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RATIONAL FUNCTION VARIANT OF A PROBLEM OF

ERDŐS AND GRAHAM

Szabolcs Tengely and Nóra Varga

Hungarian Academy of Sciences and University of Debrecen, Hungary

Abstract. In this paper we provide bounds for the size of the solu-
tions of the Diophantine equations

x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5)

(x + a)(x + b)
= y2,

x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5)

(x + a)(x + b)(x + c)
= y3,

x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5)

(x + a)(x + b)(x + c)(x + d)
= y2,

where a, b, c, d ∈ Z are pairwise distinct integers.

1. introduction

Let us define

f(x, k, d) = x(x + d) · · · (x + (k − 1)d),

and consider the Diophantine equation

(1.1) f(x, k, d) = yl.

Erdős ([5]) and independently Rigge ([17]) proved that the equation
f(x, k, 1) = y2 has no integer solution. Erdős and Selfridge ([7]) extended
this result when d = 1, x ≥ 1 and k ≥ 2 and they stated that f(x, k, 1) is
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66 SZ. TENGELY AND N. VARGA

never a perfect power. This type of Diophantine equations have been studied
intensively.

First assume that l = 2. Euler solved the equation (1.1) with k = 4 (see
[4, pp. 440 and 635]) and after that Obláth ([16]) extended this result to the
product of five terms in arithmetic progression, i.e. k = 5. If d is a power
of a prime number and k ≥ 4 Saradha and Shorey ([20]) proved that (1.1)
has no solutions. Laishram and Shorey ([14]) examined the case where either
d ≤ 1010, or d has at most six prime divisors. Bennett, Bruin, Győry and
Hajdu ([2]) solved (1.1) when 6 ≤ k ≤ 11. Hirata-Kohno, Laishram, Shorey
and Tijdeman ([13]) completely solved the equation (1.1) with 3 ≤ k < 110.
Combining their result with those of Tengely ([23]) all solutions of (1.1) with
3 ≤ k ≤ 100, P (b) < k are determined, where P (u) denotes the greatest prime
factor of u, with the convention P (1) = 1.

Now assume for this paragraph that l ≥ 3. The literature of this equation

(1.2) f(x, k, d) = byl,

with b > 0 and P (b) ≤ k is very rich. Saradha ([19]) proved that (1.2)
has no solution with k ≥ 4. Győry ([9]) studied the product of two and three
consecutive terms in arithmetic progression. Győry, Hajdu and Saradha ([11])
proved that if k = 4, 5 and gcd(x, d) = 1 equation (1.2) cannot be a perfect
power. Hajdu, Tengely and Tijdeman ([12]) proved that the product of k
coprime integers in arithmetic progression cannot be a cube when 2 < k < 39.
Bennett, Bruin, Győry and Hajdu ([2]) gave various finiteness results under
the assumption that k is fixed. If 3 < k < 35 and gcd(x, d) = 1 Győry, Hajdu
and Pintér ([10]) proved that for any positive integers x, d and k the product
f(x, k, d) cannot be a perfect power.

Erdős and Graham ([6]) asked if for fixed r ≥ 1 and {k1, k2, . . . , kr} with
ki ≥ 4 for i = 1, 2, . . . , r the Diophantine equation

r
∏

i=1

f(xi, ki, 1) = y2

has at most finitely many solutions in positive integers (x1, x2, . . . , xr, y) with
xi + ki ≤ xi+1 for 1 ≤ i ≤ r − 1. Ska lba ([21]) provided a bound for the
smallest solution and estimated the number of solutions below a given bound.
Ulas ([25]) gave a counterexample when either r = ki = 4, or r ≥ 6 and
ki = 4. Bauer and Bennett ([1]) extended this result to the cases r = 3 and
r = 5. In the case ki = 5 and r ≥ 5 Bennett and Van Luijk ([3]) constructed
an infinite family such that the product

∏r
i=1 f(xi, ki, 1) is always a perfect

square. Luca and Walsh ([15]) considered the case (r, ki) = (2, 4).
In our previous paper [24] we considered the equation

x(x + 1)(x + 2)(x + 3)

(x + a)(x + b)
= y2
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where a, b ∈ Z, a 6= b are parameters. We provided bounds for the size of
solutions and an algorithm to determine all solutions (x, y) ∈ Z2. The proof
based on Runge’s method and the result of Sankaranarayanan and Saradha
([18]).

In this paper we extend this latter result and study the following three
Diophantine equations

x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5)

(x + a)(x + b)
= y2,

x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5)

(x + a)(x + b)(x + c)
= y3,

x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5)

(x + a)(x + b)(x + c)(x + d)
= y2,

where a, b, c, d ∈ Z are pairwise distinct integers such that a, b, c, d /∈
{0, 1, 2, 3, 4, 5}. Bounds for the solutions of these equations are provided in
the following three theorems.

Theorem 1.1. If (x, y) ∈ Z2 is a solution of the Diophantine equation

x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5)

(x + a)(x + b)
= y2,

then either

x |
(

3 a2 + 2 ab + 3 b2 − 30 a− 30 b + 115
)2
ab

or

|x| ≤ 16t3 + 440t2,

where a, b /∈ {0, 1, 2, 3, 4, 5} and t = max{|a|, |b|}.

Theorem 1.2. If (x, y) ∈ Z2 is a solution of the Diophantine equation

x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5)

(x + a)(x + b)(x + c)
= y3,

then either

x | (a + b + c− 15)3abc

or

|x| ≤ 6t2 + 68t,

where a, b, c /∈ {0, 1, 2, 3, 4, 5} and t = max{|a|, |b|, |c|}.

Theorem 1.3. If (x, y) ∈ Z
2 is a solution of the Diophantine equation

x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5)

(x + a)(x + b)(x + c)(x + d)
= y2,

then either

x | (a + b + c + d− 15)2abcd
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or

|x| ≤ 12t2 + 132t,

where a, b, c, d /∈ {0, 1, 2, 3, 4, 5} and t = max{|a|, |b|, |c|, |d|}.

We will use the following result of Fujiwara ([8]) to prove our statements.

Lemma 1.4. Let p(z) =
∑n

i=0 aiz
i be a polynomial in C[z] with an 6= 0.

Then

max{|ζ| : p(ζ) = 0} ≤ 2 max

{

∣

∣

∣

∣

an−1

an

∣

∣

∣

∣

,

∣

∣

∣

∣

an−2

an

∣

∣

∣

∣

1/2

, . . . ,

∣

∣

∣

∣

a0
an

∣

∣

∣

∣

1/n
}

.

2. Proof of Theorem 1

We deal with the equation

(2.1) F (x) =
x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5)

(x + a)(x + b)
= y2.

The polynomial part of the Puiseux expansion of F (x)1/2 is

P (x) = x2 −
a + b − 15

2
x +

3a2 + 2ab + 3b2 − 30a− 30b + 115

8
.

Let

A(x) = x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5) − (x + a)(x + b)

(

P (x) −
1

8

)2

and

B(x) = x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5) − (x + a)(x + b)

(

P (x) +
1

8

)2

We have that degA = degB = 4 and the leading coefficient of A is 1/4 and
the leading coefficient of B is −1/4. Denote by IA an interval containing all
zeroes of the polynomial A(x) and by IB the interval containing all zeroes of
B(x). We observe that if x < min{a, b} or x > max{a, b} and we also have
that x 6∈ IA, x 6∈ IB , then

A(x)

(x + a)(x + b)
and

B(x)

(x + a)(x + b)

have opposite signs. Therefore there are two possibilities. Either

F (x) −

(

P (x) −
1

8

)2

< 0,

F (x) −

(

P (x) +
1

8

)2

> 0
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or

F (x) −

(

P (x) −
1

8

)2

> 0,

F (x) −

(

P (x) +
1

8

)2

< 0.

We only handle the first case, the second case is very similar. Here we obtain
that

(

P (x) +
1

8

)2

< F (x) = y2 <

(

P (x) −
1

8

)2

.

Hence

(8P (x) + 1)2 < (8y)2 < (8P (x) − 1)2.

The polynomial 8P (x) has integral coefficients, so if x is an integer, then
8P (x) is an integer as well. For a fixed integer x there is only one square
integer between (8P (x) + 1)2 and (8P (x)− 1)2, it is 64P (x)2. Thus y = P (x)
and x divides the constant term of the polynomial 64x(x+1)(x+2)(x+3)(x+
4)(x + 5) − 64(x + a)(x + b)P (x)2, that is x divides

(

3 a2 + 2 ab + 3 b2 − 30 a− 30 b + 115
)2
ab.

It remains to provide an upper bound for the size of roots of A(x) = 1
4x

4 +

a3x
3 + a2x

2 + a1x + a0 and B(x) = − 1
4x

4 + b3x
3 + b2x

2 + b1x + b0. Let
t = max{|a|, |b|}. We have that

|4a3| ≤ 8t3 + 60t2 + 114t + 45,

|4a2| ≤
15

4
t4 + 60 t3 + 450 t2 + 855 t +

1135

4
,

|4a1| ≤
9

4
t5 + 45 t4 + 282 t3 + 855 t2 +

3249

2
t + 480,

|4a0| ≤ 4 t6 + 60 t5 + 339 t4 + 855 t3 +
3249

4
t2.

Similarly we obtain that

|4b3| ≤ 8t3 + 60t2 + 116t + 30,

|4b2| ≤
15

4
t4 + 60 t3 + 450 t2 + 870 t + 255,

|4b1| ≤
9

4
t5 + 45 t4 + 283 t3 + 870 t2 + 1682 t+ 480,

|4b0| ≤ 4 t6 + 60 t5 + 341 t4 + 870 t3 + 841 t2.

By Fujiwara’s result it follows that

max{|ζ| : A(ζ) = 0 or B(ζ) = 0} ≤ 16t3 + 440t2.
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3. Proof of Theorem 2

Now, we consider the equation

(3.1)
x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5)

(x + a)(x + b)(x + c)
= y3,

where a, b, c ∈ Z are pairwise distinct integers with a, b, c /∈ {0, 1, 2, 3, 4, 5}.
The polynomial part of the Puiseux expansion of

(

x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5)

(x + a)(x + b)(x + c)

)1/3

is P (x) = x + 5 − a+b+c
3 . Define

A(x) = x(x+1)(x+2)(x+3)(x+4)(x+5)−(x+a)(x+b)(x+c)

(

P (x) −
1

3

)3

and

B(x) = x(x+1)(x+2)(x+3)(x+4)(x+5)−(x+a)(x+b)(x+c)

(

P (x) +
1

3

)3

.

We obtain that degA = degB = 5 and the leading coefficient of A is 1 and
the leading coefficient of B is -1. Therefore

A(x)

(x + a)(x + b)(x + c)
and

B(x)

(x + a)(x + b)(x + c)

have opposite signs if |x| is larger than the maximum of the zeroes of A(x)B(x)
in absolute value. The following two possibilities can occur. Either

(

P (x) −
1

3

)3

<
x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5)

(x + a)(x + b)(x + c)
<

(

P (x) +
1

3

)3

or
(

P (x) +
1

3

)3

<
x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5)

(x + a)(x + b)(x + c)
<

(

P (x) −
1

3

)3

.

In a similar way than in the proof of Theorem 1 one gets that y = P (x) =
x + 5 − a+b+c

3 . Hence x divides the constant coefficient of the polynomial

27x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5) − 27(x + a)(x + b)(x + c)P (x)3,

that is

x | (a + b + c− 15)3abc.

It remains to determine a bound for the maximum of the zeroes of A(x)B(x)
in absolute value. We apply Fujiwara’s result to obtain such a bound. We
have that A(x) = x5 +a4x

4 +a3x
3 +a2x

2+a1x+a0 and B(x) = −x5+b4x
4 +
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b3x
3 + b2x

2 + b1x+ b0. Let t = max{|a|, |b|, |c|}. First we compute bounds for
the absolute value of the coefficients of A(x) and B(x). These are as follows

|a4| ≤ 3t2 + 14t + 59/3,

|a3| ≤ 16/9t3 + 28t2 + 392/3t+ 3331/27,

|a2| ≤ 29/9t4 + 112/3t3 + 392/3t2 + 2744/9t+ 274,

|a1| ≤ 16/9t5 + 70/3t4 + 392/3t3 + 2744/9t2 + 120,

|a0| ≤ t6 + 14t5 + 196/3t4 + 2744/27t3

and

|b4| ≤ 3t2 + 16t + 1/3,

|b3| ≤ 16/9t3 + 32t2 + 512/3t+ 1979/27,

|b2| ≤ 29/9t4 + 128/3t3 + 512/3t2 + 4096/9t+ 274,

|b1| ≤ 16/9t5 + 80/3t4 + 512/3t3 + 4096/9t2 + 120,

|b0| ≤ t6 + 16t5 + 256/3t4 + 4096/27t3.

One needs to establish a bound for |a5−i|
1/i and |b5−i|

1/i, i = 1, 2, . . . , 5. One
has that max{|a5−i|

1/i, |b5−i|
1/i} ≤ 3t2 + 34t. Thus Fujiwara’s bound implies

that |x| ≤ 6t2 + 68t.

4. Proof of Theorem 3

Consider the Diophantine equation

(4.1)
x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5)

(x + a)(x + b)(x + c)(x + d)
= y2,

where a, b, c, d ∈ Z are pairwise distinct integers with a, b, c, d /∈ {0, 1, 2, 3, 4, 5}.
The polynomial part of the Puiseux expansion of

(

x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5)

(x + a)(x + b)(x + c)(x + d)

)1/2

is P (x) = x + 15−(a+b+c+d)
2 . Let

A(x) = x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5)

− (x + a)(x + b)(x + c)(x + d)

(

P (x) −
1

2

)2

and
B(x) = x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5)

− (x + a)(x + b)(x + c)(x + d)

(

P (x) +
1

2

)2

.
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The degree of A(x) is 5 and the leading coefficient is 1, the degree of B(x) is
also 5 and the leading coefficient is -1. So one has that

A(x)

(x + a)(x + b)(x + c)(x + d)
and

B(x)

(x + a)(x + b)(x + c)(x + d)

have opposite signs if |x| is larger than the maximum of the zeroes of A(x)B(x)
in absolute value. It follows that either

(

P (x) −
1

2

)2

<
x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5)

(x + a)(x + b)(x + c)(x + d)
<

(

P (x) +
1

2

)2

or
(

P (x) +
1

2

)2

<
x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5)

(x + a)(x + b)(x + c)(x + d)
<

(

P (x) −
1

2

)2

.

We conclude that if |x| is large, then y = P (x) = x + 15−(a+b+c+d)
2 and x

divides the constant term of the polynomial

4x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5) − 4(x + a)(x + b)(x + c)(x + d)P (x)2.

That is

x | (a + b + c + d− 15)2abcd.

Now we compute bounds for |ai| and |bi|, i = 0, 1, . . . , 4, where A(x) = x5 +
a4x

4 +a3x
3 +a2x

2 +a1x+a0 and B(x) = −x5 + b4x
4 + b3x

3 + b2x
2 + b1x+ b0.

Let t = max{|a|, |b|, |c|, |d|}. We have that

|a4| ≤ 6t2 + 28t + 36,

|a3| ≤ 6t3 + 28t2 + 196t + 225,

|a2| ≤ 9t4 + 112t3 + 294t2 + 274,

|a1| ≤ 12t5 + 98t4 + 196t3 + 120,

|a0| ≤ 4t6 + 28t5 + 49t4

and

|b4| ≤ 6t2 + 32t + 21,

|b3| ≤ 6t3 + 32t2 + 256t + 225,

|b2| ≤ 9t4 + 128t3 + 384t2 + 274,

|b1| ≤ 12t5 + 112t4 + 256t3 + 120,

|b0| ≤ 4t6 + 32t5 + 64t4.

One obtains that max{|a5−i|
1/i, |b5−i|

1/i} ≤ 6t2 +66t. Thus Fujiwara’s bound
implies that |x| ≤ 12t2 + 132t.
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5. Numerical results

In what follows a solution (x, y) ∈ Z2 is called trivial if y = 0. In this
section we provide complete lists of non-trivial solutions of the considered
three Diophantine equations for certain values of the parameters.

Theorem 5.1. Let a, b ∈ {−10,−9, . . . , 14, 15} \ {0, 1, 2, 3, 4, 5} with a <
b. The pairs (a, b) for which equation (2.1) has a non-trivial solution are given

by

(a, b) list of non-trivial solutions (x, y)

(−10,−8) [(3, 24)]
(−10,−6) [(1, 4)]
(−9,−7) [(2, 12)]
(−9,−6) [(−6, 2)]
(−7,−3) [(−7, 6)]
(−6,−5) [(1, 6) , ]
(−6,−2) [(1, 12) , (−8, 12)]
(−4,−2) [(−10, 30) , (−6, 3)]
(−4, 7) [(−10, 60)]
(−2, 9) [(5, 60)]
(7, 9) [(1, 3) , (5, 30)]
(7, 11) [(3, 12) , (−6, 12)]
(8, 12) [(2, 6)]
(10, 11) [(−6, 6)]
(11, 14) [(1, 2)]
(11, 15) [(−6, 4)]
(12, 14) [(−7, 12)]
(13, 15) [(−8, 24)]

Theorem 5.2. Let a, b, c ∈ {−7,−6, . . . , 12} \ {0, 1, 2, 3, 4, 5} with a <
b < c. The triples (a, b, c) for which equation (3.1) has a non-trivial solution

are given by

(a, b, c) list of non-trivial solutions (x, y)

(−7,−6,−4) [(1,−2) , (−8,−2)]
(−7,−5,−1) [(−9,−3)]
(−7,−2, 12) [(−7, 2)]
(−7, 7, 12) [(2,−2)]
(−7, 9, 11) [(1,−1)]
(−6,−4, 12) [(−6, 1)]
(−6,−3, 8) [(1, 2)]
(−6, 6, 10) [(4,−6)]
(−5,−1, 7) [(−9,−6)]
(−5,−1, 11) [(−9, 6)]
(−4,−3,−2) [(−6,−1)]
(−4,−3, 7) [(−6, 2)]
(−3, 8, 11) [(−6,−2)]
(−2, 6, 10) [(4, 6)]
(−2, 8, 9) [(1,−2)]
(6, 10, 12) [(4, 3)]
(7, 8, 9) [(1, 1)]

(9, 11, 12) [(3, 2) , (−6, 2)]

Theorem 5.3. Let a, b, c, d ∈ {−7,−6, . . . , 12} \ {0, 1, 2, 3, 4, 5} with a <
b < c < d. The tuples (a, b, c, d) for which equation (4.1) has a non-trivial

solution are given by
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(a, b, c, d) list of non-trivial solutions (x, y)

(−7,−6,−5, 7) [(−9, 3)]
(−7,−6,−4,−3) [(1, 2)]
(−7,−6,−4, 6) [(−8, 2)]
(−7,−6, 10, 11) [(−8, 4)]
(−7,−5,−1, 6) [(−9, 3)]
(−7,−5, 6, 10) [(4, 12)]
(−7,−4,−1, 12) [(2, 6)]
(−7,−4, 7, 11) [(3, 6)]
(−7,−4, 7, 12) [(2, 2)]
(−7,−3,−2, 6) [(−7, 2)]
(−7,−3, 6, 12) [(2, 3)]
(−7,−3, 8, 11) [(−7, 3)]
(−7,−2, 9, 11) [(1, 1)]
(−7,−2, 9, 12) [(−7, 2)]
(−7,−1, 8, 12) [(−7, 3)]
(−7, 6, 9, 12) [(−7, 6)]
(−6,−5, 7, 8) [(−9, 12)]

(−6,−5, 10, 11) [(4, 12) , (−9, 12)]
(−6,−5, 11, 12) [(3, 4)]
(−6,−4, 7, 9) [(−10, 15)]
(−6,−4, 7, 12) [(−6, 1)]
(−6,−4, 8, 9) [(−6, 1)]
(−6,−3, 7, 8) [(1, 1)]
(−6,−3, 8, 12) [(2, 3)]
(−6,−2,−1, 7) [(−8, 4)]
(−6,−2, 9, 12) [(−8, 6)]
(−5,−3,−1, 8) [(−9, 6)]
(−5,−3, 8, 9) [(1, 1)]
(−5,−1, 6, 8) [(−9, 12)]

(−5,−1, 10, 12) [(−9, 12)]
(−4,−3, 7, 8) [(−6, 2)]
(−4,−3, 8, 10) [(−6, 1)]
(−4,−3, 9, 11) [(1, 1)]
(−4,−2,−1, 9) [(5, 30)]
(−4,−2, 6, 9) [(−10, 15)]
(−4,−2, 9, 11) [(5, 15)]
(−4,−1, 7, 9) [(5, 15)]
(−4, 6, 7, 9) [(−10, 30)]
(−3,−2, 8, 9) [(1, 2)]
(−3,−2, 8, 11) [(−6, 1)]
(−3,−2, 10, 11) [(4, 12)]
(−3,−1, 6, 10) [(4, 12)]
(−3, 6, 8, 10) [(4, 6)]
(−2, 6, 7, 11) [(3, 4)]

(−2, 10, 11, 12) [(4, 3)]
(−1, 6, 10, 12) [(4, 3)]
(−1, 7, 8, 12) [(2, 2)]
(−1, 9, 11, 12) [(3, 2)]
(8, 9, 11, 12) [(−6, 2)]

Proofs of Theorems 4, 5 and 6. We wrote Sage ([22]) codes to com-
pute all solutions (x, y) ∈ Z2 of the concrete equations. These can be down-
loaded from

http://shrek.unideb.hu/~tengely/RatFunErdosGraham.sage.
In the procedures approximate values of the real roots of the polynomials
A(x) and B(x) are used instead of the bounds provided by Fujiwara’s result.
In this way we obtain better bounds for the ”small” solutions. The ”large”
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solutions are roots of certain polynomials with integral coefficients, therefore
we factor these polynomials to determine these integral roots.
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