SECOND-METACYCLIC FINITE *p*-GROUPS FOR ODD PRIMES

VLADIMIR ĆEPULIĆ, OLGA PYLIAVSKA AND ELIZABETA KOVAČ STRIKO University of Zagreb, Croatia and National University Kyiv-Mohyla Academy, Ukraine

ABSTRACT. A second-metacyclic finite *p*-group is a finite *p*-group which possesses a nonmetacyclic maximal subgroup, but all its subgroups of index p^2 are metacyclic. In this article we determine up to isomorphism all second-metacyclic *p*-groups for odd primes *p*. There are ten such groups of order p^4 , for each prime $p \geq 3$, and two such groups of order 3^5 .

1. INTRODUCTION

A second-metacyclic group is a group possessing a maximal nonmetacyclic subgroup, but it's second-maximal subgroups are all metacyclic. All second-metacyclic finite 2-groups were determined in [1]. The aim of this article is to determine all second-metacyclic finite p-groups for p > 2. We prove the following

THEOREM 1.1. Let G be a second-metacyclic finite p-group for some odd prime p. Then either $|G| = p^4$, or $|G| = 3^5$.

(1) If $|G| = p^4$, then G is isomorphic to one of the following groups: $G_1 = \langle a, b, c, d \mid a^p = b^p = c^p = d^p = 1, [a, b] = [a, c] = [a, d] = [b, c]$ $= [b, d] = [c, d] = 1 \rangle \cong E_{p^4},$ $G_2 = \langle a, b, c \mid a^{p^2} = b^p = c^p = 1, [a, b] = [a, c] = [b, c] = 1 \rangle \cong Z_{p^2} \times E_{p^2},$ $G_3 = \langle a, b, c, d \mid a^p = b^p = c^p = d^p = 1, [a, b] = [a, c] = [a, d] = [b, c]$ $= [b, d] = 1, [c, d] = a \rangle = \langle b, c, d \rangle,$ $Z(G_3) = \langle a, b \rangle, \ G'_3 = \langle a \rangle, \ U_1(G_3) = 1,$

2000 Mathematics Subject Classification. 20D15.

Key words and phrases. Finite group, p-group, metacyclic, second-maximal subgroup, second-metacyclic subgroup.

$$\begin{array}{l} G_{4} = \langle a, b, c, d \mid a^{p} = b^{p} = c^{p} = 1, d^{p} = a, [a, b] = [a, c] = [a, d] = [b, c] \\ = [b, d] = 1, [c, d] = a \rangle = \langle b, c, d \rangle, \\ Z(G_{4}) = \langle a, b \rangle, G_{4}' = \langle a \rangle, \Im(G_{4}) = \langle a \rangle, \\ G_{5} = \langle a, b, c, d \mid a^{p} = b^{p} = c^{p} = 1, d^{p} = b, [a, b] = [a, c] = [a, d] = [b, c] \\ = [b, d] = 1, [c, d] = a \rangle = \langle b, c, d \rangle, \\ Z(G_{5}) = \langle a, b \rangle, G_{5}' = \langle a \rangle, \Im(G_{5}) = \langle b \rangle, \\ G_{6} = \langle a, b, c, d \mid a^{p} = b^{p} = c^{p} = d^{p} = 1, [a, b] = [a, c] = [a, d] = [b, c] = 1, \\ [b, d] = a, [c, d] = b \rangle = \langle c, d \rangle, \\ Z(G_{6}) = \langle a \rangle, G_{6}' = \langle a, b \rangle, \Im(G_{6}) = 1, \\ G_{7} = \langle a, b, c, d \mid a^{p} = b^{p} = c^{p} = 1, d^{p} = a, [a, b] = [a, c] = [a, d] = [b, c] = 1, \\ [b, d] = a, [c, d] = b \rangle = \langle c, d \rangle, \\ Z(G_{7}) = \langle a \rangle, G_{7}' = \langle a, b \rangle, \Im(G_{7}) = \langle a \rangle, \\ G_{8} = \langle a, b, c, d \mid a^{p} = b^{p} = c^{p} = 1, d^{p} = a, [a, b] = [a, c] = [a, d] = [b, d] \\ = [c, d] = 1, [b, c] = a \rangle = \langle b, c, d \rangle, \\ Z(G_{8}) = \langle d \rangle, G_{8}' = \langle a \rangle, \Im(G_{8}) = \langle a \rangle, \\ G_{9} = \langle a, b, c, d \mid a^{p} = b^{p} = c^{p} = 1, d^{p} = a, [a, b] = [a, c] = [a, d] = [b, d] = 1, \\ [b, c] = a, [c, d] = b \rangle = \langle c, d \rangle, \\ Z(G_{9}) = \langle a \rangle, G_{9}' = \langle a, b \rangle, \Im(G_{9}) = \langle a \rangle, \\ G_{10} = \langle a, b, c, d \mid a^{p} = b^{p} = c^{p} = 1, d^{p} = a^{\sigma}, [a, b] = [a, c] = [a, d] = [b, d] = 1, \\ [b, c] = a, [c, d] = b \rangle = \langle c, d \rangle, \\ \sigma - being the minimal quadratic nonresidue modulo p, \\ Z(G_{10}) = \langle a \rangle, G_{10}' = \langle a, b \rangle, \Im(G_{10}) = \langle a \rangle. \\ Here, the groups G_{1} - G_{7} contain an elementary abelian subgroup \\ \langle a, b, c \rangle \cong E_{p^{3}}, and the groups G_{8} - G_{10} contain none such subgroup \\ \langle a, b, c, d \mid a^{3} = b^{3} = 1, c^{3} = d^{3} = a, f^{3} = ab, [a, b] = [a, c] = [a, d] \\ = [a, d] = [a, b, c, d, f \mid a^{3} = b^{3} = 1, c^{3} = d^{3} = a, f^{3} = ab, [a, b] = [a, c] = [a, d] = [a, d] = [a, d] = [a, b, c, d] = [a, d] = [a, d] = [a, d]$$

$$G_{11} = \langle a, b, c, a, f \mid a = b = 1, c = a = a, f = ab, [a, b] = [a, c] = [a, a]$$
$$= [a, f] = [b, c] = [b, f] = [c, f] = 1, [b, d] = a^2, [c, d] = b, [d, f] = c\rangle$$
$$= \langle d, f \rangle, \ Z(G_{11}) = \langle a \rangle, \ Z_2(G_{11}) = \langle a, b \rangle, \ G'_{11} = \langle a, b, c \rangle.$$

Here, $M = \langle a, b, c, f \rangle$ is the unique abelian maximal subgroup of G_{11} .

$$G_{12} = \langle a, b, c, d, f \mid a^3 = b^3 = 1, c^3 = d^3 = a, f^3 = b, [a, b] = [a, c] = [a, d]$$

= $[a, f] = [b, c] = [b, f] = 1, [b, d] = a^2, [c, d] = b, [c, f] = a^2, [d, f] = c \rangle$
= $\langle d, f \rangle, \ Z(G_{12}) = \langle a \rangle, \ Z_2(G_{12}) = \langle a, b \rangle, \ G'_{12} = \langle a, b, c \rangle.$

 G_{12} does not contain any abelian maximal subgroup.

2. NOTATION AND PRELIMINARIES

At the beginning we recall some definitions and known results.

DEFINITION 2.1. A group G is metacyclic, $G \in \mathcal{MC}$, if it possesses a cyclic normal subgroup N such that the factorgroup G/N is also cyclic. We say that G is proper metacyclic if G is metacyclic but not cyclic.

DEFINITION 2.2. G is minimal nonmetacyclic, $G \in \mathcal{MC}_1$, if G is not metacyclic, but all its maximal subgroups are metacyclic.

DEFINITION 2.3. G is second-metacyclic group, $G \in \mathcal{MC}_2$, if it possesses a nonmetacyclic maximal subgroup, but all its second-maximal subgroups are metacyclic.

PROPOSITION 2.4. If G is a proper metacyclic group of order $|G| = 3^3$, then either

$$G = \langle x \mid x^9 = 1 \rangle \times \langle y \mid y^3 = 1 \rangle \cong Z_9 \times Z_3, \text{ or}$$
$$G = \langle x, y \mid x^9 = y^3 = 1, x^y = x^4 \rangle,$$

for some $x, y \in G$, and it is $\mathfrak{V}_1(G) = \langle x^3 \rangle, \Omega_1(G) = \langle x^3, y^3 \rangle$ in both cases.

PROPOSITION 2.5. If G is a p-group of order $|G| = p^2$, then G is abelian and |AutG|, the order of its automorphism group, is divisible by p, but not by p^2 .

PROPOSITION 2.6. For $S \subseteq G$, denote by $\langle \langle S \rangle \rangle$ the normal closure of S in G, that is the minimal normal subgroup of G containing S. For $G = \langle a_1, a_2, ..., a_t \rangle$ is $G' = \langle \langle [a_i, a_j] | 1 \leq i < j \leq t \rangle \rangle$.

THEOREM 2.7 (Blackburn [1], Huppert [3, III.14.2]). Let G be a p-group of maximal class of order p^n . Then for each $k, 0 \leq k \leq n-2$, there exist exactly one normal subgroup N of G of order p^k and $N = Z_k(G) = K_{n-k}(G)$.

THEOREM 2.8 (Blackburn [1], Huppert [3, III.11.11]). Let G be a p-group, which is minimal nonmetacyclic. Then one of the following assertions holds:

- (a) G is elementary abelian of order p^3 .
- (b) It is p > 2 and G is nonabelian of exponent p and order p^3 .
- (c) G is a 3-group of class 3 and of order 3^4 .
- (d) G is a 2-group with $|G| \leq 2^5$.

THEOREM 2.9 (Blackburn [1], Huppert [3, III.11.12]). Let p > 2 and $|G| = p^5$, and let all subgroups of order p^3 in G be generated by two elements. Then one of the following assertions holds:

- (a) G is metacyclic.
- (b) G is a 3-group of maximal class.
- (c) The group $\Omega_1(G)$ is of order p^3 and exponent p and $G/\Omega_1(G)$ is cyclic.

THEOREM 2.10. If G is a nonabelian p-group, possessing an abelian maximal subgroup, then $|G| = p \cdot |G'| \cdot |Z(G)|$.

PROOF. Let A be a maximal subgroup of G which is abelian, and $g \in G \setminus A$. The mapping $\varphi : A \to A, \varphi(a) = [a, g]$, is homomorphism with $\operatorname{Im} \varphi = G'$, $\operatorname{Ker} \varphi = Z(G)$, and thus $A/Z(G) \cong G'$.

Therefore $|A| = |G| : p = |Z(G)| \cdot |G'|$ which yields to the above formula.

3. Proof of Theorem 1.1

Let $G \in \mathcal{MC}_2$, G being a p-group for some odd prime p. By definition of \mathcal{MC}_2 , the group G contains some maximal subgroup $H \in \mathcal{MC}_1$, and by Theorem 2.8, H is of order p^3 or 3^4 . Therefore $|G| = p^4$ or $|G| = 3^5$.

In representing groups by generator orders and commutators, we shall omit, for brevity, those commutators of generators which equal 1 (that is for pairs of commuting generators).

A. CASE $|G| = p^4$.

Obviously, for G' = 1, G must contain a subgroup H isomorphic to E_{p^3} and $\exp(G) \leq p^2$. Thus, in this case G is isomorphic either to

$$G_1 = \langle a, b, c, d \mid a^p = b^p = c^p = d^p = 1 \rangle \cong E_{p^4}, \text{ or}$$
$$G_2 = \langle a, b, c \mid a^{p^2} = b^p = c^p = 1 \rangle \cong Z_{p^2} \times E_{p^2}.$$

In the following we assume that G' > 1. By Theorem 2.8 either H' = 1 and $H = \langle a, b, c \rangle \cong E_{p^3}$, or $H' \neq 1$ and $H = \langle a, b, c \mid a^p = b^p = c^p = 1, [b, c] = a \rangle \cong Sp(p^3)$.

A1. H' = 1:

Now, $G = \langle H, d \mid d^p \in H \rangle$. By Theorem 2.10, $|G| = p \cdot |G'| \cdot |Z(G)| = p^4$ and so either $|Z(G)| = p^2$, |G'| = p, or $|Z(G)| = p, |G'| = p^2$.

A1.1 $|Z(G)| = p^2, |G'| = p$:

Here, we may assume $G' = \langle a \rangle \langle Z(G) = \langle a, b \rangle$, with [c,d] = a. Since $[d,d^p] = 1$, it is $d^p \in Z(G)$ and we have, without loss, three different possibilities: $d^p = 1, d^p = a^{\alpha} \neq 1$ and $d^p = b$. But if $d^p = a^{\alpha}$, then $[c^{\alpha},d] = [c,d]^{\alpha} = a^{\alpha}$, as $[c,d] \in Z(G)$, and substituting a^{α} for a and c^{α} for c, we get $[c,d] = d^p = a$ in this case. Thus we obtain three different \mathcal{MC}_2 -groups:

$$G_3 = \langle H, d \mid d^p = 1, [c, d] = a \rangle,$$

$$G_4 = \langle H, d \mid d^p = a, [c, d] = a \rangle,$$

$$G_5 = \langle H, d \mid d^p = b, [c, d] = a \rangle.$$

A1.2 $|G'| = p^2, |Z(G)| = p:$

We may assume that $Z(G) = \langle a \rangle \langle G' = \langle a, b \rangle$. Denoting $\overline{x} = x \langle a \rangle$ for $x \in G$, we see that $(G/\langle a \rangle)' = G'/\langle a \rangle = \langle \overline{b} \rangle = Z(G/\langle a \rangle)$, as $|G/\langle a \rangle| = p^3$ and

279

 $G/\langle a \rangle$ is not abelian. Therefore, $b^d = a^{\alpha}b, \alpha \neq 0$ and $c^d = a^{\gamma}b^{\beta}c, \beta \neq 0$, as $b \in G' \setminus Z(G)$. Substituting a^{α} for a and $a^{\gamma}b^{\beta}$ for b, we get

$$G = \langle a, b, c, d \mid d^p \in Z(G), [b, d] = a, [c, d] = b \rangle.$$

We have two possibilities: $d^p = 1$ or $d^p = a^{\delta}, \delta \neq 0$. If $d^p = 1$, then we obtain

$$G_6 = \langle a, b, c, d \mid d^p = 1, [b, d] = a, [c, d] = b \rangle.$$

If $d^p = a^{\delta}$, then for $c' = c^{\delta}, b' = [c', d] = [c^{\delta}, d] = [c, d]^{\delta} = b^{\delta}, a' = [b', d] = [b^{\delta}, d] = [b, d]^{\delta} = a^{\delta}$, and we get, after substituting a', b', c' for a, b, c, the group

$$G_7 = \langle a, b, c, d \mid d^p = a, [b, d] = a, [c, d] = b \rangle.$$

A2. $H \cong Sp(p^3)$ and if M < G, then $M \ncong E_{p^3}$:

Now, $H = \langle a, b, c \mid a^p = b^p = c^p = 1, [b, c] = a \rangle, Z(H) = \langle a \rangle.$

Let $K \leq H, K \triangleleft G, |K| = p^2$. Then $K \cong E_{p^2}$ and $N_G(K)/C_G(K) = G/C_G(K) \leq AutK$. We may assume without loss that $K = \langle a, b \rangle$.

As $p^2 \not\mid |AutK|$, by Proposition 2.5 it is $|G/C_G(K)| \leq p$ and there exists A, A < G, such that $K < A \leq C_G(K) \leq G$ and $|A| = p^3$. Since $K \leq Z(A), A$ is abelian. By assumption $A \ncong E_{p^3}$ and also $A \ncong Z_{p^3}$, as G is not metacyclic. Thus $A \cong Z_{p^2} \times Z_p$. From $\langle a \rangle \operatorname{char} H \triangleleft G$ it follows $\langle a \rangle \triangleleft G$ and so $\langle a \rangle \leq Z(G)$. Therefore $a \in K$, since otherwise $\langle a \rangle \times K \cong E_{p^3}$, contradicting our assumption. Now, we may assume without loss that $K = \langle a, b \rangle = \Omega_1(A)$. Because of $\mathcal{O}_1(A) \operatorname{char} A \triangleleft G$, it is $\mathcal{O}_1(A) \leq Z(G)$ too. But $Z(H) = \langle a \rangle$ only, and so $\mathcal{O}_1(A) = \langle a \rangle$. Thus $A = \langle a, b, d \mid d^p = a^{\alpha}, \alpha \neq 0 \rangle$, for some $d \in A \setminus K$. The group A is an abelian maximal subgroup in G, and by Theorem 2.10 it must be either $|Z(G)| = p^2, |G'| = p$, or $|Z(G)| = p, |G'| = p^2$ again.

 $A2.1 \ |Z(G)| = p^2, |G'| = p:$

Now, $Z(G) \leq A$ because G is not abelian, and we may assume without loss that $d \in Z(G) = \langle a, d \rangle = \langle d \rangle$. Let γ be such that $\alpha \gamma \equiv 1 \pmod{p}$. Then $(d^{\gamma})^p = (d^p)^{\gamma} = a^{\alpha \gamma} = a$, and substituting d by d^{γ} , we get the group

$$G_8 = \langle a, b, c, d \mid d^p = a, [b, c] = a \rangle.$$

 $A2.2 |Z(G)| = p, |G'| = p^2$:

Now, $Z(H) = \langle a \rangle = Z(G) < G'$. Since G/K is abelian, it is $G' \leq K$ and so $G' = K = \langle a, b \rangle$. Clearly, $[c, d] \in K \setminus \langle a \rangle$, as $G' > \langle a \rangle$. Substituting b' = [c, d] for b, and a' = [b', c] for a, we get

$$G = \langle a, b, c, d \mid a^p = b^p = c^p = 1, [b, c] = a, [c, d] = b, d^p = a^{\alpha} \rangle,$$

for some $\alpha \neq 1$. Substituting c by $c' = c^{\gamma}, \gamma \neq 0$, we get $[c', d] = [c^{\gamma}, d] = b^{\gamma}a^{\varepsilon} = b'$, for some ε , since $(G/\langle a \rangle)' = \langle b, a \rangle/\langle a \rangle = Z(G/\langle a \rangle)$, and so $[c^{\gamma}, d] \equiv [c, d]^{\gamma} \equiv b^{\gamma} \pmod{\langle a \rangle}$. Now $[b', c'] = [b^{\gamma}a^{\varepsilon}, c^{\gamma}] = [b^{\gamma}, c^{\gamma}] = a^{\gamma^2} = a'$. Substituting a', b', c' for a, b, c we get

$$G = \langle a, b, c, d \mid a^p = b^p = c^p = 1, [b, c] = a, [c, d] = b, d^p = a^{\frac{\alpha}{\gamma^2}} \rangle$$

with $\gamma \neq 0$, arbitrarily choosable. If $\alpha \equiv \tau^2 \pmod{p}$, for some τ , replacing γ by τ we get

$$G_9 = \langle a, b, c, d \mid a^p = b^p = c^p = 1, [b, c] = a, [c, d] = b, d^p = a \rangle$$

Otherwise, $\alpha \equiv \sigma \tau^2$, for some τ and, without loss, the minimal quadratic nonresidue σ modulo p. Replacing again γ by τ we get the group

$$G_{10} = \langle a, b, c, d \mid a^p = b^p = c^p = 1, [b, c] = a, [c, d] = b, d^p = a^{\sigma} \rangle$$

 σ being the minimal quadratic nonresidue modulo p.

B. CASE $|G| = 3^5$.

Now, G contains a maximal subgroup $H \in \mathcal{MC}_1, |H| = 3^4$. According to Theorem 2.8 the group H is of maximal class. As H is not metacyclic, its maximal subgroups cannot be cyclic. Thus, by Theorem 2.7 and Theorem 2.8, for each L < H with $|L| = 3^3$, it is $exp(L) = 3^2, \mathcal{V}_1(L) = Z(H) \cong Z_3, \Omega_1(L) =$ $H' = \Phi(H) = \Omega_1(H) \cong E_9$, since $\mathcal{V}_1(L), \Omega_1(L) \lhd H$, as $L \lhd H$. We set H' = $\langle a, b \mid a^3 = b^3 = 1 \rangle, Z(H) = \langle a \rangle$ for some $a, b \in H$. Because of $|AutE_9| = 2^4 \cdot 3$, we have $|H/C_H(H')| = 3$, and the group $A = C_H(H') = \langle a, b, c \rangle$, where $c \in A \setminus$ H', is abelian. Let K be an other maximal subgroup of $H, K = \langle a, b, d \rangle$. Now, $H = \langle A, K \rangle = \langle a, b, c, d \rangle$. If K is abelian, then $\langle a, b \rangle \leq Z(H)$, a contradiction. Thus $K' = Z(H) = \langle a \rangle$. We may assume without loss that $c^3 = d^3 = a$, as by Theorem 2.7 and Proposition 2.4, $\mathcal{V}_1(K) = \langle a \rangle$ too. From $H = \langle \Phi(H), c, d \rangle$ and $[c, d] \in H' \setminus Z(H)$, as H' > Z(H), it follows that we can set [c, d] = b and $[b, d] = a^{\alpha}, \alpha \in \{1, 2\}$. Now, $(cd)^3 = cd^3c^{d^2}c^d = cacbba^{\alpha}cb = a^{\alpha+1}c^3 = a^{\alpha+2}$. Since $cd \in H \setminus \Omega_1(H)$, it is $(cd)^3 \neq 1$ implying $\alpha = 2$. Therefore,

$$H = \langle a, b, c, d \mid a^3 = b^3 = 1, c^3 = d^3 = a, [b, d] = a^2, [c, d] = b \rangle.$$

We proceed to determine G. Since $|G| = 3^5$ and all its subgroups of order 3^3 are metacyclic, we can apply Theorem 2.9. As there is none subgroup of order 3^3 and exponent 3 in G, it follows that G is also of maximal class. Now, Theorem 2.7 implies that $Z(G) = Z(H) = \langle a \rangle, Z_2(G) = H', G' = \Phi(G) =$ $C_H(H') = A$, as all these groups are characteristic in H, which is normal in G. Moreover, $\Omega_1(G) = H'$, as $G \in \mathcal{MC}_2$ and $H' \cong E_9$. Consider now, $M = C_G(H') = \langle a, b, c, f \rangle$, for some $f \in G \setminus H$. As $Z(M) \geq H' \cong E_9$, and all maximal subgroups of M, being of order 3^3 , are metacyclic, M must also be metacyclic, since otherwise it would be isomorphic to H, a contradiction because of $Z(H) \cong Z_3$. If $exp(M) = 3^3$, then we may choose f such that $\langle f \rangle \cong Z_{27}$ and there is some $x \in \langle a, b \rangle \leq Z(M)$ such that $x \notin \langle f \rangle$ and therefore $M = \langle f \rangle \times \langle x \rangle \cong Z_{27} \times Z_3$. Now, $\mathfrak{V}_1(M) = \langle f^3 \rangle \triangleleft G$, and $\langle f^3 \rangle \cong Z_9$, which contradicts Theorem 2.7, as $Z_2(G) \cong E_9$. Therefore $exp(M) = 3^2$, and $M \cong \langle x, y \mid x^9 = y^9 = 1, [x, y] \in \langle x^3 \rangle$, for some $x, y \in M$. Now, $M' \leq \langle x^3 \rangle \cong Z_3$ and $M' \triangleleft G$, which implies $M' \leq \langle a \rangle$. Since $c^3 = a$, it is $\langle c \rangle > M'$ and so $\langle c \rangle \triangleleft M$. Therefore, we may assume c = x, f = y and $\mathcal{O}_1(M) =$ $\langle a, b \rangle$ implies $f^3 = a^{\alpha} b^{\beta}$, with $\beta \in \{1, 2\}$. Because of $G' = \langle a, b, c \rangle = \Phi(G)$,

281

it is $G = \langle a, b, c, d, f \rangle = \langle d, f \rangle$, and $G' = \langle \langle [d, f] \rangle \rangle$ the normal closure of $\langle [d, f] \rangle$. Therefore $[d, f] \in A \setminus H'$, since otherwise G' = H', a contradiction. Substituting f by f^2 , if necessary, and substituting c by [d, f] we get again $[b, d] = a^2$ for these new generators. Moreover, $[c, f] = a^{\gamma}, \gamma \in \{0, 1, 2\}$ because $[c, f] \in M' \leq \langle a \rangle$. Thus G can be written as:

$$\begin{array}{rcl} G &=& \langle a,b,c,d,f \mid a^3 = b^3 = 1, c^3 = d^3 = a, f^3 = a^{\alpha} b^{\beta}, \\ && [d,f] = c, [c,d] = b, [c,f] = a^{\gamma}, [b,d] = a^2 \rangle. \end{array}$$

Now,

$$\begin{aligned} [d, f^3] &= [d, f][d, f^2]^f = [d, f][d, f]^f [d, f]^{f^2} \\ &= c \cdot c^f \cdot c^{f^2} = c \cdot ca^\gamma \cdot ca^\gamma a^\gamma = c^3 = a, \end{aligned}$$

and

$$\begin{split} [d, f^3] &= [d, a^{\alpha} b^{\beta}] = [d, b^{\beta}] = [b^{\beta}, d]^{-1} \\ &= (b^{-\beta} (b^{\beta})^d)^{-1} = (b^{-\beta} b^{\beta} a^{2\beta})^{-1} = a^{\beta}, \end{split}$$

implying $\beta = 1$ and therefore $f^3 = a^{\alpha}b$.

Next, we calculate $(df)^3$ and $(d^2f)^3$, which should both be different from 1 :

$$\begin{aligned} (df)^3 &= df^3 d^{f^2} d^f = da^{\alpha} b \cdot dcca^{\gamma} \cdot dc = d^2 (a^{\alpha} b)^d c^2 a^{\gamma} dc \\ &= a^{\alpha+\gamma} d^3 (a^{\alpha} b)^{d^2} (c^2)^d c = a^{\alpha+\gamma} \cdot a \cdot ba \cdot c^2 b^2 c = a^{\alpha+\gamma} a^2 \cdot a = a^{\alpha+\gamma}, \\ (d^2 f)^3 &= (d \cdot df)^3 = d(df)^3 d^{(df)^2} d^{df} = da^{\alpha+\gamma} \cdot dc \cdot ca^{\gamma} b \cdot dc \\ &= a^{\alpha+2\gamma} d^3 (c^2 b)^d c = a^{\alpha+2\gamma+1} c^2 b^2 ba^2 c = a^{\alpha+2\gamma+1}. \end{aligned}$$

Therefore, $\alpha + \gamma \neq 0 \pmod{3}, \alpha + 2\gamma + 1 \neq 0 \pmod{3}$, which gives possibilities $(\alpha, \gamma) \in \{(1,0), (1,1), (0,2), (2,2)\}$. In the case $(\alpha, \gamma) = (1,0), M' = C_G(H') = \langle a, b, c, f \rangle' = 1$ and in other cases M' > 1. Replacing f by f^2 , d by df, c by c^2 , b by a^2b^2 , and a by a^2 , the case $(\alpha, \gamma) = (1, 1)$ goes over in $(\alpha, \gamma) = (0, 2)$, and replacing d by df, c by a^2c and b by a^2b the case $(\alpha, \gamma) = (2, 2)$ goes over in $(\alpha, \gamma) = (0, 2)$, giving the groups

$$\begin{array}{rcl} G_{11} & = & \langle a,b,c,d,f \mid a^3 = b^3 = 1, c^3 = d^3 = a, f^3 = ab, [d,f] = c, [c,d] = b, \\ & & [b,d] = a^2 \rangle \end{array}$$

and

$$\begin{array}{rcl} G_{12} & = & \langle a,b,c,d,f \mid a^3 = b^3 = 1, c^3 = d^3 = a, f^3 = b, [d,f] = c, [c,d] = b, \\ & & [c,f] = a^2, [b,d] = a^2 \rangle. \end{array}$$

Our Theorem 1.1 is proved.

V. ĆEPULIĆ, O. PYLIAVSKA AND E. KOVAČ STRIKO

References

- N. Blackburn, Generalizations of certain elementary theorems on p-groups, Proc. London Math. Soc. (3) 11 (1961), 1-22.
- [2] V. Ćepulić, M. Ivanković and E. Kovač Striko, Second-metacyclic finite 2-groups, Glas. Mat. Ser. III 40(60) (2005), 59-69.
- [3] B. Huppert, Endliche Gruppen. I, Springer-Verlag, Berlin-New York, 1967.

V. Ćepulić Department of Mathematics Faculty of Electrical Engineering and Computing University of Zagreb Unska 3, HR-10000 Zagreb Croatia *E-mail*: vladimir.cepulic@fer.hr

O. Pyliavska National University Kyiv-Mohyla Academy Skorovody 2, Kyiv 04070 Ukraine

E. Kovač Striko Faculty of Transport and Traffic Engineering University of Zagreb Vukelićeva 4, HR-10000 Zagreb Croatia *E-mail*: elizabeta.kovac@fpz.hr

Received: 28.9.2005.