AN EQUATION ON OPERATOR ALGEBRAS AND SEMISIMPLE \mathbf{H}^{*}-ALGEBRAS

Joso Vukman
University of Maribor, Slovenia

Abstract

In this paper we prove the following result: Let X be a Banach space over the real or complex field F and let $L(X)$ be the algebra of all bounded linear operators on X. Suppose there exists an additive mapping $T: A(X) \rightarrow L(X)$, where $A(X) \subset L(X)$ is a standard operator algebra. Suppose that $T\left(A^{3}\right)=A T(A) A$ holds for all $A \in A(X)$. In this case T is of the form $T(A)=\lambda A$ for any $A \in A(X)$ and some $\lambda \in F$. This result is applied to semisimple H^{*}-algebras.

This research is related to the work of Molnár [8] and is a continuation of our work $[9,10]$. Throughout, R will represent an associative ring with center $Z(R)$. A ring R is n-torsion free, where $n>1$ is an integer, if $n x=0$, $x \in R$ implies $x=0$. The commutator $x y-y x$ will be denoted by $[x, y]$. We shall use basic commutator identities $[x y, z]=[x, z] y+x[y, z]$ and $[x, y z]=$ $[x, y] z+y[x, z]$. Recall that R is prime if $a R b=(0)$ implies $a=0$ or $b=0$, and is semiprime if $a R a=(0)$ implies $a=0$. An additive mapping $D: R \rightarrow R$ is called a derivation if $D(x y)=D(x) y+x D(y)$ holds for all pairs $x, y \in R$ and is called a Jordan derivation in case $D\left(x^{2}\right)=D(x) x+x D(x)$ is fulfilled for all $x \in R$. A derivation D is inner in case there exists $a \in R$, such that $D(x)=[a, x]$ holds for all $x \in R$. Every derivation is a Jordan derivation. The converse is in general not true. A classical result of Herstein [6] asserts that any Jordan derivation on a 2 -torsion free prime ring is a derivation. A brief proof of Herstein's result can be found in [3]. Cusack [5] generalized Herstein's result to 2 -torsion free semiprime rings (see also [2] for an alternative proof).

[^0]An additive mapping $T: R \rightarrow R$ is called a left centralizer in case $T(x y)=$ $T(x) y$ holds for all $x, y \in R$.

The concept appears naturally in C^{*}-algebras. In ring theory it is more common to work with module homomorphisms. Ring theorists would write that $T: R_{R} \rightarrow R_{R}$ is a homomorphism of a ring module R into itself. For a semiprime ring R all such homomorphisms are of the form $T(x)=q x$ for all $x \in R$, where q is an element of Martindale right ring of quotients Q_{r} (see Chapter 2 in [2]). In case R has the identity element $T: R \rightarrow R$ is a left centralizer iff T is of the form $T(x)=a x$ for all $x \in R$ and some fixed element $a \in R$. An additive mapping $T: R \rightarrow R$ is called a left Jordan centralizer in case $T\left(x^{2}\right)=T(x) x$ holds for all $x \in R$. The definition of right centralizer and right Jordan centralizer should be self-explanatory. Following ideas from [4] Zalar [12] has proved that any left (right) Jordan centralizer on a 2-torsion free semiprime ring is a left (right) centralizer. Molnár [8] has proved that in case we have an additive mapping $T: A \rightarrow A$, where A is a semisimple H^{*}-algebra, satisfying the relation $T\left(x^{3}\right)=T(x) x^{2}\left(T\left(x^{3}\right)=x^{2} T(x)\right)$ for all $x \in A$, then T is a left (right) centralizer. For the definition and for basic facts of H^{*}-algebras we refer to [1]. Vukman [9] has proved that in case there exists an additive mapping $T: R \longrightarrow R$, where R is a 2 -torsion free semiprime ring, satisfying the relation $2 T\left(x^{2}\right)=T(x) x+x T(x)$ for all $x \in R$, then T is a left and also a right centralizer. Some result concerning centralizers in semiprime rings can be found in [10] and [11]. Let X be a normed space over the real or complex field F, and let $L(X)$ and $F(X)$ denote the algebra of all bounded linear operators on X and the ideal of all finite rank operators in $L(X)$, respectively. An algebra $A(X) \subset L(X)$ is said to be standard in case $F(X) \subset A(X)$. Let us point out that any standard algebra is prime, which is a consequence of Hahn-Banach theorem.

We are ready for our first result.
Theorem 1. Let X be a Banach space over the real or complex field F and let $A(X) \subset L(X)$ be a standard operator algebra. Suppose there exists an additive mapping $T: A(X) \rightarrow L(X)$, such that $T\left(A^{3}\right)=A T(A) A$ holds for all $A \in A(X)$. In this case we have $T(A)=\lambda A$ for any $A \in A(X)$ and some $\lambda \in F$.

Proof. We have the relation

$$
\begin{equation*}
T\left(A^{3}\right)=A T(A) A, \text { for all } A \in A(X) \tag{1}
\end{equation*}
$$

First we will consider the restriction of T on $F(X)$. Let A be from $F(X)$ and let $P \in F(X)$, be a projection such that $A P=P A=A$. From the relation (1) one obtains that $T(P)=P T(P) P$ and $T(P) P=P T(P)$ holds. Putting $A+P$ for A in the relation above and applying the relation (1) we obtain
after some calculation

$$
\begin{aligned}
3 T\left(A^{2}\right)+3 T(A)= & P T(A) A+A T(A) P+A T(P) A \\
& +P T(P) A+A T(P) P+P T(A) P
\end{aligned}
$$

Putting $-A$ for A in the above relation and comparing the relation so obtained with the above relation we obtain

$$
\begin{equation*}
3 T\left(A^{2}\right)=P T(A) A+A T(A) P+A T(P) A \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
3 T(A)=P T(P) A+A T(P) P+P T(A) P \tag{3}
\end{equation*}
$$

Multiplying the above relation from both sides by P, we obtain

$$
\begin{equation*}
2 P T(A) P=P T(P) A+A T(P) P \tag{4}
\end{equation*}
$$

Combining the relations (3) and (4) we obtain $2 T(A)=P T(P) A+A T(P) P$. Now we have $2 T(A)=P T(P) A+A T(P) P=(P T(P) P) A+A(P T(P) P)=$ $T(P) A+A T(P)$. Thus we have

$$
\begin{equation*}
2 T(A)=A B+B A \tag{5}
\end{equation*}
$$

where B stands for $T(P)$. Now we have $2 T(A) P=(A B+B A) P=A B P+$ $B A P=A P B+B A=A B+B A=2 T(A)$. We have therefore $T(A) P=T(A)$. Similarly one obtains $P T(A)=T(A)$. Now the relation (2) reduces to

$$
\begin{equation*}
3 T\left(A^{2}\right)=T(A) A+A T(A)+A B A \tag{6}
\end{equation*}
$$

Combining (5) and (6) we obtain

$$
\begin{aligned}
0 & =6 T\left(A^{2}\right)-2 T(A) A-2 A T(A)-2 A B A \\
& =3\left(A^{2} B+B A^{2}\right)-(A B+B A) A-A(A B+B A)-2 A B A \\
& =2\left(A^{2} B+B A^{2}\right)-4 A B A
\end{aligned}
$$

We have therefore $A^{2} B+B A^{2}=2 A B A$, which can be written according to the relation (5) in the form $T\left(A^{2}\right)=A B A$, which reduces the relation (6) to

$$
\begin{equation*}
2 T\left(A^{2}\right)=T(A) A+A T(A) \tag{7}
\end{equation*}
$$

The relation (5) makes it possible to concluded that T maps $F(X)$ into itself and that T is linear on $F(X)$. Therefore we have a linear mapping $T: F(X) \rightarrow$ $F(X)$ satisfying the relation (7) for all $A \in F(X)$. Since $F(X)$ is prime one can conclude according to Theorem in [9] that T is a left and also a right centralizer. We intend to prove that there exists an operator $C \in L(X)$, such that

$$
\begin{equation*}
T(A)=C A, \text { for all } A \in F(X) \tag{8}
\end{equation*}
$$

For any fixed $x \in X$ and $f \in X^{*}$ we denote by $x \otimes f$ an operator from $F(X)$ defined by $(x \otimes f) y=f(y) x$, for all $y \in X$. For any $A \in L(X)$ we have $A(x \otimes f)=((A x) \otimes f)$. Let us choose f and y such that $f(y)=1$ and
define $C x=T(x \otimes f) y$. Obviously, C is linear. Using the fact that T is left centralizer on $F(X)$ we obtain

$$
\begin{aligned}
(C A) x & =C(A x)=T((A x) \otimes f) y=T(A(x \otimes f)) y \\
& =T(A)(x \otimes f) y=T(A) x, x \in X .
\end{aligned}
$$

We have therefore $T(A)=C A$ for any $A \in F(X)$. Since T right centralizer on $F(X)$ we obtain $C(A B)=T(A B)=A T(B)=A C B$. We have therefore $[A, C] B=0$ for any $A, B \in F(X)$ whence it follows that $[A, C]=0$ for any $A \in F(X)$. Using closed graph theorem one can easily prove that C is continuous. Since C commutes with all operators from $F(X)$ one can conclude that $C x=\lambda x$ holds for any $x \in X$ and some $\lambda \in F$, which gives together with the relation (8) that T is of the form

$$
\begin{equation*}
T(A)=\lambda A \tag{9}
\end{equation*}
$$

any $A \in F(X)$ and some $\lambda \in F$. It remains to prove that the above relation holds on $A(X)$ as well. Let us introduce $T_{1}: A(X) \rightarrow L(X)$ by $T_{1}(A)=\lambda A$ and consider $T_{0}=T-T_{1}$. The mapping T_{0} is, obviously, additive and satisfies the relation (1). Besides, T_{0} vanishes on $F(X)$. Let $A \in A(X)$, let P be a one-dimensional projection and $S=A+P A P-(A P+P A)$. Since, obviously, $S-A \in F(X)$, we have $T_{0}(S)=T_{0}(A)$. Besides, $S P=P S=0$. We have therefore the relation

$$
\begin{equation*}
T_{0}\left(A^{3}\right)=A T_{0}(A) A \tag{10}
\end{equation*}
$$

for all $A \in A(X)$. Applying the above relation we obtain

$$
\begin{aligned}
S T_{0}(S) S & =T_{0}\left(S^{3}\right)=T_{0}\left(S^{3}+P\right)=T_{0}\left((S+P)^{3}\right) \\
& =(S+P) T_{0}(S+P)(S+P)=(S+P) T_{0}(S)(S+P) \\
& =S T_{0}(S) S+P T_{0}(S) S+S T_{0}(S) P+P T_{0}(S) P
\end{aligned}
$$

We have therefore

$$
\begin{equation*}
P T_{0}(A) S+S T_{0}(A) P+P T_{0}(A) P=0 \tag{11}
\end{equation*}
$$

Multiplying the above relation from both sides by P we obtain

$$
\begin{equation*}
P T_{0}(A) P=0 \tag{12}
\end{equation*}
$$

which reduces the relation (11) to

$$
\begin{equation*}
P T_{0}(A) S+S T_{0}(A) P=0 \tag{13}
\end{equation*}
$$

Right multiplication of the above relation by P gives

$$
\begin{equation*}
S T_{0}(A) P=0 \tag{14}
\end{equation*}
$$

Applying (12) the relation (14) reduces to

$$
\begin{equation*}
A T_{0}(A) P-P A T_{0}(A) P=0 \tag{15}
\end{equation*}
$$

Putting in the above relation $A+B$ for A, where A is from $A(X)$ and B from $F(X)$, using the fact that T_{0} vanishes on $F(X)$, and applying the relation (15), we obtain

$$
0=(A+B) T_{0}(A) P-P(A+B) T_{0}(A) P=B T_{0}(A) P-P B T_{0}(A) P
$$

We have therefore proved that

$$
B T_{0}(A) P-P B T_{0}(A) P=0
$$

holds for any $A \in A(X)$ and all $B \in F(X)$. Putting in the above relation $T_{0}(A) P B$ for B and applying the relation (12), we obtain

$$
\left(T_{0}(A) P\right) B\left(T_{0}(A) P\right)=0, \text { for all } B \in F(X)
$$

whence it follows $T_{0}(A) P=0$ by primeness of $F(X)$. Since P is an arbitrary one-dimensional, one can conclude that $T_{0}(A)=0$, for any $A \in A(X)$, which completes the proof of the theorem.

In the proof of Theorem 1 we used some ideas from Molnár's paper [8]. Let us point out that in Theorem 1 we obtain as a result the continuity of T under purely algebraic conditions concerning T, which means that Theorem 1 might be of some interest from the automatic continuity point of view.

Theorem 2. Let A be a semisimple H^{*}-algebra and let $T: A \rightarrow A$ be such an additive mapping that $T\left(x^{3}\right)=x T(x) x$ holds for all $x \in A$. In this case T is a left and a right centralizer.

Proof. The proof goes through using the same arguments as in the proof of Theorem in [8] with the exception that one has to use Theorem 1 instead of Lemma in [8].

Since in the formulation of the theorem above we have used only algebraic concepts, it would be interesting to study the relevant problem in a purely ring theoretical context. Let us point out that Vukman [9] has proved the following result. Let R be a 2 -torsion free semiprime ring and let $T: R \rightarrow R$ be an additive mapping. If $T(x y x)=x T(y) x$ holds for all $x, y \in R$, then T is a left and a right centralizer. In the same paper one can find also a result which states that in case we have a 2 -torsion free semiprime ring with the identity element and an additive mapping $T: R \rightarrow R$ satisfying the relation $T\left(x^{3}\right)=x T(x) x$ for all $x \in R$, then $T(x)=a x$ holds for all $x \in R$ and some $a \in Z(R)$.

References

[1] W. Ambrose, Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc. 57 (1945), 364-386.
[2] K.I. Beidar, W.S. Martindale III, A.V. Mikhalev, Rings with generalized identities, Marcel Dekker, Inc. New York 1996.
[3] M. Brešar, J. Vukman, Jordan derivations on prime rings, Bull. Austral. Math. Soc. 37 (1988), 321-322.
[4] M. Brešar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), 1003-1006.
[5] J. Cusak, Jordan derivations on rings, Proc. Amer. Math. Soc. 53 (1975), 321-324.
[6] I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104-1119.
[7] I. N. Herstein, Rings with involution, Chicago Lectures in Math., Univ. of Chicago Press, Chicago, London, 1976.
[8] L. Molnár, On centralizers of an H^{*}-algebra, Publ. Math. Debrecen 46 (1995), 89-95.
[9] J. Vukman, An identity related to centralizers in semiprime rings, Comment. Math. Univ. Carol. 40 (1999), 447-456.
[10] J. Vukman, Centralizers of semiprime rings, Comment. Math. Univ. Carol. 42 (2001), 237-245.
[11] J. Vukman and I. Kosi-Ulbl, An equation related to centralizers in semiprime rings, Glasnik Mat. 38(58) (2003), 253-261.
[12] B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carol. 32 (1991), 609-614.

J. Vukman

Department of Mathematics
University of Maribor
PEF, Koroška 160, 2000 Maribor
Slovenia
E-mail: joso.vukman@uni-mb.si
Received: 29.8.2004.

[^0]: 2000 Mathematics Subject Classification. 16W10, 46K15, 39B05.
 Key words and phrases. Prime ring, semiprime ring, Banach space, standard operator algebra, H^{*}-algebra, derivation, Jordan derivation, left (right) centralizer, left (right) Jordan centralizer.

 This research has been supported by the Research Council of Slovenia.

