = xp

with p < q, then x
ep
p , x

eq
q , and x

eℓ−1

ℓ−1 are three distinct exterior xℓ−1-stacks

of U , which is impossible. Hence the xℓ−1-stack x
fq
q of V is lone. But now the

xℓ−1-stack x
eq
q of U is not lone, and this violates Lemma 5.1. Therefore x

eℓ−1

ℓ−1

is a non-lone first stack of U , whence

(H) xℓ−1 does not appear in the list x0, x1, . . . , xk−1,
(I) the last xℓ−1-stack of U occurs in B2.

Now Lemma 2.3(i) implies that ini(V ) = ini(U) = · · ·x · · ·xℓ−1 · · · , whence
the first xℓ−1-stack of V follows the first x-stack of V . It then follows from (I)

that

(J) the first xℓ−1-stack of V occurs in B′,

whence occ(y, V ) = occ(ẏ, xℓ−1, V ). Further, (D) implies that the first y-
stack of U occurs in A, so (F) implies that occ(y, U) = occ(ẏ, xℓ−1, U) + eℓ.
Therefore

occ(ẏ, xℓ−1, V ) ≡ occ(ẏ, xℓ−1, U) + eℓ (mod 2)

by Lemma 2.2. But

occ(ẏ, xℓ−1, V ) ≡ occ(ẏ, xℓ−1, U) (mod 2)

by Lemma 2.3(iii), so that eℓ is even. On the other hand,

occ(xℓ−1, U) = eℓ−1 + occ(y, ẋℓ−1, U) by (F) and (I)

and occ(xℓ−1, V ) = occ(y, ẋℓ−1, V ) by (J).
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Therefore

eℓ−1 + occ(y, ẋℓ−1, U) ≡ occ(y, ẋℓ−1, V ) (mod 2)

by Lemma 2.2. But

occ(y, ẋℓ−1, U) ≡ occ(y, ẋℓ−1, V ) (mod 2)

by Lemma 2.3(iv), so that eℓ−1 is even. Now since y ∈ con(A) by (D) and
xℓ−1 ∈ con(B2) by (I), the stacks x

eℓ−1

ℓ−1 and yeℓ of U violate (CF2), contra-
dicting the assumption that the word U is in canonical form.
Subcase 3.2: k = ℓ− 1. Then

U = xe0
0

( k−1∏

i=1

(Ui x
ei
i )

)

Uk

︸ ︷︷ ︸

A

· xek · Uℓ · y
eℓ ·

( m∏

i=ℓ+1

(Ui x
ei
i )

)

︸ ︷︷ ︸

B2

and

V = xf0
0

( k−1∏

i=1

(Vi x
fi
i )

)

Vk

︸ ︷︷ ︸

A′

· yfk ·

( n∏

i=k+1

(Vi y
fi
i )

)

︸ ︷︷ ︸

B′

,

where B = Uℓ y
eℓB2. By (CF3),

(K) x, y /∈ con(Uℓ).

Then (C) and (K) imply that occ(x, U) = ek + occ(y, ẋ, U), and (D) and (E)

imply that occ(x, V ) = occ(y, ẋ, V ). Therefore

ek + occ(y, ẋ, U) ≡ occ(y, ẋ, V ) (mod 2)

by Lemma 2.2. But

occ(y, ẋ, V ) ≡ occ(y, ẋ, U) (mod 2)

by Lemma 2.3(iv), so that eℓ is even. On the other hand,

occ(y, U) = occ(ẏ, x, U) + eℓ by (K)

and occ(y, V ) = occ(ẏ, x, V ) by (C).

Therefore
occ(ẏ, x, U) + eℓ ≡ occ(ẏ, x, V ) (mod 2)

by Lemma 2.2. But

occ(ẏ, x, U) ≡ occ(ẏ, x, V ) (mod 2)

by Lemma 2.3(iii), so that eℓ is even. Now since y ∈ con(A) by (D) and
x ∈ con(B2) by (C) and (K), the stacks xek and yeℓ of U violate (CF2),
contradicting the assumption that the word U is in canonical form.
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Lemma 5.3. m = n and xk = yk for all k.

Proof. Suppose that m < n. Since ini(U) = ini(V ) by Lemma 2.3(i), it
follows that x0 = y0. Thus (x0, x1, . . . , xm) = (y0, y1, . . . , ym) by Lemma 5.2,
whence

U = xe0
0

m∏

i=1

(Ui x
ei
i ) and V = xf0

0

( m∏

i=1

(Vi x
fi
i )

)( n∏

i=m+1

(Vi y
fi
i )

)

.

Now fin(U) = fin(V ) by Lemma 2.3(ii), so that xm = yn. Therefore there are
two xm-stacks in V ; the first xm-stack is xfm

m while the last xm-stack is yfnn .
It follows that the letter xm in V does not appear in the list x0, x1, . . . , xm−1,
whence the xm-stack of U is lone. Lemma 5.1 is thus violated.

Therefore the assumption m < n is impossible. By symmetry, it is also
impossible for m > n. Consequently, m = n and the lemma holds.

Lemma 5.4. ek ≡ fk (mod 2) for all k.

Proof. Since x0 6= x1 and U1 = V1 = ∅, by Remark 4.4, it follows from
Lemma 2.3(iii) that

e0 = occ(ẋ0, x1, U) ≡ occ(ẋ0, x1, V ) = f0 (mod 2).

Symmetrically, em ≡ fm (mod 2) by Lemma 2.3(iv). Therefore assume that
0 < k < m, whence

U = xe0
0

( k−1∏

i=1

(Ui x
ei
i )

)

︸ ︷︷ ︸

A

· Uk · x
ek
k · Uk+1 · x

ek+1

k+1

( m∏

i=k+2

(Ui x
ei
i )

)

︸ ︷︷ ︸

B

and

V = xf0
0

( k−1∏

i=1

(Vi x
fi
i )

)

︸ ︷︷ ︸

A′

· Vk · xfk
k · Vk+1 · x

fk+1

k+1

( m∏

i=k+2

(Vi x
fi
i )

)

︸ ︷︷ ︸

B′

.

If xk−1 = xk, then as xk−1 = xk /∈ con(UkVk) by (CF3) and ek−1 = 1 = fk−1

by (CF4), it follows from Lemma 2.2 that

1 + ek = ek−1 + ek = occ(xk, Uk) ≡ occ(xk, Vk)

= fk−1 + fk = 1+ fk (mod 2),

whence ek ≡ fk (mod 2). If xk = xk+1, then ek = 1 = fk by (CF4). Therefore
it remains to assume that xk−1 6= xk 6= xk+1. Then xk /∈ con(UkUk+1VkVk+1)
by (CF3), so that

occ(xk, Uk) = occ(xk, Uk+1) = occ(xk, Vk) = occ(xk, Vk+1) = 0.

There are four cases to consider.
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Case 1: x
ek−1

k−1 and x
fk−1

k−1 are first stacks of U and V respectively, while x
ek+1

k+1

and x
fk+1

k+1 are first stacks of U and V respectively. Then

occ(ẋk, xk+1, U) = occ(xk, A) + occ(xk, Uk) + ek + occ(xk, Uk+1)

= occ(ẋk, xk−1, U) + 0 + ek + 0.

Similarly, occ(ẋk, xk+1, V ) = occ(ẋk, xk−1, V ) + fk. Hence ek ≡ fk (mod 2)
by Lemma 2.3(iii).

Case 2: x
ek−1

k−1 and x
fk−1

k−1 are last stacks of U and V respectively, while x
ek+1

k+1

and x
fk+1

k+1 are last stacks of U and V respectively. Then ek ≡ fk (mod 2) by
an argument symmetrical to Case 1.

Case 3: x
ek−1

k−1 and x
fk−1

k−1 are first stacks of U and V respectively, while x
ek+1

k+1

and x
fk+1

k+1 are last stacks of U and V respectively. Then

occ(xk, U) = occ(xk, A) + occ(xk, Uk) + ek + occ(xk, Uk+1) + occ(xk, B)

= occ(ẋk, xk−1, U) + 0 + ek + 0 + occ(xk+1, ẋk, U).

Similarly, occ(xk, V ) = occ(ẋk, xk−1, V ) + fk + occ(xk+1, ẋk, V ). It then fol-
lows from Lemmas 2.2, 2.3(iii) and 2.3(iv) that ek ≡ fk (mod 2).

Case 4: x
ek−1

k−1 and x
fk−1

k−1 are last stacks of U and V respectively, while x
ek+1

k+1

and x
fk+1

k+1 are first stacks of U and V respectively. Then

occ(ẋk, xk+1, U) = occ(xk, A) + occ(xk, Uk) + ek + occ(xk, Uk+1)

= occ(xk, A) + 0 + ek + 0

and occ(xk−1, ẋk, U) = occ(xk, Uk) + ek + occ(xk, Uk+1) + occ(xk, B)

= 0 + ek + 0 + occ(xk, B),

so that

occ(xk, A) = occ(ẋk, xk+1, U)− ek

and occ(xk, B) = occ(xk−1, ẋk, U)− ek.

Hence

occ(xk, U) = occ(xk, A) + occ(xk, Uk) + ek + occ(xk, Uk+1) + occ(xk, B)

= occ(ẋk, xk+1, U)− ek + 0 + ek + 0 + occ(xk−1, ẋk, U)− ek

= occ(ẋk, xk+1, U) + occ(xk−1, ẋk, U)− ek.

Similarly, occ(xk, V ) = occ(ẋk, xk+1, V ) + occ(xk−1, ẋk, V ) − fk. It then fol-
lows from Lemmas 2.2, 2.3(iii), and 2.3(iv) that ek ≡ fk (mod 2).

Lemma 5.5. Uk = Vk for all k.

Proof. By Lemmas 5.3 and 5.4,

U = xe0
0

m∏

i=1

(Ui x
ei
i ) and V = xf0

0

m∏

i=1

(Vi x
fi
i )
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where m ≥ 1 and

(A) ei ≡ fi (mod 2) for all i.

It is clear that U1 = ∅ = V1 by (CF3). Suppose that

(U1, U2, . . . , Uk−1) = (V1, V2, . . . , Vk−1)

where k ≥ 1. Then it follows from (A) that

(B) occ
(
y, xe0

0

∏k−1
i=1 (Ui x

ei
i )

)
≡ occ

(
y, xf0

0

∏k−1
i=1 (Vi x

fi
i )

)
(mod 2) for all

y ∈ Σ.

The present lemma is thus established by induction once it is shown that
Uk = Vk. Now by (CF3), the letters of Uk and of Vk are in strict alphabetical
order, so that occ(y, Uk), occ(y, Vk) ≤ 1 for all y ∈ Σ. Therefore it suffices
to show that occ(y, Uk) ≡ occ(y, Vk) (mod 2) for any y ∈ Σ. There are two
cases to consider.
Case 1: xek

k and xfk
k are first stacks of U and V respectively. Then

occ(ẏ, x, U) = occ

(

y, xe0
0

k−1∏

i=1

(Ui x
ei
i )

)

+ occ(y, Uk)

and occ(ẏ, x, V ) = occ

(

y, xf0
0

k−1∏

i=1

(Vi x
fi
i )

)

+ occ(y, Vk).

It follows from (B) and Lemma 2.3 (iii) that occ(y, Uk) ≡ occ(y, Vk) (mod 2).

Case 2: xek
k and xfk

k are last stacks of U and V respectively. Then

occ(y, U) = occ

(

y, xe0
0

k−1∏

i=1

(Ui x
ei
i )

)

+ occ(y, Uk) + occ

(

y, xek
k

m∏

i=k+1

(Ui x
ei
i )

)

= occ

(

y, xe0
0

k−1∏

i=1

(Ui x
ei
i )

)

+ occ(y, Uk) + occ(xk, ẏ, U)

and similarly,

occ(y, V ) = occ

(

y, xf0
0

k−1∏

i=1

(Vi x
fi
i )

)

+ occ(y, Vk) + occ(xk, ẏ, V ).

It follows from (B) and Lemmas 2.2 and 2.3(iv) that occ(y, Uk) ≡ occ(y, Vk)
(mod 2).

Lemma 5.6. U = V.

Proof. By Lemmas 5.3–5.5,

U = xe0
0

m∏

i=1

(Ui x
ei
i ) and V = xf0

0

m∏

i=1

(Ui x
fi
i )
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where m ≥ 1 and ei ≡ fi (mod 2) for all i. Let k ∈ {0, 1, . . . ,m}. It is shown
in each of the following collectively exhaustive cases that ek = fk. Therefore
the identity U ≈ V is trivial and is vacuously implied by the identities (0).

Case 1: xek
k is a lone stack of U . Then xfk

k is also a lone stack of V by
Lemma 5.1. Therefore ek, fk ≤ 14 by (CF5)(a) with ek = occ(xk, U) and
fk = occ(xk, V ). If ek ∈ {1, 2}, then clearly ek = fk by Lemma 2.1(i). If
ek ∈ {3, 4, . . . , 14}, then fk ∈ {3, 4, . . . , 14} by Lemma 2.1(ii), whence ek = fk
by Lemma 2.2.

Case 2: xek
k is a non-lone first stack of U . Then xfk

k is also a non-lone first
stack of V . Therefore ek, fk ≤ 2 by (CF5)(b), whence ek = fk by Lemma 5.4.
Case 3: xek

k is a non-lone last stack of U . Then there exists some h < k such
that xh = xk; it is notationally simpler to write x = xh = xk. Hence

U = xe0
0

( h−1∏

i=1

(Ui x
ei
i )

)

Uh

︸ ︷︷ ︸

A

· xeh

( k−1∏

i=h+1

(Ui x
ei
i )

)

Uk x
ek ·

( m∏

i=k+1

(Ui x
ei
i )

)

︸ ︷︷ ︸

B

where x /∈ con(AB). It follows that there are two x-stacks in V . By Case 2,
the exponent eh of the first x-stack of U coincides with the exponent of the
first x-stack of V . Therefore

V = xf0
0

( h−1∏

i=1

(Ui x
fi
i )

)

Uh

︸ ︷︷ ︸

A′

· xeh

( k−1∏

i=h+1

(Ui x
fi
i )

)

Uk x
fk ·

( m∏

i=k+1

(Ui x
fi
i )

)

︸ ︷︷ ︸

B′

where x /∈ con(A′B′). Let p = eh + occ
(
x,

∏k−1
i=h+1 Ui

)
, so that

occ(x, U) = p+ ek and occ(x, V ) = p+ fk.

There are two subcases.
Subcase 3.1: p = 1. Then occ(x, U) = ek + 1 and occ(x, V ) = fk + 1, so
that ek, fk ≤ 13 by (CF5)(c). Hence occ(x, U), occ(x, V ) ∈ {2, 3, . . . , 14}. If
ek = 1, so that occ(x, U) = 2, then occ(x, V ) = 2 by Lemma 2.1(i), whence
fk = 1 = ek. Therefore it remains to assume that ek ∈ {2, 3, . . . , 13}, so that
occ(x, U) ∈ {3, 4, . . . , 14}. Now occ(x, V ) ∈ {3, 4, . . . , 14} by Lemma 2.1(ii),
hence ek = fk by Lemma 2.2.
Subcase 3.2: p ≥ 2. Then occ(x, U) ≥ ek + 2 and occ(x, V ) ≥ fk + 2, so
that ek, fk ≤ 12 by (CF5)(d). Since

p+ ek = occ(x, U) ≡ occ(x, V ) = p+ fk (mod 12)

by Lemma 2.2, it follows that ek = fk.
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