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Abstract. We determine up to isomorphism all finite p-groups G
which possess non-normal subgroups and each non-normal subgroup is con-
tained in exactly one maximal subgroup of G. For p = 2 this problem was
essentially more difficult and we obtain in that case two new infinite fami-
lies of finite 2-groups.

We consider here only finite p-groups and our notation is standard. It is
easy to see that minimal nonabelian p-groups and 2-groups of maximal class
have the property that each non-normal subgroup is contained in exactly one
maximal subgroup. It turns out that there are two further infinite families
of 2-groups which also have this property. More precisely, we shall prove the
following result which gives a complete classification of such p-groups.

Theorem 1. Let G be a finite p-group which possesses non-normal sub-
groups and we assume that each non-normal subgroup of G is contained in
exactly one maximal subgroup. Then one of the following holds:

(a) G is minimal nonabelian;
(b) G is a 2-group of maximal class;
(c) G = 〈a, b〉 is a non-metacyclic 2-group, where a2n

= 1, n ≥ 3, o(b) =
2 or 4, ab = ak, k2 = a−4, [k, a] = 1, kb = k−1 and we have either:

(c1) b2 ∈ 〈a2n−1

, a2k〉 ∼= E4, in which case |G| = 2n+2, Φ(G) =

〈a2〉 × 〈a2k〉 ∼= C2n−1 × C2, Z(G) = 〈a2n−1〉 × 〈a2k〉 ∼= E4, and
〈a〉 × 〈a2k〉 ∼= C2n × C2 is the unique abelian maximal subgroup
of G, or:

2000 Mathematics Subject Classification. 20D15.
Key words and phrases. Finite p-groups, minimal nonabelian p-groups, 2-groups of

maximal class, Hamiltonian groups.

235



236 Z. JANKO

(c2) b2 6∈ 〈a2n−1

, a2k〉 ∼= E4, in which case o(b) = 4, |G| = 2n+3,

Φ(G) = 〈a2〉×〈a2k〉×〈b2〉 ∼= C2n−1 ×C2×C2, Z(G) = 〈a2n−1〉×
〈a2k〉× 〈b2〉 ∼= E8, and 〈a〉× 〈a2k〉× 〈b2〉 ∼= C2n ×C2 ×C2 is the
unique abelian maximal subgroup of G.

In any case, G′ = 〈k〉 ∼= C2n−1 , a centralizes Φ(G), and b inverts each
element of Φ(G), and so each subgroup of Φ(G) is normal in G;

(d) G = 〈a, b〉 is a splitting metacyclic 2-group, where a2n

= b4 = 1,

n ≥ 3, ab = a−1zε, ε = 0, 1, z = a2n−1

. Here |G| = 2n+2, Φ(G) =
〈a2〉× 〈b2〉 ∼= C2n−1 ×C2, Z(G) = 〈z〉× 〈b2〉 ∼= E4, G

′ = 〈a2〉 ∼= C2n−1 ,
and 〈a〉 × 〈b2〉 ∼= C2n × C2 is the unique abelian maximal subgroup of
G. Since a centralizes Φ(G) and b inverts each element of Φ(G), it
follows that each subgroup of Φ(G) is normal in G.

To facilitate the proof of Theorem 1, we prove the following

Lemma 2 (Y. Berkovich). Let G be a p-group, p > 2, such that all sub-
groups of Φ(G) are normal in G. Then Φ(G) ≤ Z(G).

Proof. By [1, Satz III, 7.12], Φ(G) is abelian. Suppose that Φ(G) is
cyclic. Let U/Φ(G) be a subgroup of order p in G/Φ(G). Assume that U is
nonabelian. Then U ∼= Mp|Φ(G)| so U = Φ(G)Ω1(U), where Ω1(U) is a normal
subgroup of type (p, p) in G. In that case, Ω1(U) centralizes Φ(G) so U is
abelian, a contradiction. Let M = {U < G | Φ(G) < U, |U : Φ(G)| = p}.
Then CG(Φ(G)) ≥ 〈U | U ∈ M〉 = G so Φ(G) ≤ Z(G).

Now let Φ(G) be noncyclic. Then Φ(G) = Z1×· · ·×Zn, where Z1, . . . , Zn
are cyclic and n > 1. By induction on n, Φ(G/Zi) ≤ Z(G/Zi) for all i. Let
f ∈ Φ(G) and x ∈ G. Then [f, x] ∈ Z1 ∩ · · · ∩ Zn = {1} so f ∈ Z(G). It
follows that Φ(G) ≤ Z(G).

Proof of Theorem 1. Let G be a p-group which possesses non-normal
subgroups and we assume that each non-normal subgroup of G is contained in
exactly one maximal subgroup. In particular, G is nonabelian with d(G) ≥ 2
and so each subgroup of Φ(G) must be normal in G. Suppose that Φ(G)
is nonabelian. Then p = 2 and Φ(G) is Hamiltonian, i.e., Φ(G) = Q × E,
where Q ∼= Q8 and exp(E) ≤ 2. But then E is normal in G and Φ(G/E) =
Φ(G)/E ∼= Q8, contrary to a classical result of Burnside. Thus Φ(G) is abelian
and each subgroup of Φ(G) is G-invariant.

If every cyclic subgroup of G is normal in G, then every subgroup of G
is normal in G, a contradiction. Hence there is a non-normal cyclic subgroup
〈a〉 of G. In that case a 6∈ Φ(G) but ap ∈ Φ(G) so that 〈a〉Φ(G) must be the
unique maximal subgroup of G containing 〈a〉. It follows that d(G) = 2.

If Φ(G) ≤ Z(G), then each maximal subgroup of G is abelian and so G
is minimal nonabelian which gives the possibility (a) of our theorem.

From now on we assume that Φ(G) 6≤ Z(G). Set G = 〈a, b〉. Then
[a, b] 6= 1 and [a, b] ∈ Φ(G). Therefore 〈[a, b]〉 is normal in G and G/〈[a, b]〉
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is abelian which implies that G′ = 〈[a, b]〉 6= {1}. If |G′| = p, then the fact
d(G) = 2 forces that G would be minimal nonabelian. But then Φ(G) ≤ Z(G),
a contradiction. Hence G′ is cyclic of order ≥ p2.

(i) First assume p > 2. By Lemma 2, Φ(G) ≤ Z(G), a contradiction.
(ii) Now assume p = 2. If Φ(G) is cyclic, then (since Φ(G) = f1(G)) G

has a cyclic subgroup of index 2. But |G′| ≥ 4 and so G is not isomorphic to
M2s , s ≥ 4, and so G is of maximal class, which gives the possibility (b) of
our theorem. From now on we shall assume that Φ(G) is not cyclic.

Set G = 〈a, b〉, k = [a, b], and 〈z〉 = Ω1(〈k〉) so that G′ = 〈k〉, o(k) ≥ 4,
and 〈z〉 ≤ Z(G). Since 〈a2〉 and 〈b2〉 (being contained in Φ(G)) are normal
in G, we have Φ(G) = 〈a2〉〈b2〉〈k〉 and so the abelian subgroup Φ(G) is a
product of three cyclic subgroups which implies d(Φ(G)) = 2 or 3.

From [a, b] = k follows a−1(b−1ab) = k and b−1(a−1ba) = k−1 and so

(1) ab = ak,

(2) ba = bk−1.

From (1) follows (a2)b = (ab)2 = (ak)2 = akak = a2kak and so

(3) (a2)b = a2(kak).

From (2) follows (b2)a = (ba)2 = (bk−1)2 = bk−1bk−1 = b2(k−1)bk−1 and so

(4) (b2)a = b2(kbk)−1.

We also have

a2 = (a2)b
2

= (a2kak)b = a2kakkabkb

and so

(5) kkakbkab = 1.

Finally, we compute (using (4))

(ab)2 = abab = a2a−1b−1b2ab = a2(a−1b−1ab)(b2)ab

= a2kb2(kkb)−1 = a2b2(k−1)b

and so

(6) (ab)2 = a2b2(k−1)b.

Suppose that G/Φ(G) acts faithfully on 〈k〉. In that case o(k) ≥ 23 and we
may choose the generators a, b ∈ G−Φ(G) so that ka = k−1, kb = kz (where
〈z〉 = Ω1(〈k〉)). Using (3) and (4) we get (a2)b = a2 (and so a2 ∈ Z(G)) and
(b2)a = b2k−2z. Since ka = k−1, we have 〈k〉 ∩ 〈a〉 ≤ 〈z〉. The subgroup 〈b2〉
(being contained in Φ(G)) is normal in G and so k−2z ∈ 〈b2〉 and k2 ∈ 〈b2〉
(since z ∈ 〈k2〉). We have 〈b〉 ∩ 〈k〉 = 〈k2〉 since kb = kz 6= k and so k 6∈ 〈b〉.
If b2 ∈ 〈k2〉, then (b2)a = b−2 and on the other hand (b2)a = b2k−2z and so
b4 = k2z. But b2 ∈ 〈k2〉 implies b4 ∈ 〈k4〉, a contradiction. Hence b2 6∈ 〈k2〉
and so we can find an element s ∈ 〈b2〉 − 〈k〉 such that s2 = k−2. Then
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(sk)2 = s2k2 = 1 and so sk is an involution in Φ(G) which is not contained in
〈k〉 and therefore sk 6= z. But (sk)b = skb = (sk)z and so 〈sk〉 is not normal
in G, a contradiction.

We have proved that G/Φ(G) does not act faithfully on 〈k〉. Then we
can choose our generator a ∈ G − Φ(G) so that ka = k. Using (3) we get
(a2)b = a2k2 and so 1 6= k2 ∈ 〈a2〉 since 〈a2〉 is normal in G. From (5) we get
(k2)b = k−2. Suppose that 〈k2〉 = 〈a2〉. Then we get a−2 = (a2)b = a2k2 and
so k2 = a−4, a contradiction. We have obtained:
(7)

ka = k, (a2)b = a2k2, (k2)b = k−2, {1} 6= 〈k2〉 < 〈a2〉, o(a) = 2n, n ≥ 3.

Suppose that kb = kz. Then (5) and (7) imply k4 = 1 and so kb = kz =
k−1. It follows that we have to analyze the following three possibilities for
the action of b on 〈k〉: kb = k−1z with o(k) ≥ 23, kb = k, and kb = k−1.

(ii1) Suppose kb = k−1z with o(k) ≥ 23. Then (4) gives (b2)a = b2z and
so z ∈ 〈b2〉 (since 〈b2〉 is normal in G) and 〈z〉 < 〈b2〉 because b2 6∈ Z(G).
Since (by (7)) 〈k2〉 < 〈a2〉 and o(k2) ≥ 4, it follows o(a2) ≥ 23 and

〈z〉 = Ω1(〈k〉) = Ω1(〈a〉) = Ω1(〈b〉) ≤ Z(G).

From o(a2) ≥ 23, k2 ∈ 〈a4〉, o(k2) ≥ 4, and (k2)b = k−2 follows (a2)b = a−2zε

(ε = 0, 1) and C〈a2〉(b) = 〈z〉 so that 〈a2〉 ∩ 〈b2〉 = 〈z〉. Let v be an element

of order 4 in 〈a2〉 so that v2 = z and vb = v−1 = vz. Let s be an element
of order 4 in 〈b2〉 so that s2 = z. We have (vs)2 = v2s2 = 1 and so vs is an
involution in Φ(G) − 〈a〉 but (vs)b = v−1s = (vs)z, a contradiction.

(ii2) Suppose kb = k so that (5) and (7) imply k4 = 1 and k2 = z.
Then (4) and (7) imply (b2)a = b2z and (a2)b = a2z. Also, 〈z〉 < 〈a2〉 and
〈z〉 < 〈b2〉 since 〈a2〉 and 〈b2〉 are normal in G, a2 6∈ Z(G) and b2 6∈ Z(G).
If a2 ∈ 〈b2〉, then a2 ∈ Z(G) and if b2 ∈ 〈a2〉, then b2 ∈ Z(G). This is
a contradiction. Hence D = 〈a2〉 ∩ 〈b2〉 ≥ 〈z〉 and D is a proper subgroup
of 〈a2〉 and 〈b2〉. Because of the symmetry, we may assume o(a) ≥ o(b) so
that |〈a2〉/D| ≥ |〈b2〉/D| = 2u, u ≥ 1. We set (b2)2

u

= d so that D = 〈d〉.
We may choose an element a′ ∈ 〈a2〉 − D such that (a′)2

u

= d−1. Then
(a′b2)2

u

= 1 and 〈a′b2〉 ∼= C2u with 〈a′b2〉 ∩ D = {1}. On the other hand,
(a′b2)a = a′(b2)a = (a′b2)z, where z ∈ D, a contradiction.

(ii3) Finally, suppose kb = k−1. From (4) follows (b2)a = b2 and so
b2 ∈ Z(G). By (7), (a2)b = a2k2, 〈k2〉 < 〈a2〉, and so o(a2) ≥ 4. Also,
(a2k)a = a2k, (a2k)b = (a2k2)k−1 = a2k, and so a2k ∈ Z(G).

(ii3a) First assume k 6∈ 〈a2〉. We investigate for a moment the special
case o(k) = 4, where k2 = z, 〈z〉 = Ω1(〈k〉) = Ω1(〈a〉) and (a2)b = a2z.
If o(a2) > 4, then take an element v of order 4 in 〈a4〉 so that v2 = z
and vb = v. In that case (vk)2 = v2k2 = 1 and so vk is an involution in
Φ(G) − 〈a2〉 and (vk)b = vk−1 = (vk)z, a contradiction. Hence o(a2) = 4,
a4 = z, k2 = z = a−4, (a2)b = a2z = a−2, 〈a2, k〉 is an abelian group of type
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(4, 2) acted upon invertingly by b, and a2k is a central involution in G. Now
suppose o(k) ≥ 8. In that case o(k2) ≥ 4, k2 ∈ 〈a4〉, o(a2) ≥ 8, and b inverts
〈k2〉, which implies (a2)b = a−2zε, ε = 0, 1. On the other hand, (a2)b = a2k2

and so k2 = a−4zε. Let v be an element of order 4 in 〈a4〉 so that v2 = z and
vb = v−1 = vz. Then we compute:

(a2vk)2 = a4zk2 = zε+1, (a2vk)b = a2k2v−1k−1 = (a2vk)z.

If ε = 1, then a2vk is an involution in Φ(G) − 〈a2〉 and 〈a2vk〉 is not normal
in G. Thus, ε = 0, (a2)b = a−2, k2 = a−4, a2k is an involution in Φ(G)−〈a2〉
and b inverts each element of 〈a2, k〉 = 〈a2〉 × 〈a2k〉, where a2k ∈ Z(G).

We have proved that in any case k2 = a−4, o(a2) ≥ 4, o(k) ≥ 4, and b
inverts each element of the abelian group 〈a2, k〉 = 〈a2〉 × 〈a2k〉, where a2k is
an involution contained in Z(G).

It remains to determine b2 ∈ Z(G). Suppose o(b2) ≥ 4 and let 〈s〉 be a
cyclic subgroup of order 4 in 〈b2〉 so that s ∈ Z(G). Obviously, s 6∈ 〈a2, k〉
since Z(G) ∩ 〈a2, k〉 = 〈z〉 × 〈a2k〉 ∼= E4. Let v be an element of order 4 in
〈a2〉 so that v2 = z and vb = v−1 = vz. We have:

(vs)b = v−1s = (vs)z and (vs)2 = v2s2 = zs2.

If s2 = z, then vs is an involution in Φ(G) − 〈a2, k〉 and vs 6∈ Z(G), a
contradiction. Hence s2 6= z so that 〈v, s〉 = 〈v〉 × 〈s〉 ∼= C4 × C4. But
(vs)b = (vs)z, (vs)2 = zs2 6= z, and so 〈vs〉 is not normal inG, a contradiction.
It follows that o(b2) ≤ 2. Hence we have either b2 ∈ 〈z, a2k〉, Φ(G) = 〈a2, k〉 =
〈a2〉 × 〈a2k〉, and we have obtained the possibility (c1) of our theorem or
b2 is an involution in Φ(G) − 〈a2, k〉, Φ(G) = 〈a2〉 × 〈a2k〉 × 〈b2〉, and we
have obtained the possibility (c2) of our theorem. Note that in both cases a
centralizes Φ(G) and b inverts each element of Φ(G).

(ii3b) We assume k ∈ 〈a2〉. Since o(k) ≥ 4, kb = k−1, 〈a〉 is normal
in G, o(a) ≥ 8, and b induces on 〈a〉 an automorphism of order 2, we get
ab = a−1zε, ε = 0, 1, where 〈z〉 = Ω1(〈a〉) = Ω1(〈k〉). On the other hand, (1)
gives ab = ak and so k = a−2zε which gives G′ = 〈k〉 = 〈a2〉 ∼= C2n−1 , where

o(a) = 2n, n ≥ 3, and z = a2n−1

.
Since Φ(G) = 〈a2, b2〉 and Φ(G) is noncyclic, we have b2 6∈ 〈a2〉 and we

know that b2 ∈ Z(G). Suppose o(b2) ≥ 4 and let s be an element of order 4 in
〈b2〉. Let v be an element of order 4 in 〈a2〉 so that v2 = z and vb = v−1 = vz.
Then

(vs)b = v−1s = (vs)z and (vs)2 = v2s2 = zs2.

If s2 = z, then vs is an involution in Φ(G) − 〈a2〉 and vs 6∈ Z(G), a contra-
diction. Hence s2 6= z so that 〈v, s〉 = 〈v〉 × 〈s〉 ∼= C4 × C4. But 〈vs〉 is not
normal in G, a contradiction. Hence b2 is an involution in Φ(G)−〈a2〉 and so
Φ(G) = 〈a2〉× 〈b2〉 ∼= C2n−1 ×C2 and Z(G) = 〈z〉× 〈b2〉 ∼= E4. Also note that
a centralizes Φ(G) and b inverts each element of Φ(G). We have obtained the
possibility (d) of our theorem.
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