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Abstract. A sequence of categories and functors between them are
constructed. They form a subshape spectrum for compacta in the follow-
ing sense: Each of these categories classifies compact ANR’s just as the
homotopy category does; the classification of compacta by the ”finest” of
these categories coincides with the shape type classification; moreover, the
finest category contains a subcategory which is isomorphic to the shape
category; there exists a functor of the shape category to each of these cat-
egories, as well as of a “finer” category to a “coarser” one; the functors
commute according to the indices.

Further, a few applications of the “subshape spectrum theory” are
demonstrated. It is shown that the S∗-equivalence (a uniformization of
the Mardešić S-equivalence) and the q∗-equivalence (a uniformization of
the Borsuk quasi-equivalence) admit the category characterizations within
the subshape spectrum, and that the q∗-equivalence implies (but is not
equivalent to) the S∗-equivalence.

1. Introduction

In the year 1968 the shape theory of (metrizable) compacta was founded
by K. Borsuk [1]. The corresponding classification of compacta is generally
coarser than the homotopy type classification, while on the subclass of locally
nice spaces (compact ANR’s) it coincides with the homotopy type classifi-
cation. Since 1976 a few new classifications of compacta have been consid-
ered. For instance, K. Borsuk [2] introduced the relations of quasi-affinity
and quasi-equivalence, while S. Mardešić [6] introduced the S-equivalence re-
lation between compacta. All of them are shape type invariant relations.
These classifications are strictly coarser than the shape type classification
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([2, 5, 3]). Moreover, the quasi-equivalence and S-equivalence classifications
coincide with the homotopy type classification on compact ANR’s. However,
the mentioned relations, being defined only on the class of objects, were not
supported by appropriate with them associated theories. In other words, it
was not clear whether these relations are categorical. Furthermore, if such an
equivalence relation admits a category characterization, there should exist a
functor relating the shape category and the new category.

On this line the first named author studied in [9] the Borsuk quasi-

equivalence
q' and quasi-affinity

q↔. He constructed a certain category and

an appropriate ”quasi-homotopy” relation
q' on its morphism sets such that

X
q' Y ⇔ (∃u : X → Y )(∃v : Y → X)vu

q' 1X ∧ uv q' 1Y ;

X
q↔ Y ⇔ (∃u, u′ : X → Y )(∃v, v′ : Y → X)vu

q' 1X ∧ u′v′ q' 1Y ;

However, the morphism equivalence relation
q' is not compatible (from the

left) with the category composition, so there is no corresponding quotient

category. Nevertheless, one can slightly strengthen the Borsuk relation
q'

(
q↔) up to the new equivalence relation

q', q-equivalence (
q↔, q-affinity) on

compacta, which admits a characterization in terms of a category isomorphism
(domination), i.e. there exists a (quotient) category Q such that

X
q' Y ⇔ X ∼= Y in Q;

X
q↔ Y ⇔ X ↔ Y in Q (i.e. X ≤ Y ∧ Y ≤ X in Q).

There also exist two functors Q : HcM → Q and Γ : Sh → Q such that
ΓS = Q, where S : HcM → Sh is the ordinary shape functor. (HcM and Sh
are the homotopy category of compacta and the shape category of compacta,

respectively.) Furthermore, there exists a ”uniformization”
q∗' (q∗-equivalence)

of
q' which admits a quite similar category characterization.
With a similar purpose Mardešić and Uglešić [7] studied the S∗-equiva-

lence, which is a ”uniformization” of the Mardešić S-equivalence. They con-
structed a certain category S∗ on compacta such that

S∗(X) = S∗(Y ) ⇔ X ∼= Y in S∗.
They also obtained the appropriate functor S∗ : Sh → S∗. We should mention
that the S-equivalence as well as the S∗-equivalence of compacta is a rather
useful notion. For instance, some important shape invariant classes of com-
pacta (continua, movable compacta, n-shape connected compacta, FANR’s,
compacta having Fd ≤ n, . . . ) are also S- and S∗-invariant classes. Fur-
thermore, it is a well known fact that the fibres of a shape fibration over a
continuum may have different shape. However, all of them are mutually S-
and S∗-equivalent.
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In this paper we have first constructed a certain ”graded” family of cate-
gories on compacta S(n), n ∈ N∪ {ω} (as well as the corresponding sequence
category S(N)), endowed with an appropriate family of functors, which com-
mute according to the indices, such that they may represent a subshape spec-
trum for compacta in the following sense:

Each of these categories classifies compact ANR’s as the homotopy cat-
egory does. The ”finest” of these categories classifies compacta as the shape
category does. Moreover, it contains a subcategory which is isomorphic to
the shape category. Further, there exists a functor of the shape category
to each of these categories, as well as of a “finer” category to a “coarser”
one; these functors commute according to the indices. (The category theory
preliminaries are taken from [4].)

After the theoretical part, we demonstrate a few applications of the ob-
tained ”subshape spectrum theory”. We have proved that the S∗-equivalence
and q∗-equivalence admit category characterizations within the subshape
spectrum, and that the q∗-equivalence strictly implies the S∗-equivalence.
Further, the homotopy type classification of compact ANR’s coincides with
the isomorphism classification in the category S(1), while the shape type clas-
sification of FANR’s reduces to the isomorphism classification in a subcategory
of S(2).

Since we consider the relations which classify compacta, our main ob-
jects are the inverse sequences of compact ANR’s [8]. The smallest building
material for a morphism is a 1-ladder, which imitates a mapping of inverse
sequences restricted to a finite piece. By fitting together finitely many of them
one obtains an n-ladder, n ∈ N. The infinite case n = ω is also allowed. A
countable collection of such n-ladders, subjected to some conditions, is called
an n-hyperladder. The n-hyperladders are organized into a category L(n) (on
the inverse sequences). Such a category admits a natural equivalence (homo-
topy) relation ', which yields the quotient category S(n). These categories
S(n), n ∈ N ∪ {ω}, and the sequence category S(N) form the mentioned
”graded” family of categories having inverse sequences as objects. Clearly,
there also exists the corresponding ”graded” family of categories S(n), S(N)
on compacta. The appropriate functors arise almost naturally. We also con-
sider some of the useful subcategories and the corresponding functors.

2. The subshape categories

First of all, recall the shape category of compacta (compact metrizable
spaces X , Y , ...), [8]. Let S denote the category having all compact ANR in-
verse sequences X = (Xi, [pii′ ],N]),Y = (Yj , [qjj′ ],N), ... as objects (bonding
maps are the homotopy classes of mappings), while

S(X,Y ) = {f | f = (f, [fj ]) : X → Y },
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where f : N → N is a function (the index function), and fj : Xf(j) → Yj ,
j ∈ N, are mappings satisfying the following condition:

(∀j ≤ j′)(∃i ≥ f(j), f(j′))[fj ][pf(j)i] = [qjj′ ][fj′ ][pf(j′)i].

The identity morphism 1X = (1N, [1Xi
]), and the composition of an f : X →

Y with a g = (g, [gk]) : Y → Z is defined by

gf = (fg, [gkfg(k)]) : X → Z.

A morphism f : X → Y is said to be special provided f is increasing and

(∀j ≤ j′)[fj ][pf(j)f(j′)] = [qjj′ ][fj′ ].

An f : X → Y is said to be homotopic to a morphism f ′ = (f ′, [f ′j ]) : X →
Y , denoted by f ' f ′, provided

(∀j ∈ N)(∃i ≥ f(j), f ′(j))[fj ][pf(j)i] = [f ′j ][pf ′(j)i].

The homotopy relation ' is a natural equivalence relation on the category S.
The homotopv class of an f is denoted by [f ] or by f . The corresponding
quotient category S� ' is denoted by Sh. It realizes the shape category Sh
of compacta, i.e.

Sh(X,Y ) ≈ Sh(X ,Y ) = S(X ,Y )� ',
where X, Y are associated with X , Y respectively, such that lim X = X and
lim Y = Y . Notice that every shape morphism (homotopy class) f admits a
special representative.

Finally, there is a functor S : HcM → Sh (the shape functor), which
keeps the objects fixed, where HcM is the standard homotopy category of
compacta. (By choosing a unique X for a given X , one also obtains a functor
S : HcM → Sh.)

Let X ,Y ∈ ObS . Let J(1) be the set of all pairs j1 = (j1, j2), where

j1, j2 ∈ N, j1 < j2. A 1-ladder f j1 = (f, [fj ]) of X to Y over j1 ∈ J(1),
denoted by f j1 : X → Y , consists of an increasing function f whose domain
is either empty or an initial segment [j1, α1]N ⊆ [j1, j2 − 1]N, j1 ≤ α1 < j2,

f : [j1, α1]N → [j1, j2 − 1]N,

and, in the later case, of homotopy classes [fj ] of mappings

fj : Xf(j) → Yj , j = 1, . . . , α1,

such that

[fj ][pf(j)f(j′)] = [qjj′ ][fj′ ]

whenever j ≤ j′.
A generalization is the notion of an n-ladder which will be obtained by fit-

ting together n1-ladders. First, given an n ∈ N and any j1, . . . , jn+1 ∈ N such
that j1 < · · · < jn+1, the corresponding ordered (n + 1)-tuple (j1, . . . , jn+1)
is denoted by jn. The set of all such (n + 1)-tuples jn is denoted by J(n).



A SUBSHAPE SPECTRUM FOR COMPACTA 351

There is no obstruction to consider the limit case n → ∞. In this case, an
ω-tuple jω ∈ J(ω) becomes a strictly increasing sequence jω = (jλ) in N.

Definition 2.1. Let X,Y ∈ ObS, an n ∈ N ∪ {ω} and a jn ∈ J(n) be
given. An ordered pair (f, [fj ]) consisting of an increasing (index) function

f :
n∪
λ=1

[jλ, αλ]N → [j1, jn+1 − 1]N, jλ ≤ αλ < jλ+1,

and of a set of the homotopy classes of mappings

fj : Xf(j) → Yj , j ∈
n∪
λ=1

[jλ, αλ]N,

is said to be an n-ladder of X to Y over jn, denoted by f jn : X → Y ,
provided the following two conditions are satisfied:

(L(n)1) (∀λ ∈ [1, n]N)f(jλ) ≥ jλ ∧ f(αλ) < jλ+1;

(L(n)2) (∀j, j′ ∈ n∪
λ=1

[jλ, αλ]N)j ≤ j′ ⇒ [fj ][pf(j)f(j′)] = [qjj′ ][fj′ ]. An

n-ladder f jn having an empty λ-block, i.e. with no mapping for any
j ∈ [jλ, jλ+1−1]N, is allowed. In that case, we say that αλ is empty. We also
admit the empty n-ladder of X to Y over jn, i.e. the empty set of homotopy
classes of mappings for a given jn.

j 2 j 3
j 1

j 3-1

���
j j '

���
'

Example 2.2. Let f = (f, [fj ]) : X → Y be a special morphism of S
with f ≥ 1N. Given any n ∈ N, jn ∈ J(n) and λ ∈ [1, n]N, put

tλ = max{j | f(j) < jλ+1, j ∈ [jλ, jλ+1 − 1]N}.
For each λ = 1, . . . , n, if tλ does not exist, let αλ be empty, and if tλ exists,
choose any αλ ∈ [jλ, tλ]N. Then the restriction of f to X |jn and Y |jn yields
a certain (possible empty) n-ladder f jn = (f, ([fj ])) of X to Y over jn. One
can easily verify conditions (L(n)1) and (L(n)2). In the case of αλ = tλ for
every λ, the (”maximal”) n-ladder f jn : X → Y over jn is said to be induced
by f . Notice that, for every X and every in ∈ J(n), the identity morphism
1X : X → X induces the identity n-ladder 1Xin : X → X over in.

If f jn : X → Y and gkn = (g, [gk]) : Y → Z are n-ladders, then we
compose them only in the case jn = kn by using the ordinary rule, i.e.

gknfkn ≡ ukn = (u, [uk]),

such that u = fg (wherever it is defined) and uk = gkfg(k), k ∈ n∪
λ=1

[kλ, γλ]N,

γλ ≤ βλ. Clearly, gknfkn : X → Z is an n-ladder of X to Z over kn. Notice
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that its λ-block is empty whenever the corresponding block of f kn or gkn

is empty, or g(kλ) > αλ. It is obvious that the composition of n-ladders is
associative, and that

f jn1Xjn = f jn ,

1Xingin = gin

hold for all n-ladders f jn : X → Y and gin : Z → X. Therefore, for each
jn ∈ J(n), there exists a certain category whose class of objects is ObS, and
the sets of morphisms consist of all the corresponding n-ladders.

Let f j1 ,f ′j1 = (f ′, [f ′j ]) : X → Y be 1-ladders over the same j1. Then

f j1 is said to be homotopic to f ′j1 provided they both are empty or there

exists a j∗1 ∈ [j1,min{α1, α
′
1}]N such that

(∀j ∈ [j1, j
∗
1 ]N)(∃i = i(j) ∈ [max{f(j), f ′(j)}, j2 − 1]N)

[fj ][pf(j)i] = [f ′j ][pf ′(j)i].

In the general case of a pair of n-ladders the definition of being m-homotopic,
m ≤ n, is as follows:

Definition 2.3. Let n,m ∈ N ∪ {ω}, m ≤ n, and let f jn ,f ′jn : X → Y

be n-ladders over the same jn. Then f jn is said to be m-homotopic to f ′jn ,

denoted by f jn 'm f ′jn, provided, for every λ ∈ [1,m]N, the both f jn and f ′jn

have the λ-block empty or there exists a j∗λ ∈ [jλ,min{αλ, α′λ}]N) such that

(∀j ∈ [jλ, j
∗
λ]N)(∃i = i(j) ∈ [max{f(j), f ′(j)}, jλ+1 − 1]N)

[fj ][pf(j)i] = [f ′j ][pf ′(j)i].

j λ

�
λ

j

i  

� �
j  �

'

j λ+ 1j *
λ

�
λ'

Notice that f jn 'm′ f ′jn implies f jn 'm f ′jn whenever m ≤ m′. Clearly,
the m-homotopy relation of n-ladders is an equivalence relation on the corre-
sponding set. In the case of m = n, we simply write f jn ' f

′
jn .

A 1-hyperladder (of X to Y ) is a certain family F1 of 1-ladders (of X

to Y ) indexed by all pairs j
1 = (j1, j2) ∈ J(1). We require that every two

elements j1 ≤ j′1 of N admit an i1 ∈ N, i1 ≥ j′1, such that, for every j2 > i1,

the 1-ladder f j1 = (f, [fj ]) ∈ F1, assigned to the pair j
1 = (j1, j2) ∈ J(1),

has the following two properties:

the domain [j1, α1]N of the index function f contains [j1, j
′
1]N;

the image f [j1, j
′
1]N is contained in [j1, i

1]N.
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Briefly, a family F1 = (f j1) of 1-ladders f j1 : X → Y , j1 ∈ J(1), s said to
be a 1-hyperladder of X to Y , provided

(∀j1 ∈ N)(∀j′1 ≥ j1)(∃i1 ≥ j′1)(∀j2 > i1)

the index function of the corresponding f j1 = (f, [fj ]) ∈ F1 fulfills the follow-
ing two conditions:

α1 ≥ j′1 and f(j′1) ≤ i1.

Notice that, since f increases, the second condition implies f(j) ≤ i1 for every
j ∈ [j1, j

′
1]N.

We are now ready to define the main notion.

Definition 2.4. Let X,Y ∈ ObS and let n ∈ N ∪ {ω}. A family Fn =
(f jn) of n-ladders f jn : X → Y , indexed by all jn ∈ J(n), is said to be an
n-hyperladder of X to Y , denoted by Fn : X → Y , provided

(∀m ≤ n)

(∀j1 ∈ N)(∀j′1 ≥ j1)(∃i1 ≥ j′1)(∀j2 > i1) · · ·
(∀jm > im−1)(∀j′m ≥ jm)(∃im ≥ j′m)(∀jm+1 > im)

(∀jm+2 > jm+1) . . . (∀jn+1 > jn)

the index function of the corresponding f jn = (f, [fj ]) ∈ Fn fulfills the follow-
ing two conditions:

(S(n,m)1)(∀λ ∈ [1,m]N)αλ ≥ j′λ;

(S(n,m)2)(∀λ ∈ [1,m]N)f(j′λ) ≤ iλ.

The set of all n-hyperladders Fn : X → Y is denoted by Ln(X,Y ).

	
λjλ jλ j λ+ 1'

i λ

Example 2.5. Let f = (f, [fj ]) : X → Y be a special morphism of S
with f ≥ 1N, and let n ∈ N ∪ {ω}. For every jn ∈ J(n), let f jn : X → Y

be the n-ladder induced by f according to Example 2.2. Then, f yields the
family Fn = (f jn), jn ∈ J(n). Let us show that Fn is an n-hyperladder of X

to Y . Given an m ≤ n, for every j1 ≥ 1 and every j′1 ≥ j1 put i1 = f(j′1); . . .
; for every jm > im−1 and every j′m ≥ jm put im = f(j′m), and let jm+1 > im;
let jm+2 > jm+1, . . ., jn+1 > jn. (If n = ω, the construction proceeds by
induction.) Then by construction, for every λ ∈ [1,m]N, f jn has αλ ≥ j′λ
since f increases and f(j ′λ) = iλ < jλ+1. Further, f(j) ≤ f(j′λ) = iλ for every
λ ∈ [1,m]N and every j ∈ [jλ, j

′
λ]N. This verifies conditions (S(n,m)1,2) for Fn.

In such a case, Fn : X → Y is said to be the n-hyperladder induced by a special
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morphism f : X → Y . In particular, for every X, the identity morphism
1X = (1N, ([1Xi

])) induces the n-hyperladder 1Xn = (1Xin) : X → X,
in ∈ J(n), (see also Example 2.2).

If Fn = (f jn) : X → Y and Gn = (gkn) : Y → Z, k
n ∈ J(n), are

n-hyperladders, then we compose them by composing the appropriate n-
ladders f jn and gkn such that jn = kn. Hence,

GnFn ≡ Un = (ukn),

where ukn ≡ gknfkn , kn ∈ J(n).

Lemma 2.6. For every n ∈ N∪{ω}, the composition of n-hyperladders is
well defined, i.e.

(∀Fn ∈ Ln(X ,Y ))(∀Gn ∈ Ln(Y ,Z))GnFn ∈ Ln(X,Z).

Proof. Given arbitrary n ∈ N ∪ {ω}, m ≤ n, Fn = (f jn) ∈ Ln(X,Y )
and Gn = (gkn) ∈ Ln(Y ,Z), Definition 2.4 allows the followimg procedure:
For every k1 ∈ N and every k′1 ≥ k1 there exists a j1 ≥ k′1, and for j1 = k1

and j′1 = j1 ≥ j1 there exists an i1 ≥ j′1; for every k2 > i1 . . . ; for every
km > im−1 ≥ jm−1 and every k′m ≥ km there exists a jm ≥ k′m, and for
jm = km and j′m = jm ≥ jm there exists an im ≥ j′m; let km+1 = jm+1 > im,
km+2 = jm+2 > km+1, . . . , kn+1 = jn+1 > kn (and so on if n = ω). Then,
jn = kn ∈ J(n). Observe that, by (S(n,m)1,2) of Fn, f jn ∈ Fn satisfies

(∀λ ∈ [1,m]N)αλ ≥ j′λ

and

(∀λ ∈ [1,m]N)f(j′λ) ≤ iλ.

Further, by (S(n,m)1,2) of Gn, gkn ∈ Gn satisfies

(∀λ ∈ [1,m]N)βλ ≥ k′λ

and

(∀λ ∈ [1,m]N)g(k′λ) ≤ jλ.

Thus, gknfkn ∈ GnFn has

γλ = max{k ∈ [kλ, βλ]N | g(k) ≤ αλ},

for every λ ∈ [1,m]N. Moreover, since

(∀λ ∈ [1,m]N)fg(k′λ) ≤ f(j′λ) ≤ iλ,

we infer that

(∀λ ∈ [1,m]N)γλ ∈ [k′λ, βλ]N.
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Therefore, concerning the composition GnFn ≡ Un = (ukn), ukn ≡ gknfkn ,
kn ∈ J(n), we have established that

(∀m ≤ n)

(∀k1 ∈ N)(∀k′1 ≥ k1)(∃i1 ≥ k′1)(∀k2 > i1) · · ·
(∀km > im−1)(∀k′m ≥ km)(∃im ≥ k′m)(∀km+1 > im)

(∀km+2 > km+1) . . . (∀kn+1 > kn),

the index function u of the corresponding ukn satisfies the following two
conditions:

(∀λ ∈ [1,m]N)γλ ≥ k′λ;

(∀λ ∈ [1,m]N)u(k′λ) = fg(k′λ) ≤ iλ.



λkλ kλ+ 1

�
λj λ

j λ+ 1

�
λ

i λ

j λ

j '
λ

k'λ'

'

Hence, the family GnFn = (gknfkn) fulfills conditions (S(n,m)1) and
(S(n,m)2). Thus, GnFn ∈ Ln(X ,Z), and the lemma is proved.

Since the composition of n-ladders is associative, the composition of n-
hyperladders is associative. Notice that 1Xn = (1Xin), in ∈ J(n), is the
identity n-hyperladder on X (see Example 2.5). Indeed,

Fn1Xn = (f jn)(1Xin) = (f jn1Xjn) = (f jn) = Fn,

1XnGn = (1Xin)(gin) = (1Xingin) = (gin) = Gn

hold for all n-hyperladders Fn : X → Y and Gn : Z → X. Thus, for
every n ∈ N ∪ {ω}, there exists a category L(n) consisting of the object class
ObL(n) = ObS and of the class MorL(n) of all the morphism sets Ln(X,Y ).

In order to define a certain equivalence (homotopy) relation on each set
Ln(X,Y ), let us first consider the simplest case n = 1. Recall that f j1 '
f ′j1 : X → Y means

(∃j∗1 ∈ [j1,min{α1, α
′
1}]N)(∀j ∈ [j1, j

∗
1 ]N)(∃i ∈ [max{f(j), f ′(j)}, j2 − 1]N)

[fj ][pf(j)i] = [f ′j ][pf ′(j)i].

Let F1 = (f j1), F ′1 = (f ′j1) : X → Y be a pair of 1-hyperladders. Then F1

is said to be homotopic. to F ′1, provided every two elements j1 ≤ j′1 of N

admit an i1∗ ∈ N, i1∗ ≥ j′1, such that, for every j2 > i1∗, the corresponding
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1-ladders f j1 ∈ F1 and f ′j1 ∈ F ′1 (assigned to the pair j1 = (j1, j2) ∈ J(1))

are homotopic, f j1 ' f ′j1 and, in addition, the occuring j∗1 ≥ j′1 and i =

i(j′1) ≤ i1∗.
Briefly, F1 ' F ′1 provided

(∀j1 ∈ N)(∀j′1 ≥ j1)(∃i1∗ ≥ j′1)(∀j2 > i1∗)

the corresponding f j1 ∈ F1 and f ′j1 ∈ F ′1 are homotopic, f j1 ' f ′j1 , such

that j∗1 ≥ j′λ and i = i(j′1) ≤ i1∗.
Notice that the last condition implies that i = i(j) ≤ i1∗ for every j ∈

[j1, j
′
1]N.

Definition 2.7. Let X,Y ∈ ObS, n ∈ N∪{ω} and let Fn = (f jn), F ′n =

(f ′jn) : X → Y be n-hyperladders. Then Fn is said to be homotopic to F ′n,
denoted by Fn ' F ′n, provided

(∀m ≤ n)

(∀j1 ∈ N)(∀j′1 ≥ j1)(∃i1∗ ≥ j′1)(∀j2 > i1∗) · · ·
(∀jm > im−1

∗ )(∀j′m ≥ jm)(∃im∗ ≥ j′m)(∀jm+1 > im∗ )

(∀jm+2 > jm+1) . . . (∀jn+1 > jn)

the corresponding n-ladders f jn ∈ Fn and f ′jn ∈ F ′nsatisfy the following
condition:

(H(n,m))f jn 'm f jn ,

i.e. for every λ ∈ [1,m]N there exists a j∗λ ∈ [jλ,min{αλ, α′λ}]N) for which

(∀j ∈ [jλ, j
∗
λ]N)(∃i = i(j) ∈ [max{f(j), f ′(j)}, jλ+1 − 1]N)

[fj ][pf(j)i] = [f ′j ][pf ′(j)i],

such that, in addition,
(∀λ ∈ [1,m]N), j∗λ ≥ j′λ

and
(∀λ ∈ [1,m]N)i = i(j′λ) ≤ iλ∗ .

aλj λ j λ+1

i  λ(j  )

jλ
*

j

λi'

i
*

λ

i λ

aλ'jλ'

Observe that the last condition implies that i = i(j) ≤ iλ∗ , for every λ
and every j ∈ [jλ, j

′
λ]N. Further, for the indices iλ∗ in Definition 2.7 and for

the indices iλ, i′λ (for Fn, F ′n respectively) in Definition 2.4,

(∀λ ∈ [1,m]N)iλ∗ ≥ max{iλ, i′λ}
must hold.
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Lemma 2.8. For every n ∈ N ∪ {ω}, the homotopy relation of the n-
hyperladders is a natural equivalence relation in the category L(n).

Proof. Since the m-homotopy of n-ladders is an equivalence relation,
to prove that the homotopy of n-hyperladders is an equivalence relation, we
only need to show that it is transitive. The verification is straightforward by
means of (H(n,m)), of Fn ' F ′n and F ′n ' F ′′n , m = 1, . . . , n. Namely, given
an m ≤ n, one should choose iλ∗ = max{i′λ∗ , i′′λ∗ } and j∗λ = min{j′∗λ , j′′∗λ } for
every λ ∈ [1,m]N.
Let Fn, F

′
n ∈ Ln(X,Y ) such that Fn ' F ′n, and let Gn = (gkn) ∈ Ln(Y ,Z).

Then, for each m ≤ n, Definitions 2.4 and 2.7 allow the following procedure:
For every k1 and every k′1 ≥ k1 there exists a j1 ≥ k′1, and for j1 = k1 and
j′1 = j1 ≥ j1 there exists an i1∗ ≥ j′1; . . . ; for every km > im−1

∗ and every
k′m ≥ km there exists a jm ≥ k′m, and for jm = km and j′m = jm ≥ jm
there exists an im∗ ≥ j′m; let km+1 = jm+1 > im∗ , km+2 = jm+2 > km+1, . . .,
kn+1 = jn+1 > kn (and so on if n = ω). Then, jn = kn ∈ J(n). Consider
the n-ladders fkn ∈ Fn, f ′kn ∈ F ′n and gkn ∈ Gn. By condition (S(n,m)2) of
Gn,

(∀λ ∈ [1,m]N)g(k′λ) ≤ jλ = j′λ,

and by condition (H(n,m)) of Fn ' F ′n,

(∀λ ∈ [1,m]N)(∀j ∈ [jλ, j
∗
λ]N)[fj ][pf(j)iλ(j)] = [f ′j ][pf ′(j)iλ(j)],

where j∗λ ≥ j′λ and iλ(j) ≤ iλ∗ , j ∈ [jλ, j
′
λ]. Thus,

(∀λ ∈ [1,m]N)(∃k∗λ ≥ k′λ)(∀k ∈ [kλ, k
∗
λ]N)

[gk][fg(k)][pf(g(k))iλ(g(k))] = [gk][f ′g(k)][pf ′(g(k))iλ(g(k))].

Therefore, concerning the compositions GnFn and GnF
′
n, for each m ≤ n the

following is fulfilled:

(∀k1 ∈ N)(∀k′1 ≥ k1)(∃i1∗ ≥ k′1)(∀k2 > i1∗) · · ·
(∀km > im−1

∗ )(∀k′m ≥ km)(∃im∗ ≥ k′m)(∀km+1 > im∗ )

(∀km+2 > km+1) . . . (∀kn+1 > kn),

the following condition is satisfied:

gknfkn 'm gknf ′kn

such that

(∀λ ∈ [1,m]N), k∗λ ≥ k′λ

and

(∀λ ∈ [1,m]N)i(k′λ) ≡ iλ(g(k′λ)) ≤ iλ∗ .
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j λ

kλ kλ+1

k
 k*

λ

j λ+1
λ
j '

kλ
'

 j λ

i
*

λ

  (g(k))
λ

i

This fulfills condition (H(n,m)) for GnFn and GnF
′
n. Consequently, GnFn '

GnF
′
n.
Let Hn = (hin) ∈ Ln(W ,X) and let Fn, F

′
n ∈ Ln(X ,Y ) such that

Fn ' F ′n. Then, for every m ≤ n, Definitions 2.7 and 2.4 allow the following
procedure: For every j1 and every j′1 ≥ j1 there exists an i1∗ ≥ j′1, and for
i1 = j1 and i′1 = i1∗ ≥ i1 there exists a t1 ≥ i′1; . . . ; for every jm > tm−1 and
every j′m ≥ jm there exists an im∗ ≥ j′m, and for im = jm and i′m = im∗ ≥ im
there exists a tm ≥ i′m; let jm+1 = im+1 > tm, jm+2 = im+2 > jm+1, . . . ,
jn+1 = in+1 > jn (and so on if n = ω). Then, in = jn ∈ J(n). Consider
the n-ladders hjn ∈ Hn, f jn ∈ Fn and f ′jn ∈ F ′n. By condition (H(n,m)) of
Fn ' F ′n,

(∀λ ∈ [1,m]N)(∀j ∈ [jλ, j
∗
λ]N)[fj ][pf(j)iλ(j)] = [f ′j ][pf ′(j)iλ(j)],

where j∗λ ≥ j′λ and iλ(j) ≤ iλ∗ . By (S(n,m)2) of Hn,

(∀λ ∈ [1,m]N)h(i′λ) ≤ tλ.

Thus,

(∀λ ∈ [1,m]N)(∃j′∗λ ≥ j∗λ)(∀j ∈ [jλ, j
′∗
λ ]N)

[fj ][hf(j)][uh(f(j))tλ ] = [f ′j ][hf ′(j)][uh(f ′(j))tλ ].

Therefore, concerning the compositions FnHn and F ′nHn, for each m ≤ n the
following is fulfilled:

(∀j1 ∈ N)(∀j′1 ≥ j1)(∃t1∗ = t1)(∀j2 > t1∗) · · ·
(∀jm > tm−1

∗ )(∀j′m ≥ jm)(∃tm∗ = tm ≥ j′m)(∀jm+1 > tm∗ )

(∀jm+2 > jm+1) . . . (∀jn+1 > jn),

the relation f jnhjn 'm f ′jnhjn is satisfied and

(∀λ ∈ [1,m]N), j′∗λ ≥ k′λ

and

(∀λ ∈ [1,m]N)tλ(j′∗λ ) ≡ h(iλ(j′∗λ )) ≤ tλ∗ .
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This fulfills condition (H(n,m)) for FnHn and F ′nHn, and thus, FnHn '
F ′nHn.

The homotopy class [Fn] of an Fn ∈ Ln(X,Y ), denoted by F n : X → Y ,
is said to be an Sn-morphism. The obtained results are summarized in the
next theorem:

Theorem 2.9. For every n ∈ N∪{ω}, there exists a quotient (homotopy)
category S(n) = L(n)/ ' consisting of the class of objects Ob(S(n)) = ObS
and of the class Mor(S(n)) of all the sets of Sn-morphisms,

S(n)(X ,Y ) = {F n = [Fn] | Fn ∈ Ln(X ,Y )} = L(n)(X,Y )/ ',
with composition defined by

GnF n = [Gn][Fn] = [GnFn],

and with the identity Sn-morphism 1Xn = [1Xn] on each object X ∈
Ob(S(n)).

Consider now a sequence F ≡ (F n) of Sn-morphisms F n ∈ S(n)(X ,Y ),
n ∈ N, as a new arrow of X to Y . Such a sequence F : X → Y is said to
be an SN-morphism of X to Y . If any SN-morphism G = (Gn) : Y → Z is
given, we define the composition of F and G coordinatewise, i.e.

GF = (Gn)(F n) = (GnF n).

Clearly, GF : X → Z is a well-defined SN-morphism. Moreover, this compo-
sition is associative, because of

H(GF ) = (Hn)((GnF n)) = (Hn(GnF n))

= ((HnGn)F n) = ((HnGn))(F n) = (HG)F .

Further, there exists the identity SN-morphism 1X = (1Xn) : X → X on
each object X. Indeed,

(∀F : X → Y )F1X = (F n1Xn) = (F n) = F

and
(∀G : Z → X)1XG = (1XnGn) = (Gn) = G.

Hence, the following theorem is obtained:
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Theorem 2.10. There exists a (homotopy) category S(N) consisting of
the class of objects Ob(S(N)) = ObS and of the class Mor(S(N)) of all the
sets of SN-morphisms,

S(N)(X ,Y ) = {F | F = (F n),F n = [Fn] ∈ S(n)(X ,Y ), n ∈ N},
with composition defined by

GF = (Gn)(F n) = (GnF n),

and with the identity SN-morphism 1X = (1Xn) = ([1Xn]) on each object
X ∈ Ob(S(N)).

Let us now exhibit some functorial relationships between the previously
constructed categories.

Theorem 2.11. For every pair n, n′ ∈ N ∪ {ω}, n ≤ n′, there exists a
restriction functor Rnn′ : S(n′) → S(n) (which is not unique) keeping the
objects fixed. Rnn is the identity functor. Furthermore, for all n ≤ n′ ≤ n′′,
there exist Rnn′ , Rn′n′′ and Rnn′′ such that Rnn′Rn′n′′ = Rnn′′ , i.e. the
diagram

commutes.

Proof. Let n ≤ n′ and let Fn′ = (f jn′ ) ∈ Ln′(X,Y ). For every jn
′ ∈

J(n′), let f
jn′

jn be the restriction of f jn′ ∈ Fn′ to jn ∈ J(n). This yields, for

all jn, a certain family (fαjn) of n-ladders fαjn : X → Y , α ≡ jn
′ ∈ A(jn) ⊆

J(n′). Let

ψ : J(n) → J(n′), ψ(jn) = jn
′

,

be an injective function such that

(∀λ ∈ [1, n]N)j′λ = jλ, and j′n+1 = jn+1.

Notice that, for every jn ∈ J(n), the value ψ(jn) ∈ A(jn). Let Fn = (f
ψ(jn)
jn )

be indexed by all jn ∈ J(n). One readily sees that conditions (S(n′,m)1,2),
m ≤ n′, of Fn′ imply conditions (S(n,m)1,2), m ≤ n, for Fn. Thus, Fn ∈
Ln(X,Y ). Hence, the correspondence Fn′ 7→ Fn yields, for every pair X, Y ,
function

Ψ ≡ Ψψ,X,Y : Ln′(X ,Y ) → Ln(X,Y ),Ψ(Fn′ ) = Fn.

Notice that this construction assures that Ψ(1Xn′) = 1Xn. Moreover, since
the composition of n-hyperladders is defined coordinatewise (by indices), the
following fact is obvious:
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If Gn′Fn′ = Un′ 7→ Un, Gn′ 7→ Gn and Fn′ 7→ Fn, then Un = GnFn.
It implies that Ψ(Gn′Fn′) = Ψ(Gn′)Ψ(Fn′). Therefore, the function ψ

induces a functor Ψ : L(n′) → L(n) keeping the objects fixed. Let F ′n′ =
(f ′

jn′ ) ∈ Ln′(X,Y ) be an n′-hyperladder such that F ′n′ ' Fn′ , and let F ′n =

(f ′jn) ∈ Ln(X,Y ) be obtained in the same way by means of F ′n′ and (the
same function) ψ. Then one readily sees that conditions (H(n′,m)), m ≤ n′,
of Fn′ ' F ′n′ imply conditions (H(n,m)), m ≤ n, for Fn = Ψ(Fn′) and
F ′n = Ψ(F ′n′), i.e. Ψ(Fn′) ' Ψ(F ′n′) Thus, the functor Ψ : L(n′) → L(n)

induces the functor Rψnn′ : S(n′) → S(n), which keeps the objects fixed and

Rψnn′(F n′) = Rψnn′([Fn′ ]) = [Ψ(Fn′)] ≡ Fψ
n .

Notice that n′ = n implies that ψ = 1J(n) is unique. Hence, Ψ = 1L(n)

is unique, and thus, the functor R1
nn = 1S(n) is the unique identity functor.

Finally, if n ≤ n′ ≤ n′′ then, for every pair ψ, ψ′ as above, the functors

Rψnn′ : S(n′) → S(n), Rψ
′

n′n′′ : S(n′′) → S(n′) and Rψ
′ψ

nn′′ : S(n′′) → S(n)

satisfy Rψnn′R
ψ′

n′n′′ = Rψ
′ψ

nn′′ .

Let ψ = (ψn) be a sequence of injective functions

ψn : J(n) → J(n+ 1), ψn(jn) = jn
′

, n ∈ N,

such that
(∀n ∈ N)(∀λ ∈ [1, n]N)j′λ = jλ and j′n+1 = jn+1.

Then, according to Theorem 2.11, ψ determines a subcategory Sψ(N) ⊆ S(N)

containing all the objects, while an F ∈ Sψ(N)(X ,Y ) is a sequence (F n)

satisfying F n = Rψn

n,n+1(F n+1) for every n ∈ N.

Theorem 2.12. For every n ∈ N, there exists an n-projection functor
Pn : S(N) → S(n), which keeps the objects fixed. Further, for every sequence
ψ = (ψn) as above and every pair n ≤ n′, the following diagram of the functors
commutes:

(ψnn′ denotes the composition ψnψn+1 · · ·ψn′ .)

Proof. For every n and every X ∈ Ob(S), put P n(X) = X and, for
every F = (F n) ∈ S(N)(X ,Y ), put P n(F ) = F n ∈ S(n)(X ,Y ). Then
Pn(1X) = 1Xn and

Pn(GF ) = Pn((GnF n)) = GnF n = Pn(G)Pn(F ).

Thus, Pn : S(N) → S(n) is a functor. The rest of the proof is straightforward

by Theorem 2.11 and by the definition of Sψ(N).
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Theorem 2.13. For every sequence ψ = (ψn) as above, the sequence

(Pn) : Sψ(N) → (S(n), R
ψnn′

nn′ ,N) of the projection functors P n : Sψ(N) →
S(n) is the (inverse) limit of the inverse sequence (S(n), R

ψnn′

nn′ ,N) in the
category Cat of all small categories.

Proof. Recall that every compact metrizable space admits an embed-
ding into the Hilbert cube. Therefore, we may consider HcM to be a small
category. Consequently, S as well as each S(n), n ∈ N, and S(N) may be
considered to be small categories. Thus, according to Theorems 2.11 and
2.12, we only need to verify the universal property. Let (An) be a sequence
of functors An : A → S(n), n ∈ N, in Cat such that, for a given sequence
ψ = (ψn),

(∀n, n′ ∈ N)n ≤ n′ ⇒ An = R
ψnn′

nn′ An′ .

Since the functors R
ψnn′

nn′ are identities on the object class, it follows that

(∀ξ ∈ ObA)(∀n, n′ ∈ N)An(ξ) = An′(ξ).

Let us denote An(ξ) = Xξ and, for a u ∈ A(ξ, θ), An(u) = F u
n ∈

S(n)(Xξ ,Y θ). For every ξ ∈ ObA, put A(ξ) = Xξ, and for every u ∈ A(ξ, θ),

put A(u) = (An(u)) = (F u
n) ≡ F u ∈ Sψ(N)(Xξ,Y θ). Notice that A(u) is

well defined because of An = R
ψnn′

nn′ An′ , n ≤ n′. Since every An is a functor,

A(1ξ) = (An(1ξ)) = (1Xξn) = 1Xξ
∈ Sψ(N)(Xξ,Xξ)

and

A(vu) = (An(vu)) = (An(v)An(u)) = (Gv
nF

u
n) =

= (Gv
n)(F u

n) = (An(v))(An(u)) = A(v)A(u).

Thus, A : A → Sψ(N) is a functor. Clearly, P nA = An holds for every n ∈ N.

Let B : A → Sψ(N) be any functor satisfying P nB = An for every n ∈ N.
Then

(∀ξ ∈ ObA)(∀n ∈ N)B(ξ) = P n(B(ξ)) = An(ξ) = A(ξ).

Further, if u ∈ A(ξ, θ) and B(u) ≡ F ′u = (F ′un ) ∈ Sψ(N)(Xξ,Y θ), then

F ′un = Pn(F ′u) = Pn(B(u)) = P nB(u) ∈ S(n)(Xξ,Y θ), n ∈ N.

Therefore,

(∀u ∈ A(ξ, θ))B(u) = (P nB(u)) = (An(u)) = A(u).
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Thus, B = A, and the universal property is verified.

3. The shape category versus the subshape categories

We consider hereby the relationships between the “realizing” shape cate-
gory Sh = S/ ' of compacta and the previously constructed subshape cate-

gories S(n), n ∈ N ∪ {ω}, as well as S(N) and Sψ(N). First of all, we point
out the following two simple facts:

Lemma 3.1. (i) Let f ,f ′ : X → Y be special morphisms of S with
f, f ′ ≥ 1N, and letn ∈ N ∪ {ω}. If f ' f ′ then the induced n-
hyperladders Fn, F

′
n : X → Y are homotopic, i.e. Fn ' F ′n.

(ii) Let f : X → Y and g : Y → Z be special morphisms of S with
f, g ≥ 1N, and let n ∈ N ∪ {ω}. If Fn ∈ Ln(X,Y ), Gn ∈ Ln(Y ,Z)
and Hn ∈ Ln(X ,Z) are the n-hyperladders induced by f , g and gf

respectively, then GnFn = Hn.

Proof. Recall that the homotopy relation f ' f ′ in S means

(∀j ∈ N)(∃i ≥ f(j), f ′(j))[fj ][pf(j)i] = [f ′j ][pf ′(j)i].

Therefore (see Examples 2.2 and 2.5), for every n ∈ N ∪ {ω}, one can easily
choose the appropriate indices and obtain a desired jn which confirms that
Fn ' F ′n. This proves claim (i). Further, if f and g are special morphisms
with f, g ≥ 1N, then the induced n-hyperladders Fn, Gn and Hn obviously
satisfy hkn = gknfkn for every kn ∈ J(n). Thus, claim (ii) follows.

Theorem 3.2. (i) For every n ∈ N∪ {ω}, there exists a functor T n :
Sh → S(n) keeping the objects fixed. Further, for every restriction
functor Rnn′ : S(n′) → S(n) the following diagram commutes:

(ii) There exists a unique functor T : Sh → S(N), which keeps the objects
fixed and

(∀n ∈ N)PnT = Tn,

where P n : S(N) → S(n) is the n-projection functor.

Proof. For every n and every X ∈ ObSh, put T n(X) = X. For every
Φ ≡ [f ] ∈ Sh(X,Y ), f = (f, [fj ]) : X → Y , put Tn(Φ) ≡ F n = [Fn] ∈



364 N. UGLEŠIĆ AND B. ČERVAR

S(n)(X,Y ), where Fn = (f jn) ∈ Ln(X,Y ), jn ∈ J(n), is the n-hyperladder
induced by a special representative f ∈ Φ (see Examples 2.2 and 2.5). By
Lemma 3.1 (i), the correspondence Φ 7→ Tn(Φ) = F n is well defined. Namely,
f ' f ′ implies Fn ' F ′n. Further, Tn(1X) = [1Xn] = 1Xn, and, by Lemma
3.1 (ii),

Tn(ΨΦ) = Tn([gf ]) = [GnFn] = [Gn][Fn]

= Tn([g])Tn([f ]) = Tn(Ψ)Tn(Φ).

Hence, Tn : Sh → S(n) is a functor. Further, notice (see the proof of The-

orem 2.11) that a restriction functor Rψnn′ : S(n′) → S(n) restricted to the
image Tn′ [Sh] ⊆ S(n′) does not depend on ψ any more. (The restrictions of all
the n′-ladders f

jn′ to a jn are the same n-ladder f jn .) Thus, Rnn′Tn′ = Tn.

This proves claim (i).
To prove claim (ii), put T = (T n), i.e. T (X) = X and

T (Φ) = (Tn(Φ)) = (F n) = F ∈ S(N)(X ,Y ).

Hence, the image T [Sh] ⊆ S(N) is an Sψ(N)-type subcategory. Therefore,
the conclusion follows by Theorem 2.13.

Corollary 3.3. For every n ∈ N∪{ω} there exists an n-subshape functor
Sn : HcM → S(n), which keeps the objects fixed and T nS = Sn, where
S : HcM → Sh is the (ordinary) shape functor. Further, there exists an
N-subshape functor Σ : HcM → S(N), which keeps the objects fixed and
TS = Σ.

Proof. Put Sn(X) = X, where X is a compact ANR-sequence associ-
ated with X (lim X = X). Further, if f : X → Y is an ordinary mapping, put
Sn([f ]) = F n = [Fn], where Fn = (f jn) ∈ Ln(X,Y ) is the n-hyperladder
induced by a special morphism f : X → Y , and f is associated with the
mapping f . The functor Σ is defined by means of the sequence (Sn). The
conclusions follow by Theorem 3.2.

Theorem 3.4. (i) Two inverse sequences X, Y of compact ANR’s
are isomorphic in the shape category Sh (i.e. they have the same shape)
if and only if they are isomorphic objects of the category S(ω).

(ii) There exists a subcategory of S(ω) which is isomorphic to the shape
category Sh.

Proof. The necessity part of (i) holds by Theorem 3.2 (i). Conversely,
let X ∼= Y in S(ω). Then there exists a pair of ω-hyperladders Fω = (f jω ) ∈
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Lω(X,Y ), jωω ∈ J(ω), Gω = (giω ) ∈ Lω(Y ,X), iω ∈ J(ω), such that
GωFω ' 1Xω and FωGω ' 1Y ω. Notice that, by Definitions 2.4 and 2.7
(m = n = ω), one has the following inductive construction:

For j1 = 1 and every j′1 ≥ j1, there exist an i1 ≥ j′1 and a j1∗ ≥ j′1;
for i1 = j1 and i′1 = i1, there exist a j1 ≥ i′1 and an i1∗ ≥ i′1; for j1 and
j′′1 = max{j1∗ , j1}, there exists an i′1 ≥ j′′1 ; put i′′1 = max{i1∗, i′1}; . . . ;
for every jλ+1 > i′′λ and every j′λ+1 ≥ jλ+1, there exist an iλ+1 ≥ j′λ+1 and

a jλ+1
∗ ≥ j′λ+1; for iλ+1 = jλ+1 and i′λ+1 = iλ+1, there exist a jλ+1 ≥ i′λ+1

and an iλ+1
∗ ≥ i′λ+1; for jλ+1 and j′′λ+1 = max{jλ+1

∗ , j′λ+1}, there exists an

i′λ+1 ≥ j′′λ+1, put i′′λ+1 = max{iλ+1
∗ , i′λ+1}; for every jλ+2 > i′′λ+1 . . . , and

so on, by induction on λ ∈ N.
Then jω = iω ∈ J(ω) and

giωf iω ' 1Xiω

such that

(∀λ ∈ N), i∗λ ≥ i′λ

and

(∀λ ∈ N)i(i′λ) ≤ iλ∗ ,

as well as

f jωgjω ' 1Y jω

such that

(∀λ ∈ N), j∗λ ≥ j′λ

and

(∀λ ∈ N)j(j′λ) ≤ jλ∗ .

Observe that the ω-ladder f jω yields the morphism of inverse sequences f :
X → Y . (Each “missing” mapping fj : Xf(j) → Yj is the composition qjj′fj′ ,
where j′ ≥ j is the closest index such that there exists an fj′ belonging to f jω .)
In the same way, the ω-ladder giω yields the morphism of inverse sequences
g : Y → X. Then the compositions gf : X → X and fg : Y → Y satisfy
the following condition:

(∀i ∈ N)(∃i′ ≥ max{i, fg(i)})[gi][fg(i)][pfg(i)i′ ] = [pii′ ]

and

(∀j ∈ N)(∃j′ ≥ max{j, gf(j)})[fj ][gf(j)][qgf(j)j′ ] = [qjj′ ].

This means that gf ' 1X and fg ' 1Y , and thus X ∼= Y in the category
Sh.

To prove claim (ii), one should only observe that all the ω-hyperladders
Fω = (f jω ) which are induced by the special morphisms (see Example 2.5
and Lemma 3.1) form a subcategory of S(ω). More precisely, the restriction
of the functor Tω : Sh→ S(ω) to its image Tω[Sh] ⊆ S(ω) is an isomorphism
of categories.
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Recall that the shape category Sh of compacta, Ob(Sh) = Ob(cM), is
realized via the (shape) category Sh of compact ANR-inverse sequences. This
means that

Sh(X,Y ) ≈ Sh(X,Y ),

where X , Y are any with X , Y associated compact ANR-sequences respec-
tively. In the same way, we introduce, beside the realizing subshape categories
S(n), S(N) and Sψ(N), the corresponding subshape categories S(n), S(N) and
Sψ(N) on compacta, respectively. For instance, the corresponding category
of S(n) is the category S(n), n ∈ N ∪ {ω}, determined by

Ob(S(n)) = Ob(cM)

and

S(n)(X,Y ) ≈ S(n)(X ,Y )

where X, Y are any with X , Y associated compact ANR-sequences, respec-
tively. The definition is correct since, by Theorem 3.2, if X ′ ∼= X and Y ′ ∼= Y

in Sh, then S(n)(X ′,Y ′) ≈ S(n)(X,Y ). Clearly, every fact of the previous
section, as well as of the first part of this section, yields a corresponding fact
in this setting. The functors corresponding to Rnn′ , Pn, Tn, T and Σ are
denoted by Rnn′ , Pn, Tn, T and Σ, respectively.

Corollary 3.5. (i) For every n ∈ N ∪ {ω}, there exists a functor
Tn : Sh → S(n), which keeps the objects fixed and is such that

Rnn′Tn′ = Tn, n ≤ n′,

where Rnn′ : S(n′) → S(n) is any restriction functor.

(ii) There exists a unique functor T : Sh → S(N), which keeps the objects
fixed and is such that

(∀n ∈ N)PnT = Tn,

where Pn : S → S(n) is the n-projection functor.
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(iii) For every n ∈ N∪{ω}, there exists an n-subshape functor Sn : HcM →
S(n), which keeps the objects fixed and is such that TnS = Sn, where
S : HcM → Sh is the (ordinary) shape functor.

(iv) There exists an N-subshape functor Σ : HcM → S(N), which keeps
the objects fixed and is such that TS = Σ.

(v) Two compacta X and Y have the same shape if and only if they are
isomorphic objects of the category S(ω). Furthermore, the restriction
of the functor Tω : Sh → S(ω) to its image Tω[Sh] ⊆ S(ω) is an
isomorphism of categories.

Proof. Statements (i) and (ii) correspond to Theorem 3.2, statements
(iii) and (iv) correspond to Corollary 3.3, while statement (v) corresponds to
Theorem 3.4.

Remark 3.6. In Definition 2.7 one may reduce condition (H(n,m)) to
m ∈ [1, s]N for a fixed s ≤ n. This yields the ( “relative”) s-homotopy
relation on appropriate sets of n-hyperladders, Fn 's F ′n. Then Fn ' F ′n
is the special ( “absolute”) case of Fn 's F ′n for s = n. It is interesting that
the whole “subshape theory” also works in the relative cases. Even more, it
brings a few new phenomena.

4. The S∗-equivalence

We hereby apply the previously exhibited “subshape theory” to character-
ize the Mardešić-Uglešić S∗-equivalence (see [6] and [7]) as the isomorphisms
classification in a certain subshape category.

Recall that two inverse sequences X,Y ∈ Ob(S) are said to be S-
equivalent, denoted by S(X) = S(Y ), provided, for every n ∈ N,

(∀j1)(∃i1)(∀i′1 ≥ i1)(∃j′1 ≥ j1)(∀j2 ≥ j′1)(∃i2 ≥ i′1) · · ·
· · · (∀i′n−1 ≥ in−1)(∃j′n−1 ≥ jn−1)(∀jn ≥ j′n−1)(∃in ≥ i′n−1)

and there exist mappings fk ≡ fnjk : Xik → Yjk , k = 1, . . . , n, and gk ≡ gni′
k

:

Yj′
k
→ Xi′

k
, k = 1, . . . , n− 1, making the following diagram
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commutative up to homotopy. Two compacta X and Y are said to be S-
equivalent, denoted by S(X) = S(Y ), provided there exist limits p : X → X

and q : Y → Y of inverse sequences consisting of compact ANR’s such that
S(X) = S(Y ).

Lemma 4.1. Let X,Y ∈ Ob(S). Then S(X) = S(Y ) if and only if the
following two conditions are satisfied:

(1) For every n ∈ N, there exists a pair (fn, (Fnj )j∈N) consisting of a
strictly increasing function fn : N → N and, for each j ∈ N, of a
countable family F nj of mappings fnαj : Xfn(j) → Yj , α ∈ Anj , such that

(i) (∀j ∈ N)fn(j) ≥ j;
(ii) (∀j1 < · · · < jn in N)(∀λ ∈ [1, n]N)(∃fnjλ ∈ Fnjλ)

λ ≤ λ′ ⇒ fnjλpfn(jλ)fn(jλ′ ) ' qjλjλ′ f
n
jλ′

;

(2) For every n > 1 there exists a pair (gn−1, (Gn−1
i )i∈N) having the

properties (i)′ and (ii)′ analogue to (i) and (ii) respectively, where
gn−1 : N → N is increasing, gn−1

βi : Ygn−1(i) → Xi is a mapping,

β ∈ Bn−1
i , and

(iii) (∀j1)(∀i1 ≥ fn(j1))(∀j2 ≥ gn−1(i1)) · · · (∀jn ≥ fn(jn−1))
there exist mappings fnj1 ∈ Fnj1 , . . . , fnjn ∈ Fnjn , gn−1

i1
∈ Gn−1

i1
,. . .,

gn−1
in−1

∈ Gn−1
in−1

such that the corresponding diagram

commutes up to homotopy.

Proof. Let S(X) = S(Y ). First, we may assume that, for each n ∈ N,
a choice of indices in the appropriate condition is strictly increasing and that
ik(jk) > jk, jk ∈ N, k = 1, . . . , n. Thus, if n = 1, the appropriate condition
of S(X) = S(Y ) implies that for every j ∈ N there exist an i ∈ N, i > j, and
a mapping fj : Xi → Yj . By moving indices, inductively, one easily obtains
a strictly increasing function f 1 : N → N satisfying condition (i) as well as,
for each j ∈ N, the singleton family F 1

j = {f1
j }, f1

j = fj : Xf1(j) → Yj .

Since there is no commutativity condition, (f 1, (F 1
j )) is a desired pair. Let

n ≥ 2. Consider first the simplest case n = 2 by using the corresponding
condition of S(X) = S(Y ). First, we shall inductively construct a desired
strictly increasing function f 2 : N → N. For j1 = 1,

(∃i1 ≥ 1)(∀i′1 ≥ i1)(∃j′1 ≥ i′1)(∀j2 ≥ j′1)(∃i2 ≥ j2)
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and there exist mappings f1 : Xi1 → Y1, f2 : Xi2 → Yj2 , g1 : Yj′1 → Xi′1
such that the corresponding diagram commutes up to homotopy. The index
i1 depends only on j1 = 1 (and on n = 2, of course). Thus, put f 2(1) = i1(1).
Assume that f2(1) < · · · < f2(j) are defined according to (i). As before, for
j1 = j + 1,

(∃i1 ≥ j + 1)(∀i′1 ≥ i1)(∃j′1 ≥ i′1)(∀j2 ≥ j′1)(∃i2 ≥ j2)

and there exist mappings f1 : Xi1 → Y1, f2 : Xi2 → Yj2 , g1 : Yj′1 → Xi′1
such that the corresponding diagram commutes up to homotopy. The index
i1 depends only on j1 = j + 1. Notice that in each of the previous cases,
i.e. j1 ∈ [1, j]N, the index j2 = j + 1 may occur at most finitely many times.
Therefore, in all those cases, j2 = j + 1 occurs only finitely many times.
Denote the set of all the corresponding indices i2 by I(j1, j2 = j + 1). Put

f2(j + 1) = max{f2(j) + 1, i∗2, i1(j + 1)},
where i∗2 = max I(j1, j2 = j+1). Let F 2

1 consist of all the occurring mappings
f2
1α : Xf2(1) → Y1, α ∈ A2

1. If j > 1, let F 2
j consist of all the mappings

f2
jα : Xf2(j) → Yj , α ∈ A2

j , which are the compositions of the occurring
mappings with the appropriate bonding mappings. Properties (i) and (ii) for
the pair (f2, (F 2

j )) follow by the condition of S(X) = S(Y ) for n = 2.
To clarify the general case, let us carefully explain the case n = 3. Observe

that each j ∈ N occurs in a j3 = (j1, j2, j3) as one of its coordinate. If j = j3
then there are only finitely many triples containing j, and thus, there are only
finitely many corresponding indices i(j). If j = j2 then there are infinitely
many triples containing j; only finitely many of them (by varying j1) require
different choices of i(j). If j = j1 then there are infinitely many triples
containing j; however, in these cases i(j) depends only of j, so it may be a

unique index. Therefore, for each j ∈ N, there exists a finite set Ij(j
3) ⊆ N,

j ∈ j3 and j3 ∈ J(3), containing all the indices i(j) which comes from the
condition S(X) = S(Y ) for n = 3. Quite similarly to the previous case, one
can inductively construct a desired pair (f 3, (F 3

j )). To conclude the proof of
the existence of every pair (fn, (Fnj )), n ∈ N, it suffices to observe that our

main argument (i.e. for every j ∈ N, the corresponding set Ij(j
n), j ∈ jn and

jn ∈ J(n), is finite), holds in general.
Let us now construct a desired pair (gn−1, (Gn−1

i )), whenever n > 1.
First, consider the case n = 2. Denote f 2(1) = i1. By S(X) = S(Y ) for
n = 2 and our construction of (f 2, (F 2

j )), for j1 = 1,

(∃i1 = f2(1) ≥ 1)(∀i′1 ≥ i1)(∃j′1 ≥ i′1)(∀j2 ≥ j′1)(∃i2 ≥ j2)

and there exist mappings f1 : Xf2(1) → Y1, f2 : Xi2 → Yj2 , g1 : Yj′1 → Xi′1
such that the corresponding diagram commutes up to homotopy. Notice that
for i′1 = f2(1), the index j′1(f2(1)) is a unique one. Put g1(i) = j′1(f2(1))
for every i ∈ [1, f2(1)]N. For i > f2(1), we may proceed inductively as in the
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first part of the proof, since for every i ∈ N, the set Ji(i
2) ⊆ N, i ∈ i2 and

i2 ∈ J(2), (of all the indices j ′(i) coming from the condition S(X) = S(Y )
for n = 2) is finite. Thus, we can obtain a desired pair (g1, (G1

i )). Condition
(iii) follows by construction and the condition of S(X) = S(Y ) for n = 2.

Since the main argument (every Ji(i
n) is a finite set) holds in general,

the conclusion follows. The converse, i.e. that conditions (1) and (2) imply
S(X) = S(Y ), is obvious.

Example 4.2. Let S(X) = S(Y ). Then, according to Lemma 4.1, for
every k ∈ N there exists a pair (fk, (F kj )j∈N). Given an n ∈ N and a

jn ∈ J(n), one can easily obtain an n-ladder f kjn : X → Y by means of

(fk, (F kj )j∈N), where k ≥ n is chosen arbitrarily. Moreover, a λ-block of

fkjn is not empty whenever jλ+1 − jλ is sufficiently large. However, an easy

examination shows that, in general, the family (f kjn), jn ∈ J(n), is not an n-
hyperladder. Namely, in general, both conditions (S(n,m)1) and (S(n,m)2)
cannot be fulfilled. The obstruction also remains if one defines the family
(f jn), jn ∈ J(n), by using any or all k ≥ n.

If S(X) = S(Y ) can be obtained so that the choice of indices ik and
j′k does not depend on a given n ∈ N, then the (formally) stronger relation
S∗(X) = S∗(Y ), as well as S∗(X) = S∗(Y ), occurs. According to Lemma
4.1, it can be characterized by conditions (1) and (2) such that, in addition,
fn = f for every n and gn−1 = g for every n > 1. It is now an easy exercise
to exhibit the next lemma by means of Lemma 4.1.

Lemma 4.3. S∗(X) = S∗(Y ) if and only if there exists a pair of strictly
increasing sequences (uk) and (vk) in N, vk ≤ uk ≤ vk+1 for every k ∈ N, such
that, for every n ∈ N and every k ∈ N, there exist mappings fnl ≡ fnvk+l−1

:
Xuk+l−1

→ Yvk+l−1
, l = 1, . . . , n, and gnl ≡ gnuk+l−1

: Yvk+l
→ Xuk+l−1

, l =
1, . . . , n− 1, making the diagram

homotopy commutative.

S. Mardešić and the first named author (see [7]) constructed a certain
category S∗ (and the functor S∗ : Sh → S∗), such that X ∼= Y in S∗ if
and only if S∗(X) = S∗(Y ). Further, in the corresponding category S∗ on
compacta, X ∼= Y in S∗ if and only if S∗(X) = S∗(Y ).

We first prove that the S∗-equivalence implies an isomorphism in the
sequence subshape category S(N).
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Theorem 4.4. Let X,Y ∈ Ob(S). If S∗(X) = S∗(Y ) then X ∼= Y

in the category S(N) and, consequently, in every category S(n), n ∈ N. The
same holds for X,Y ∈ Ob(cM) and the categories S(N) and S(n), n ∈ N.

Proof. Let S∗(X) = S∗(Y ). We have to construct, for every n ∈ N, a
pair of morphisms F n = [Fn] ∈ S(n)(X ,Y ), Gn = [Gn] ∈ S(n)(Y ,X) such
that GnF n = 1Xn and F nGn = 1Y n, i.e. GnFn ' 1Xn and FnGn ' 1Y n

for every pair of the representatives. By Lemma 4.3, for every n ∈ N, every
jn ∈ J(n) determines two (finite) sets of indices, belonging to the existing
sequences,

V (jn) = {vk′ | vk′ ∈ [j1, jn+1 − 1]N, k
′ ≥ k, vk−1 < j1, uk′ < jn+1},

U(jn) = {uk′ | uk′ ∈ [j1, jn+1 − 1]N}, k′ ≥ k, vk−1 < j1}.

Then |V (jn)| = |U(jn)| ≡ n′ ∈ N (depending only on j1 and jn+1). By
considering the corresponding diagram of Lemma 4.3, let us denote, for every
λ ∈ [1, n]N,

vkλ
, vkλ+1, . . . , vkλ+rλ

∈ V (jn) ∩ [jλ, jλ+1 − 1]N,

i.e. ukλ+rλ
< jλ+1 − 1 and ukλ+rλ+1 ≥ jλ+1. Then we define the n-ladder

f jn : X → Y by putting

(∀λ ∈ [1, n]N)(∀sλ ∈ [0, rλ]N0)(∀j ∈ [vkλ+sλ−1 + 1, vkλ+sλ
]N)

fj = qjvkλ+sλ
fn

′

λ,sλ+1,

where vkλ−1 ≡ jλ − 1 and fn
′

λ,sλ+1 ≡ fn
′

vkλ+sλ+1
: Xukλ+sλ

→ Yvkλ+sλ
.

j 1 j 2 j λ j λ+ 1 j n+ 1vk vk+ 1

uk

vkλ
+ 1 vkλ

+ 2

uk λ + 2uk λ + 1uk λ

vkλ
vk''

uk''

One can easily verify that Fn = (f jn), indexed by all jn ∈ J(n), is an n-
hyperladder of X to Y . (Given a j ′λ ≥ jλ, choose the minimal vk ≡ vkλ

≥ j′λ
and put iλ = ukλ

.) The n-hyperladder Gn = (gin) of Y to X is defined in

the same way by means of U(jn) = V (jn) and the mappings gn
′

ukλ+sλ+1
.

Let us prove that GnFn ' 1Xn and FnGn ' 1Y n. Let n ∈ N and let
m ≤ n. Then, for every j1 ∈ N and every j′1 ≥ j1 there exists a minimal
vk1 ≥ j′1; put j1∗ = vk1+1; . . . ; for every jm > jm−1

∗ and every j′m ≥ jm there
exists a minimal vkm

≥ j′m; put jm∗ = vkm+1; let jm+1 > jm∗ , jm+2 > jm+1,
. . . , jn+1 > jn.
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jm jm+ 1jm'' = j  
*

mvkm
vkm+ 1

j
*

m j m

j 1 j 2
vk1+ 1= j  

*

1vk1j 1''

j  
*

1 j 1 j

jn jn+ 1

n

Then condition (H(n,m)) for FnGn and 1Y n, i.e. the m-homotopy re-
lation f jngjn 'm 1Y jn holds by construction of the n-ladders. Therefore,
FnGn ' 1Y n. Further, for every i1 ∈ N and every i′1 ≥ i1 there exists a
minimal uk1 ≥ i′1; put i1∗ = uk1+1; . . . ; for every im > im−1

∗ and every
i′m ≥ im there exists a minimal ukm

≥ i′m; put im∗ = ukm+1; let im+1 > im∗ ,
im+2 > im+1, . . . , in+1 > in.

Then condition (H(n,m)) for GnFn and 1Xn, i.e. the m-homotopy re-
lation ginf in 'm 1Xin holds by construction of the n-ladders. Therefore,
GnFn ' 1Xn. The proof of the rest of the theorem is quite similar.

An n-hyperladder Fn = (f jn) : X → Y , jn ∈ J(n), n ∈ N∪{ω}, is said to
be uniform and is denoted by Fn = (fn,f jn), provided there exists a strictly
increasing function fn : N → N such that the index function of every n-ladder
f jn ∈ Fn is the appropriate restriction of fn. If Gn = (gn, gkn) : Y → Z is
an other uniform n-hyperladder, then the composition

GnFn = (fngn, gknfkn) : X → Z

is a uniform n-hyperladder. Further, each identity n-hyperladder 1Xn =
(1N,1Xin), X ∈ ObS , is uniform. Thus, there exists the corresponding
subcategory L0(n) ⊆ L(n) determined by all the uniform n-hyperladders. The
appropriate quotient (homotopy) category is denoted by S0(n). Let S∗(n) be
the largest subcategory of S(n) such that every morphism F n : X → Y

of S∗(n) admits a uniform representative Fn = (fn,f jn). Clearly, S0(n) ⊆
S∗(n) and, for the corresponding sequence categories, S0(N) ⊆ S∗(N).

Lemma 4.5. If X ∼= Y in S∗(N), then S(X) = S(Y ). Consequently, if
X ∼= Y in S∗(N), then S(X) = S(Y ).

Proof. Let X ∼= Y in S∗(N). Then there exists a pair of sequences
(Fk), (Gk) such that, for every k ∈ N, Fk = (fk,f jk ) ∈ L0(k)(X ,Y ), Gk =
(gk, gik ) ∈ L0(k)(Y ,X), GkFk ' 1Xk and FkGk ' 1Y k. This also means
that X ∼= Y in each S∗(k), k ∈ N. We have to exhibit, for a given n ∈ N, a
homotopy commutative diagram corresponding to S(X) = S(Y ). The case
n = 1 is trivial. Consider the case n = 2. Let us denote U1 = (u1,us1) = G1F1

and V1 = (v1,vt1) = F1G1. Then u1 = f1g1, us1 = gs1fs1 , s1 ∈ J(1), and
v1 = g1f1, vt1 = f t1gt1 , t1 ∈ J(1).
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Now, for every j1 ∈ N, put t1 = s1 = j1 and i1 = f1(t1). Let i′1 ≥ i1.
Since f1 strictly increases, there exists a t′1 ≥ t1 such that f1(t′1) ≥ i′1. By
V1 ' 1Y 1, for t1 and t′1 there exists a t1∗ ≥ t′1. Put j′1 = t1∗ and let j2 ≥ j′1.
Since g1 strictly increases, there exists an s′1 ≥ f1(t′1) such that g1(s′1) ≥ j2.
By U1 ' 1X1, for s1 and s′1, there exists an s1∗ ≥ s′1. Put i2 = s1∗, and
choose an s2 = t2 ≥ g1(i2) + 1. Then s1 = t1 and corresponding 1-ladders
f t1 : X → Y and gs1 : Y → X yield the mappings

f2
1 = ft1 : Xi1 = Xf1(t1) → Yt1 = Yj1 ,

g2
1 = gi′1qg1(i′1)t1∗

: Yj′1 = Yt1∗ → Xi′1
,

f2
2 = fj2pf1(j2)s1∗

: Xi2 = Xs1∗
→ Yj2 .

t
1
= s

1
= j

1

s
1

t
1

s1

i 1
i 1
'

f
1

2

t 1
' j

1
'

t
*

1

j 2

s
1
'

s1
*

i 2

f
2

2
g

1

2

s2

s2

t
2

t
2

Clearly, the mappings ft1 and fj2 belong to f t1 , while the mapping gi′1
belongs to gs1 , s1 = t1. To obtain the homotopy commutative diagram which
corresponds to S(X) = S(Y ) in the case n = 2 follows as straightforward by
the homotopy relations f t1gt1 ' 1Y t1 and gs1fs1 ' 1Xs1 of the composite
1-ladders.

If n > 2, the procedure of the construction is similar. For instance, if
n = 3, we use F2 and G2. More precisely (after i2 is chosen), for every
i′2 ≥ i2 = s1∗, put s2 = t2 = max{g2(i2) + 1, i′2} and proceed as before. The
desired mappings f3

1 , g3
1 and f3

2 occur in the first block, while g3
2 and f3

3 occur
in the second block.

Let S∗(N) ⊆ S∗(N) be the largest subcategory such that every morphism

F = (F n) ∈ S∗(N)(X ,Y ) admits a representative (Fn), Fn = (fn,f
j

n) ∈
S0(N)(X ,Y ), such that there exists a function f : N → N satisfying fn = f ,
for every n ∈ N. Then Lemma 4.5 and its proof yield the next corollary.
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Corollary 4.6. If X ∼= Y in S∗(N), then S∗(X) = S∗(Y ). Conse-
quently, if X ∼= Y in S∗(N), then S∗(X) = S∗(Y ).

Proof. Since the sequences (Fk) and (Gk) admit the unique index func-
tions f and g, respectively, the choice of indices for S(X) = S(Y ) does not
depend on any n ∈ N. The conclusion follows, i.e. in this case S(X) = S(Y )
is actually S∗(X) = S∗(Y ).

We shall now prove that the converse also holds.

Theorem 4.7. S∗(X) = S∗(Y ) if and only if X ∼= Y in the subcategory
S∗(N) ⊆ S(N). Consequently, for every pair X, Y of compacta, S∗(X) =
S∗(Y ) if and only if X ∼= Y in the subcategory S∗(N) ⊆ S(N).

Proof. The subcategory S∗(N) ⊆ S(N) is already constructed. The suf-
ficiency holds by Corollary 4.6. Let us prove the necessity part. First, notice
that the proof of Theorem 4.4 may not be used since we now need the uni-
form n-hyperladders which must have the same index function for the whole
sequence. To avoid this difficulty, we shall apply Lemma 4.1 adapted to the
S∗-equivalence. In that case, the pairs (fn, (Fnj )j∈N) and (gn−1, (Gn−1

i )i∈N)
have this additional property:

(∀n ∈ N)fn = f and (∀n > 1)gn−1 = g.

Let n ∈ N and jn ∈ J(n). Then the pair (f, (F kj )j∈N), k = jn+1 − j1, admits

a k-tuple (fkj1 , . . . , f
k
jn+1−1), fkj ∈ F kj , j ∈ [j1, jn+1 − 1]N, such that

(∀j, j′ ∈ [j1, jn+1 − 1]N)j ≤ j′ ⇒ [fkj ][pf(j)f(j′)] = [qjj′ ][f
k
j′ ].

Let the n-ladder f jn : X → Y be induced by (fkj1 , . . . , f
k
jn+1−1), i.e. for every

λ ∈ [1, n]N and every j ∈ [jλ, jλ+1 − 1]N, the homotopy class of the mapping
fkj belongs to (the λ-th block of) f jn , whenever f(j) < jλ+1. Then, one

can easily verify that the corresponding family Fn = (f jn), jn ∈ J(n), is an
n-hyperladder of X to Y . Moreover,

Fn = (f jn) = (fn = f,f jn), jn ∈ J(n),

belongs to S0(n)(X ,Y ) and in the sequence (Fn) all the Fn’s have the same
index function f . Let the sequence (Gn) of n-hyperladders Gn = (gn =
g, gin) : Y → X, n ∈ N, be defined in the same way by means of the pair

(g, (Gk−1
i )i∈N), k = in+1 − i1.

Let us prove that GnFn ' 1Xn and FnGn ' 1Y n, n ∈ N, by following
the procedure used in the proof of Theorem 4.4. Let n ∈ N and m ≤ n. For
every j1 ∈ N and every j′1 ≥ j1, put j1∗ = gf(j′1), and let j2 > j1∗ ; . . . ; for
every jm > jm−1

∗ and every j′m ≥ jm, put jm∗ = gf(j′m), and let jm+1 > jm∗ ,
jm+2 > jm+1, . . . , jn+1 > jn.

Then condition (H(n,m)) for FnGn and 1Y n, i.e. the m-homotopy re-
lation f jngjn 'm 1Y jn holds by construction of the n-ladders. Therefore,
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FnGn ' 1Y n. Further, for every i1 ∈ N and every i′1 ≥ i1, put i1∗ = fg(i′1),
and let i2 > i1∗, . . . ; for every im > im−1

∗ and every i′m ≥ im, put im∗ = fg(i′m),
and let im+1 > im∗ , im+2 > im+1, . . . , in+1 > in. Then condition (H(n,m))
for GnFn and 1Xn, i.e. the m-homotopy relation ginf in 'm 1Xin holds by
construction of the n-ladders. Therefore, GnFn ' 1Xn. Hence, there exist
morphisms F = (F n) ∈ S∗(N)(X ,Y ) and G = (Gn) ∈ S∗(N)(Y ,X) such
that GF = 1X and FG = 1Y . Thus, X ∼= Y in S∗(N).

Let us finally construct the appropriate functors relating our categories.

Theorem 4.8. There exists a unique functor T ∗ : Sh → S∗(N), which
keeps the objects fixed and is such that

(∀n ∈ N)P ∗nT
∗ = Tn,

where Tn : Sh → S(n) and P ∗n : S∗(N) → S(n) is the restriction of the
n-projection functor P n : S(N) → S(n) to the subcategory S∗(N).

Consequently, there exists a unique functor T ∗ : Sh→ S∗(N), which keeps
the objects fixed and is such that

(∀n ∈ N)P ∗nT
∗ = Tn,

where Tn : Sh → Sn and P ∗n : S∗(N) → S(n) is the restriction of the n-
projection functor Pn : S(N) → S(n) to the subcategory S∗(N).

Proof. By the proof of Theorem 3.2, the image T [Sh] ⊆ S∗(N). The
conclusions follow by Theorem 3.2 and Corollary 3.5.

5. The q∗-equivalence

Here is another application of the “subshape theory”. K. Borsuk had

defined the relations of quasi-equivalence
q' and quasi-affinity

q↔ of compacta
in terms of fundamental sequences between compacta lying in AR-spaces (see
[2]). In order to characterize these relations in a category framework, the first
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named author adapted in [9] the original definitions in terms of the Mardešić-
Segal shape theory [8]. Let us briefly sketch the indispensable definitions and
facts from [9].

Let f = (f, [fj ]),f
′ = (f ′, [f ′j ]) ∈ S(X ,Y ) and let s ∈ N. Then f is said

to be s-homotopic to f
′, denoted by f 's f

′, provided

(∀j ∈ [1, s]N)(∃i = i(j) ≥ f(j), f ′(j))[fj ][pf(j)i] = [f ′j ][pf ′(j)i].

Observe that

f ' f
′ ⇐⇒ (∀s ∈ N)f 's f

′,

where ' is the usual homotopy relation on S . Then,

(i) For every s ∈ N , the relation 's is an equivalence relation on each set
S(X,Y );

(ii) (∀s′ ≤ s)f 's f ′ ⇒ f 's′ f ′.

Moreover, for every s ∈ N, the relation 's is natural from the right in the
category S, i.e.

(∀h : W → X)f 's f
′ ⇒ fh 's f

′
h.

On the other side, if g : Y → Z then

f 's f ′ ⇒ gf 's′ gf ′,

whenever g[[1, s′]N] ⊆ [1, s]N.
Let X and Y be compact ANR-sequences. Then X is said to be quasi-

equivalent to Y , denoted by X
q' Y , if for every n ∈ N there exist morphisms

f ∈ S(X,Y ) and g ∈ S(Y ,X) such that gf 'n 1X and fg 'n 1Y . X is

said to be quasi-affinite to Y , denoted by X
q↔ Y , if for every n ∈ N there

exist morphisms f ,f ′ ∈ S(X,Y ) and g, g′ ∈ S(Y ,X) such that gf 'n 1X

and f ′g′ 'n 1Y .

This relations
q' and

q↔ are shape invariant relations on the class ObS.
By [9], Theorem 1, if X, Y are compact metrizable spaces and if X, Y are
arbitrary with them associated compact ANR-sequences respectively, then

X
q' Y ⇐⇒ X

q' Y

and

X
q↔ Y ⇐⇒ X

q↔ Y .

Consequently, a compactum X is quasi-equivalent to a compactum Y , X
q' Y ,

if and only if, for every n ∈ N, there exist morphisms fn : X → Y and
gn : Y → X such that gnf

n 'n 1X and f
n
gn 'n 1Y , where X = lim X and

Y = Y . Further, X is quasi-affinite to Y , X
q↔ Y , if and only if, for every

n ∈ N, there exist morphisms fn,f ′n : X → Y and gn, g′n : Y → X such
that gnf

n 'n 1X and f
′n

g′n 'n 1Y

One may assume, without loss of generality, that all the morphisms real-

izing the relations X
q' Y and X

q↔ Y are special morphisms. We may also
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assume that n′ ≥ n implies fn
′ ≥ fn, gn

′ ≥ gn etc. Further, it is obvious that
the conditions gnfn 'n 1X , fngn 'n 1Y etc. can be relaxed to condition
gnfn 'sn

1X , fngn 'sn
1Y etc., where (sn) is an increasing unbounded

sequence in N ∪ {0}.
In paper [9] the first named author constructed a certain category K

which describes the relations
q' and

q↔ by means of an appropriate relation
on the morphisms of K. The objects of K are all compact ANR-sequences,
ObK = ObS , while

K(X ,Y ) = {F = (fn) | fn ∈ S(X,Y )special, n ∈ N}.
The composition in MorK is the coordinatewise composition, i.e.

GF = (gnfn) = ((fngn, [gnk f
n
gn(k)])),

while the identity morphism on an object X ∈ ObK is 1X = (1nX), where
1nX = 1X for each n ∈ N.

Further, a morphism F = (fn) ∈ K(X ,Y ) is said to be quasi-homotopic

to a morphism F ′ = (f ′n) ∈ K(X,Y ), denoted by F
q' F ′, provided fn 'n

f ′n for almost all n. The quasi-homotopy relation
q' is an equivalence relation

on each set K(X ,Y ). It is also natural from the right, i.e.

(∀H ∈ K(W ,X))(∀F, F ′ ∈ K(X ,Y ))F
q' F ′ ⇒ FH

q' F ′H.

Unfortunately, the quasi-homotopy relation
q' is not natural from the left in

the category K, so there is no corresponding quotient category. Nevertheless,
by [9], Theorem 3,

X
q' Y if and only if there exist morphisms F ∈ K(X ,Y ) and G ∈

K(Y ,X) such that GF
q' 1X and FG

q' 1Y .
Similarly,

X
q↔ Y if and only if there exist morphisms F, F ′ ∈ K(X ,Y ) and

G,G′ ∈ K(Y ,X) such that GF
q' 1X and F ′G′

q' 1Y .
In [9] it was also shown that for a slight strengthening of the Borsuk

quasi-equivalence as well as the quasi-affinity, reinterpreted as above, there
exists a category characterization. Let X,Y ∈ Ob(S). Then X is said to be

q-equivalent to Y , denoted by X
q' Y , provided X

q' Y and there exists a
pair F = (fn), G = (gn) of morpisms realizing this relation in the category
K such that

(∀i, j ∈ N)(fn(j)), (gn(i)) are bounded sequences.

Further, X is said to be q-affinite to Y , denoted by X
q↔ Y , whenever

X
q↔ Y and there exist morphisms F = (fn), F ′ = (f ′n), G = (gn) and

G′ = (g′n) which realize this relation in the category K, such that

(∀i, j ∈ N)(fn(j)), (f ′n(j)), (gn(i)), (g′n(i)) are bounded sequences.
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For a pair X , Y of compacta, we define X
q' Y (X

q↔ Y ) if X
q' Y

(X
q↔ Y ) for some (equivalently, for any) pair X, Y of the associated compact

ANR-sequences.
Let K be the subcategory of K consisting of ObK = ObK = Ob(S)

and MorK ⊆ MorK such that each K(X ,Y ) ⊆ K(X ,Y ) consists of all
the morphisms F = (fn), where all fn = (fn, [fnj ]) have a unique index

function f = fn, n ∈ N. Such a morphism is denoted by F = (f,fn). A
morphism F = (f,fn) : X → Y is said to be q-homotopic to an F ′ =

(f ′,f ′n) : X → Y , denoted by F
q' F ′, provided there exists an increasing

and unbounded sequence (sn) in N0 such that fn 'sn
f ′n, whenever sn ≥ 1.

The key fact is that the q-homotopy relation
q' is a natural equivalence relation

on MorK. Therefore, there exists the corresponding quotient category K/ q
'
≡

Q. Observe that the quotient category Q yields the associated category Q on
compacta such that

ObQ = Ob(cM)

and

Q(X,Y ) ≈ Q(X,Y ),

where X, Y are any compact ANR-sequences associated with X , Y respec-
tively. (For a given pair X,Y , any set Q(X,Y ) may represent Q(X,Y ).) An
important result is the following one ([9], Theorem 6):

For every pair X, Y ∈ Ob(S),

X
q' Y if and only if X ∼= Y in Q;

X
q↔ Y if and only if X ≤ Y and Y ≤ X in Q;

Consequently, for every pair X, Y of compacta, X
q' Y (X

q↔ Y ) if and only
if X ∼= Y (X ≤ Y ∧ Y ≤ X) in Q.

Moreover [9], Theorem 7), there exist functors Q : HcM → Q and Γ :
Sh→ Q, which keep the objects fixed and ΓS = Q, where S : HcM → Sh is
the ordinary shape functor.

According to [9], Remark 8. (b), the q-equivalence admits a slight
strengthening in the following way: A morphism F = (f,fn) ∈ K(X ,Y ) is
said to be uniformly q-homotopic to a morphism F ′ = (f ′,f ′n) ∈ K(X,Y ),

denoted by F
q∗' F ′, provided F

q' F ′ and there exists a sequence (ij) in N,
ij ≥ f(j), f ′(j), such that

(∀n ∈ N)(∀j ∈ [1, sn]N)[fnj ][pf(j)ij ] = [f ′nj ][pf ′(j)ij ],

where (sn) is a realizing sequence for F
q' F ′. One easily checks that

q∗'
is a natural equivalence relation on K. Thus, there exist the corresponding

quotient category K/q∗

'
≡ Q∗ and the associated category Q∗ on compacta.
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Further, there exist functors Q∗ : HcM → Q∗ and Γ∗ : Sh→ Q∗, which keep
the objects fixed and Γ∗S = Q∗. Moreover, there exists a functor Π : Q∗ → Q
such that Q = ΓQ∗ and Γ = ΠΓ∗.

Let X, Y be a pair of compact ANR-sequences. Then, X is said to

be q∗-equivalent to Y , denoted by X
q∗' Y , provided there exists a pair of

morphisms F : X → Y , G : Y → X in K such that GF
q∗' 1X and FG

q∗' 1Y .

Clearly, this means X ∼= Y in Q∗. The q∗-affinity, X
q∗↔ Y , means X ≤ Y

and Y ≤ X in Q∗. The q∗-equivalence (q∗-affinity) of compacta is the induced
relation in the category Q∗.

In order to relate the above mentioned relations with a certain subshape
category, let us recall our category L(1). Let A(1) be the collection consisting
of ObA(1) = ObL(1) = ObS and of the morphism sets

A(1)(X ,Y ) ⊆ L(1)(X ,Y ) = L1(X ,Y ),

such that a 1-hyperladder F1 = (f j1) : X → Y belongs to A(1)(X ,Y ),

whenever each of its 1-ladder f j1 , j
1 ∈ J(1), is induced by a special mor-

phism f : X → Y of S . Clearly, the identity 1-hyperladder 1X1 = (1Xi1)
belongs to A(1)(X ,X). Further, if F1 = (f j1) ∈ A(1)(X,Y ) and G1 =
(gk1) ∈ A(1)(Y ,Z), then G1F1 = (gk1fk1) ∈ A(1)(X,Z). Namely, if fk1

is induced by an f , and gk1 is induced by a g, then gk1fk1 is induced by
gf . Therefore, A(1) is a subcategory of L(1). Let A1(1) ⊆ A(1) be the
subcategory determined by the following two conditions

(i) there exists a unique index function f for all 1-ladders of a 1-
hyperladder F1 = (f,f j1) ∈ A1(1)(X ,Y );

(ii) for every 1-ladder f j1 of a 1-hyperladder F1 = (f,f j1) ∈ A1(1)(X ,Y ),

the starting index j1 = 1, i.e. j1 = (1, j2);

Let B1(1) be the corresponding quotient category A1(1)/ '. Finally, let
B∗ ⊆ S(1) be the maximal subcategory such that every morphism F 1 =
[F1] ∈ B∗(X ,Y ) admits a representative F1 = (f,f j1) ∈ A1(1)(X ,Y ). The
corresponding category of compacta is denoted by B∗.

Notice that the functor T 1 : Sh → S(1) yields the functor T 1,1 : Sh →
S1(1) (j1 = 1). Furthermore, by the proof of Theorem 3.2, T 1,1[Sh] ⊆ B∗.
Thus, T 1 yields a functor T ∗ : Sh → B∗. The corresponding functor on
compacta is denoted by B∗ : Sh→ B∗.

Theorem 5.1. There exists a functor A∗ : B∗ → Q∗, which keeps the

objects fixed and is such that A∗T ∗ = Γ
∗
. Consequently, there exists a functor

A∗ : B∗ → Q∗, which keeps the objects fixed and is such that A∗T ∗ = Γ∗.

Proof. The category B∗ and the functor T ∗ are already constructed. For
every X ∈ Ob(B∗) = Ob(S), put A∗(X) = X. Let F 1 ∈ B∗(X,Y ). Then
there exists a representative F1 = (f,f j1) of F 1 = [F1], such that j1 = 1, f is
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the index function for all f j1 and every f j1 is induced by a special morphism

of inverse sequences f(j1) : X → Y . Recall that j1 = (1, j2) ∈ J(1). By
conditions (S(1, 1)1,2) with j1 = 1, for every n = j ′1 ∈ N, there exists an
i1(n) ≥ f(n) such that, for every j2 > i1, the 1-ladder f j1 (i.e. the morphism

f(j1) : X → Y ) satisfies

(∀j ∈ [1, n]N)f(j) ≤ f(n) ≤ i1.

Let (j2,n) be a strictly increasing sequence in N such that i1(n) < j2,n, for
every n. Put

fn = f(j1
n), j1

n = (1, j2,n), n ∈ N.

Then F = (f,fn) ∈ K(X ,Y ). If F ′ = (f ′,f ′n) ∈ K(X ,Y ) is defined
in the same way (via the same (j2,n)), by using another representative

F ′1 = (f ′,f ′j1) ∈ F 1, then condition (H(1, 1)) implies F
q' F ′ as well as

the appropriate uniform condition, i.e. F
q∗' F ′. Thus, the function

F 1 7→ A∗(F 1) = F ∗ = [F ]q∗

'

is well defined. Moreover, A∗(1X1) = 1∗X obviously holds. Notice that, if F
is defined by an F1, G is defined by a G1 and U is defined by G1F1 (via the
same sequences, i.e. the same sequence of indices j1

n in J(1) with j1 = 1),
then U = GF . Therefore,

A∗(G1F 1) = A∗([G1][F1]) = A∗([G1F1]) = U∗

= [U ]q∗

'
= [GF ]q∗

'
= [G]q∗

'
[F ]q∗

'
= G∗F ∗ = A∗(G1)A∗(F 1).

Hence, A∗ : B∗ → Q∗ is a functor (which is not unique!). The rest of the
proof is trivial (see also Remark 8.(b) of [9]).

Corollary 5.2. X ∼= Y in B∗ implies X
q∗' Y , X

q' Y and X
q' Y .

Consequently, X ∼= Y in B∗ implies X
q∗' Y , X

q' Y and X
q' Y .

Concerning the converse, we have exhibited the following theorem:

Theorem 5.3. There exists a functor L∗ : Q∗ → B∗, which keeps the

objects fixed and is such that A∗L∗ = 1Q∗ for every A∗, and L∗Γ
∗

= B∗,

where Γ
∗

: Sh → Q∗. Consequently, there exists a functor L∗ : Q∗ → B∗,
which keeps the objects fixed and is such that A∗L∗ = 1Q∗ for every A∗, and
L∗Γ∗ = B∗.

Proof. For every X ∈ ObQ∗, put L∗(X) = X. Let F ∗ ∈ Q∗(X,Y ).

Then F ∗ = [F ]q∗

'
, where F = (f,fn) ∈ K(X,Y ). For every j1 = (1, j2) ∈

J(1), let f j1 be the 1-ladder induced by the morphism f j2−1. Let F1 =

(f,f j1) be indexed by all j1 = (1, j2) ∈ J(1). Since f is the index function
for all 1-ladders f j1 , conditions (S(1, 1)1,2) with j1 = 1 for F1 hold. (Given
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any j′1 ≥ 1, put i1 = f(j′1).) Thus, F1 ∈ A1(1)(X,Y ). If F ′1 is defined in
the same way by means of another representative F ′ = (f ′,f ′n) ∈ F ∗, then

the uniformity in F
q∗' F ′ implies condition (H(1, 1)) with j1 = 1 for F1 and

F ′1, i.e. F1 ' F ′1. Hence, the function F ∗ 7→ L∗(F ∗) = F 1 is well defined.
Further, L∗(1∗X) = 1X1. Notice that, if F1 is defined by an F , G1 is defined
by a G and U1 is defined by GF , then U1 = G1F1. Therefore,

L∗(G∗F ∗) = L∗([G]q∗

'
[F ]q∗

'
) = L∗([GF ]q∗

'
) = U 1 = [U1]

= [G1F1] = [G1][F1] = G1F 1 = L∗(G∗)L∗(F ∗).

Hence, L∗ : Q∗ → B∗ is a functor. To verify that A∗L∗ = 1Q∗ , it suffices to
observe that our constructions F 7→ F1 and F1 7→ F (the proof of Theorem
5.1) yield F 7→ F ′, where F ′ is a subsequence of F . The rest of the proof is
trivial (see also Remark 8.(b) of [9]).

Remark 5.4. The uniformity in F
q∗' F ′ has been the essential assump-

tion for the construction of the functor L∗ : Q∗ → B∗. We do not know
whether there exists a similar functor from Q to B∗.

Corollary 5.5. X
q∗' Y (X

q∗↔ Y ) if and only if X ∼= Y (X ≤ Y

and Y ≤ X) in B∗. Consequently, X
q∗' Y (X

q∗↔ Y ) if and only if X ∼= Y
(X ≤ Y and Y ≤ X) in B∗.

The next theorem relates the q∗-equivalence and S∗-equivalence.

Theorem 5.6. There exists a functor B∗ : B∗ → S∗(N), which keeps the
objects fixed. Consequently, there exists a functor B∗ : B∗ → S∗(N), which
keps the object fixed.

Proof. It suffices to prove that there exists a functor M ∗ : Q∗ → S∗(N)
which keeps the objects fixed. Then the desired functor B∗ can be the compo-
sition M∗A∗ (see Theorem 5.1). For every object X , put M∗(X) = X. Let

F ∗ ∈ Q∗(X,Y ). Then F ∗ = [F ]q∗

'
, where F = (f,fn) ∈ K(X,Y ). For every

n ∈ N and every jn ∈ J(n), let the n-ladder f jn be induced by the morphism

f jn+1−1. Let Fn = (f,f jn) be indexed by all jn ∈ J(n). Since f is the

index function for all the n-ladders f
j

n , conditions (S(n,m)1,2) for Fn hold
immediately. (Given any j ′λ ≥ jλ, put iλ = f(j′λ).) Thus, Fn ∈ L0(n)(X ,Y ).

If F ′n = (f ′,f ′jn) is defined in the same way by using another representa-

tive F ′ = (f ′,f ′n) ∈ F ∗, then the uniformity in F
q∗' F ′ implies condition

(H(n,m)), m ≤ n, for Fn and F ′n, i.e. Fn ' F ′n. (Given any j′λ ≥ jλ,

put iλ∗ = ij′
λ

coming from F
q∗' F ′.) Hence, for every n ∈ N, the function

F ∗ 7→ F n is well defined. Therefore, the function F ∗ 7→M∗(F ∗) = (F n) = F

is well defined. Moreover, since (F n) has the constructed representative
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(Fn), Fn = (fn,f jn) ∈ L0(n)(X ,Y ), having the unique index function
f = fn for every n ∈ N, we infer that F = (F n) ∈ S∗(N)(X ,Y ). Fur-
ther, M∗(1∗X) = 1X . Notice that, for every n ∈ N, if Fn is defined by an F ,
Gn is defined by a G and Un is defined by GF , then Un = GnFn. Therefore,

M∗(G∗F ∗) = M∗([G]q∗

'
[F ]q∗

'
) = M∗([GF ]q∗

'
) = U

= (Un) = ([Un]) = ([GnFn]) = ([Gn][Fn]) = ([Gn])([Fn])

= (Gn)(F n) = GF = M∗(G∗)M∗(F ∗).

Hence, M∗ : Q∗ → S∗(N) is a functor.

Corollary 5.7. X
q∗' Y implies S∗(X) = S∗(Y ), but not conversely.

Consequently, X
q∗' Y implies S∗(X) = S∗(Y ), but not conversely.

Proof. By Corollary 5.5, X
q∗' Y if and only if X ∼= Y in B∗. By

Theorem 4.7, for X,Y ∈ ObS , S∗(X) = S∗(Y ) if and only if X ∼= Y

in S∗(N). The equality S∗(X) = S∗(Y ) follows by Theorem 5.6. Further,
by [5], there exists a pair X , Y of continua such that S(X) = S(Y ) and
Sh(X) 6= Sh(Y ). By [7], Theorem 6, S∗(X) = S∗(Y ) also holds. By [9],
Example 5 (see also [7], Theorem 8), X and Y are not quasi-equivalent, and
therefore, they are not q∗-equivalent.

6. The shape of FANR’s

First of all, let us describe a morphism Φn ∈ S(n)(X,Y ), n ∈ N ∪ {ω},
and a morphism Φ ∈ S(N)(X,Y ), where X is a compactum and Y is a
compact ANR (or, more general, a compactum having the homotopy type of
a compact ANR). Let X be a compact ANR inverse sequence associated with
X , i.e. X = lim X, and let Y be the trivial (compact ANR) inverse sequence
associated with Y , i.e. Yj = Y , for every j ∈ N and [qjj′ ] = [1Y ], for all j ≤ j′.
Let f jn : X → Y be an n-ladder. Since Yj = Y , for every j, f jn determines
a (special) morphism of inverse sequences f(jn) : X → Y , and thus, it
determines (up to homotopy) a mapping f(jn) : X → Y . Consequently,
every n-hyperladder Fn = (f jn) ∈ Ln(X,Y ) determines a countable family
(f (jn) ≡ fα) of morphisms of inverse sequences fα : X → Y , and thus, it
determines a countable family (fα) of mappings fα : X → Y (the chosen n is
irrelevant). Further, if Fn = (f jn) ' (f ′jn) = F ′n, then (by Definition 2.7),

for every α there exists an α′ such that fα′ ' f ′α′ , and thus, fα′ ' f ′α′ .
Moreover, one can partially order the index set J(n) in an obvious way, such
that

(∀α ∈ J(n))(∃α′ ≥ α)(∀α′′ ≥ α′)fα′′ ' f ′α′′ .

Therefore, every Sn-morphism F n ∈ S(n)(X ,Y ), i.e. Sn-morphism Φn ∈
S(n)(X,Y ), is a family ([fβα ]), α ∈ J(n), β ∈ B, of the homotopy classes of
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mappings fβα : X → Y satisfying the following condition:

(∀β, β′ ∈ B)(∀α ∈ J(n))(∃α′ ≥ α)(∀α′′ ≥ α′)fβα′′ ' fβ
′

α′′ .

Conversely, it is obvious that every family ([fα]), α ∈ J(n), of the homotopy
classes of mappings fα : X → Y determines an n-hyperladder Fn = (f jn) ∈
Ln(X,Y ). (Indeed, let f jn be induced by fα which comes from fα, α = jn!)

Consequently, every family ([fβα ]), α ∈ J(n), β ∈ B, of the homotopy classes
of mappings fβα : X → Y satisfying the above condition, determines an Sn-
morphism F n ∈ S(n)(X ,Y ), i.e. Sn-morphism Φn ∈ S(n)(X,Y ), for each n.
Recall that, in this case, every shape morphism [f ] ∈ Sh(X ,Y ), i.e. shape
morphism φ ∈ Sh(X,Y ), is actually the homotopy class [f ] of a mapping
f : X → Y .

In the case of a morphism Φ ∈ S(N)(X,Y ), one should notice that Φ =
(Φn), Φn ∈ S(n)(X,Y ), and apply the previous description for every n ∈ N.

Now, in view of Corollary 3.5, the next corollary arises.

Corollary 6.1. Let X and Y be compact ANR’s. Then X and Y are
homotopy equivalent if and only if they are isomorphic objects in the category
S(1).

Proof. If X ' Y then Sh(X) = Sh(Y ) and thus, by Corollary 3.5 (i),
X ∼= Y in every category S(n). Conversely, if X ∼= Y in S(1) then, according
to the above description, X ' Y holds in straightforward manner. (One may
also compare the proof of Theorem 3.4 (i).)

Theorem 6.2. Let X and Y be FANR’s. Then X and Y are of the same
shape if and only if they are isomorphic objects in the subcategory S∗(2) ⊆
S(2). Even more, if X is an FANR and Y is a compactum such that X ∼= Y
in S∗(2), then Y is an FANR and Sh(X) = Sh(Y ).

Proof. The necessity holds by Corollary 3.5 (i). To prove the rest of
the theorem, it suffices to prove the final assertion. Let X be an FANR
and let Y be a compactum such that X ∼= Y in the category S∗(2). Then
there exists a pair of the uniform 2-hyperladders F2 = (f2,f j2) : X → Y ,
G2 = (g2, gi2) : Y → X such that G2F2 ' 1X2 and F2G2 ' 1Y 2 in the
category L0(2), where X and Y are associated with X and Y , respectively.
By following the proof of Lemma 4.5 (n = 3), one can verify the following
fact:

(∀j1)(∃i1)(∀i′1 ≥ i1)(∃j′1 ≥ j1)(∀j2 ≥ j′1)(∃i2 ≥ i′1)(∀i′2 ≥ i2)(∃j′2 ≥ j2)

and there exist mappings f3
l : Xil → Yjl , l = 1, 2, 3, and g3

l : Yj′
l
→ Xi′

l
,

l = 1, 2, making the following diagram commutative up to homotopy.
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By [6], Theorems 6 (and its proof, n = 3), 7 and 7′ (the assumption
that X is a pointed FANR is superfluous), we infer that Y is an FANR and
Sh(X) = Sh(Y ).
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