D-CONTINUUM X ADMITS A WHITNEY MAP FOR C(X)IF AND ONLY IF IT IS METRIZABLE

IVAN LONČAR

University of Zagreb, Croatia

ABSTRACT. The main purpose of this paper is to prove: a) a Dcontinuum X admits a Whitney map for C(X) if and only if it is metrizable, b) a continuum X admits a Whitney map for $C^2(X)$ if and only if it is metrizable.

1. INTRODUCTION

All spaces in this paper are compact Hausdorff and all mappings are continuous. The weight of a space X is denoted by w(X).

A generalized arc is a Hausdorff continuum with exactly two nonseparating points (end points) x, y. Each separable arc is homeomorphic to the closed interval I = [0, 1].

We say that a space X is *arcwise connected* if for every pair x, y of points of X there exists a generalized arc L with end points x, y.

Let X be a space. We define its hyperspaces as the following sets:

 $2^X = \{F \subseteq X : F \text{ is closed and nonempty}\},\$

$$C(X) = \{F \in 2^X : F \text{ is connected}\},\$$

$$C^2(X) = C(C(X)),$$

$$X(n) = \{F \in 2^X : F \text{ has at most } n \text{ points}\}, n \in \mathbb{N}.$$

For any finitely many subsets $S_1, ..., S_n$, let

$$\langle S_1, ..., S_n \rangle = \left\{ F \in 2^X : F \subset \bigcup_{i=1}^n S_i, \text{ and } F \cap S_i \neq \emptyset, \text{ for each } i \right\}.$$

333

²⁰⁰⁰ Mathematics Subject Classification. 54F15, 54C30. Key words and phrases. D-continuum, Whitney map.

I. LONČAR

The topology on 2^X is the Vietoris topology, i.e., the topology with a base $\{\langle U_1, ..., U_n \rangle : U_i \text{ is an open subset of } X \text{ for each } i \text{ and each } n < \infty \}$, and C(X), X(n) are subspaces of 2^X . Moreover, X(1) is homeomorphic to X.

Let X and Y be the spaces and let $f: X \to Y$ be a mapping. Define $2^f: 2^X \to 2^Y$ by $2^f(F) = f(F)$ for $F \in 2^X$. By [8, p. 170, Theorem 5.10] 2^f is continuous and $2^f(C(X)) \subset C(Y), 2^f(X(n)) \subset Y$. The restriction $2^f|C(X)$ is denoted by C(f).

A continuum X is called a *D*-continuum if for every pair C, D of its disjoint non-degenerate subcontinua there exists a subcontinuum $E \subset X$ such that $C \cap E \neq \emptyset \neq D \cap E$ and $(C \cup D) \setminus E \neq \emptyset$.

LEMMA 1.1. [6, Lemma 2.3]. If X is an arcwise connected continuum, then X is a D-continuum.

LEMMA 1.2. [6, Lemma 2.4]. If X is a locally connected continuum, then X is D-continuum.

Let Λ be a subspace of 2^X . By a *Whitney map* for Λ [9, p. 24, (0.50)] we will mean any mapping $g : \Lambda \to [0, +\infty)$ satisfying

a) if $A, B \in \Lambda$ such that $A \subset B$ and $A \neq B$, then g(A) < g(B) and

b) $g({x}) = 0$ for each $x \in X$ such that ${x} \in \Lambda$.

If X is a metric continuum, then there exists a Whitney map for 2^X and C(X) ([9, pp. 24-26], [3, p. 106]). On the other hand, if X is non-metrizable, then it admits no Whitney map for 2^X [1]. It is known that there exist non-metrizable continua which admit and ones which do not admit a Whitney map for C(X) [1].

In the sequel we shall use the following theorem.

THEOREM 1.3. [6, Theorem 3.3]. If a D-continuum X admits a Whitney map for C(X), then $C(X) \setminus X(1)$ is metrizable and $w(C(X) \setminus X(1)) \leq \aleph_0$.

It is known that if X is a continuum, then C(X) is arcwise connected [7, p. 1209, Theorem]. Hence, using Lemma 1.1 and Theorem 1.3, we obtain the following corollary.

COROLLARY 1.4. If X is a continuum which admits a Whitney map for the hyperspace $C^2(X)$, then $C^2(X) \setminus C(X)(1)$ is metrizable and

$$w(C^2(X) \setminus C(X)(1)) \le \aleph_0.$$

2. Main theorems

In this section we shall prove the main theorems of the paper, Theorems 2.2 and 2.6.

For this purpose we shall use the notion of a network of a topological space.

334

A family $\mathcal{N} = \{M_s : s \in S\}$ of a subsets of a topological space X is a *network* for X if for every point $x \in X$ and any neighbourhood U of x there exists an $s \in S$ such that $x \in M_s \subset U$ [2, p. 170]. The *network weight* of a space X is defined as the smallest cardinal number of the form card(\mathcal{N}), where \mathcal{N} is a network for X; this cardinal number is denoted by nw(X).

THEOREM 2.1. [2, p. 171, Theorem 3.1.19]. For every compact space X we have nw(X) = w(X).

Now we shall prove the main theorem of this paper.

THEOREM 2.2. A D-continuum X admits a Whitney map for C(X) if and only if it is metrizable.

PROOF. If X is metrizable, then X admits a Whitney map ([3, p. 106], [9, pp. 24-26]). Conversely, suppose that X admits a Whitney map for C(X). By Theorem 1.3 we have that $C(X) \setminus X(1)$ is metrizable and $w(C(X) \setminus X(1)) \leq \aleph_0$. This means that there exists a countable base $\mathcal{B} = \{B_i : i \in \mathbb{N}\}$ of $C(X) \setminus X(1)$. For each B_i let $C_i = \{x \in X : x \in B, B \in B_i\}$, i.e., the union of all continua B contained in B_i .

CLAIM 1. The family $\{C_i : i \in N\}$ is a network of X. Let X be a point of X and let U be an open subsets of X such that $x \in U$. There exists and open set V such that $x \in V \subset \operatorname{ClV} \subset U$. Let K be a component of ClV containing x. By Boundary Bumping Theorem [10, p. 73, Theorem 5.4] K is non-degenerate and, consequently, $K \in C(X) \setminus X(1)$. Now, $\langle U \rangle \cap (C(X) \setminus X(1))$ is a neighbourhood of K in $C(X) \setminus X(1)$. It follows that there exists a $B_i \in \mathcal{B}$ such that $K \in B_i \subset \langle U \rangle \cap (C(X) \setminus X(1))$. It is clear that $C_i \subset U$ and $x \in C_i$ since $x \in K$. Hence, the family $\{C_i : i \in N\}$ is a network of X.

CLAIM 2. $nw(X) = \aleph_0$. Apply Claim 1 and the fact that \mathcal{B} is countable. CLAIM 3. $w(X) = \aleph_0$. By Claim 2 we have $nw(X) = \aleph_0$. Moreover, by Theorem 2.1 $w(X) = \aleph_0$.

CLAIM 4. Finally, X is metrizable.

Since each arcwise connected continuum is a D-continuum (Lemma 1.1) we have the following corollary which generalize Theorem 3.4 of the paper [5, p. 19].

COROLLARY 2.3. An arcwise connected continuum X admits a Whitney map for C(X) if and only if X is metrizable.

An *arboroid* is a hereditarily unicoherent arcwise connected continuum. A metrizable arboroid is a *dendroid*. If X is an arboroid and $x, y \in X$, then there exists a unique arc [x, y] in X with endpoints x and y.

A point t of an arboroid X is said to be a *ramification point* of X if t is the only common point of some three arcs such that it is the only common point of any two, and an end point of each of them.

I. LONČAR

If an arboroid X has only one ramification point t, it is called a *generalized* fan with the top t. A metrizable generalized fan is called a fan.

The following corollary is a stronger result than Theorem 4.20 in [4] which states that a generalized fan X admits a Whitney map for C(X) if and only if it is metrizable.

COROLLARY 2.4. Let X be an arboroid. Then X admits a Whitney map for C(X) if and only if it is metrizable.

PROOF. Apply Corollary 2.3.

Π

From Lemma 1.2 it follows that each locally connected continuum is a D-continuum. Thus, we have the following corollary of Theorem 2.2.

COROLLARY 2.5. A locally connected X continuum admits a Whitney map for C(X) if and only if it is metrizable.

The following theorem shows that the existence of a Whitney map for $C^{2}(X)$ is equivalent to metrizability of X.

THEOREM 2.6. A continuum X admits a Whitney map for $C^2(X)$ if and only if X is metrizable.

PROOF. From Corollary 1.4 it follows that if X a continuum which admits a Whitney map for $C^2(X)$, then $C^2(X) \setminus C(X)(1)$ is metrizable and $w(C^2(X) \setminus C(X)(1)) \leq \aleph_0$. By Theorem 2.2 $w(C(X)) = \aleph_0$ since C(X) is arcwise connected. This means that $w(X) = \aleph_0$ since X is homeomorphic to $X(1) \subset C(X)$. Hence, X is metrizable.

It is known [2, p. 171, Corollary 3.1.20] that if a compact space X is the countable union of its subspaces $X_n, n \in \mathbb{N}$, such that $w(X_n) \leq \aleph_0$, then $w(X) \leq \aleph_0$. Using this fact and theorems proved in the previous section we obtain the following theorems.

THEOREM 2.7. If a continuum X is the countable union either of its Dsubcontinua or of its arcwise connected subcontinua, then X admits a Whitney map for C(X) if and only if it is metrizable.

THEOREM 2.8. If a compact space X is the countable union of its subcontinua and admits a Whitney map for $C^2(X)$, then X is metrizable.

ACKNOWLEDGEMENTS.

The author is very grateful to the referee for his/her help and valuable suggestions.

References

- J. J. Charatonik and W. J. Charatonik, Whitney maps—a non-metric case, Colloq. Math. 83 (2000), 305-307.
- [2] R. Engelking, General Topology, PWN, Warszawa, 1977.

336

- [3] A. Illanes and S.B. Nadler, Jr., Hyperspaces: Fundamentals and Recent advances, Marcel Dekker, New York-Basel, 1999.
- [4] I. Lončar, A fan X admits a Whitney map for C(X) iff it is metrizable, Glas. Mat. Ser. III **38** (58) (2003), 395-411.
- [5] I. Lončar, Arc-smooth continuum admits X admits a Whitney map for C(X) iff it is metrizable, JP J. Geom. Topol. 4 (2004), 13-21.
- [6] I. Lončar, Whitney map for hyperspaces of continua with the property of Kelley, JP J. Geom. Topol. 4 (2004), 147-156.
- [7] M. M. McWaters, Arcs, semigroups, and hyperspace, Canad. J. Math. 20 (1968), 1207-1210.
- [8] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152-182.
- [9] S. B. Nadler, Hyperspaces of sets, Marcel Dekker, Inc., New York, 1978.
- [10] S. B. Nadler, Continuum theory, Marcel Dekker, Inc., New York, 1992.

I. Lončar Faculty of Organizations and Informatics Varaždin University of Zagreb Croatia *E-mail*: ivan.loncar1@vz.htnet.hr, ivan.loncar@foi.hr *Received*: 4.10.2004.