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Abstract. In this paper we prove the following result: Let X be a
Banach space over the real or complex field F and let L(X) be the algebra
of all bounded linear operators on X. Suppose there exists an additive
mapping T : A(X) → L(X), where A(X) ⊂ L(X) is a standard operator
algebra. Suppose that T (A3) = AT (A)A holds for all A ∈ A(X). In this
case T is of the form T (A) = λA for any A ∈ A(X) and some λ ∈ F. This

result is applied to semisimple H∗−algebras.

This research is related to the work of Molnár [8] and is a continuation
of our work [9, 10]. Throughout, R will represent an associative ring with
center Z(R). A ring R is n-torsion free, where n > 1 is an integer, if nx = 0,
x ∈ R implies x = 0. The commutator xy − yx will be denoted by [x, y] . We
shall use basic commutator identities [xy, z] = [x, z]y + x[y, z] and [x, yz] =
[x, y] z + y [x, z] . Recall that R is prime if aRb = (0) implies a = 0 or b = 0,
and is semiprime if aRa = (0) implies a = 0. An additive mapping D : R → R
is called a derivation if D(xy) = D(x)y + xD(y) holds for all pairs x, y ∈ R
and is called a Jordan derivation in case D(x2) = D(x)x + xD(x) is fulfilled
for all x ∈ R. A derivation D is inner in case there exists a ∈ R, such that
D(x) = [a, x] holds for all x ∈ R. Every derivation is a Jordan derivation. The
converse is in general not true. A classical result of Herstein [6] asserts that
any Jordan derivation on a 2-torsion free prime ring is a derivation. A brief
proof of Herstein’s result can be found in [3] . Cusack [5] generalized Herstein’s
result to 2−torsion free semiprime rings (see also [2] for an alternative proof).
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An additive mapping T : R → R is called a left centralizer in case T (xy) =
T (x)y holds for all x, y ∈ R.

The concept appears naturally in C∗−algebras. In ring theory it is more
common to work with module homomorphisms. Ring theorists would write
that T : RR → RR is a homomorphism of a ring module R into itself. For a
semiprime ring R all such homomorphisms are of the form T (x) = qx for all
x ∈ R, where q is an element of Martindale right ring of quotients Qr (see
Chapter 2 in [2]). In case R has the identity element T : R → R is a left
centralizer iff T is of the form T (x) = ax for all x ∈ R and some fixed element
a ∈ R. An additive mapping T : R → R is called a left Jordan centralizer in
case T (x2) = T (x)x holds for all x ∈ R. The definition of right centralizer and
right Jordan centralizer should be self-explanatory. Following ideas from [4]
Zalar [12] has proved that any left (right) Jordan centralizer on a 2−torsion
free semiprime ring is a left (right) centralizer. Molnár [8] has proved that
in case we have an additive mapping T : A → A, where A is a semisimple
H∗−algebra, satisfying the relation T (x3) = T (x)x2 (T (x3) = x2T (x)) for
all x ∈ A, then T is a left (right ) centralizer. For the definition and for basic
facts of H∗−algebras we refer to [1]. Vukman [9] has proved that in case
there exists an additive mapping T : R −→ R, where R is a 2-torsion free
semiprime ring, satisfying the relation 2T (x2) = T (x)x+xT (x) for all x ∈ R,
thenT is a left and also a right centralizer. Some result concerning centralizers
in semiprime rings can be found in [10] and [11]. Let X be a normed space

over the real or complex field F , and let L(X) and F (X) denote the algebra
of all bounded linear operators on X and the ideal of all finite rank operators
in L(X), respectively. An algebra A(X) ⊂ L(X) is said to be standard in case
F (X) ⊂ A(X). Let us point out that any standard algebra is prime, which is
a consequence of Hahn-Banach theorem.

We are ready for our first result.

Theorem 1. Let X be a Banach space over the real or complex field F
and let A(X) ⊂ L(X) be a standard operator algebra. Suppose there exists an
additive mapping T : A(X) → L(X), such that T (A3) = AT (A)A holds for

all A ∈ A(X). In this case we have T (A) = λA for any A ∈ A(X) and some
λ ∈ F.

Proof. We have the relation

(1) T (A3) = AT (A)A, for all A ∈ A(X).

First we will consider the restriction of T on F (X). Let A be from F (X) and
let P ∈ F (X), be a projection such that AP = PA = A. From the relation
(1) one obtains that T (P ) = PT (P )P and T (P )P = PT (P ) holds. Putting
A + P for A in the relation above and applying the relation (1) we obtain
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after some calculation

3T (A2) + 3T (A) = PT (A)A+AT (A)P +AT (P )A

+PT (P )A+AT (P )P + PT (A)P.

Putting −A for A in the above relation and comparing the relation so obtained
with the above relation we obtain

(2) 3T (A2) = PT (A)A+AT (A)P +AT (P )A,

and

(3) 3T (A) = PT (P )A+AT (P )P + PT (A)P.

Multiplying the above relation from both sides by P, we obtain

(4) 2PT (A)P = PT (P )A+AT (P )P.

Combining the relations (3) and (4) we obtain 2T (A) = PT (P )A+AT (P )P.
Now we have 2T (A) = PT (P )A+ AT (P )P = (PT (P )P )A + A(PT (P )P ) =
T (P )A+AT (P ). Thus we have

(5) 2T (A) = AB +BA,

where B stands for T (P ). Now we have 2T (A)P = (AB + BA)P = ABP +
BAP = APB+BA = AB+BA = 2T (A). We have therefore T (A)P = T (A).
Similarly one obtains PT (A) = T (A). Now the relation (2) reduces to

(6) 3T (A2) = T (A)A+ AT (A) +ABA.

Combining (5) and (6) we obtain

0 = 6T (A2) − 2T (A)A− 2AT (A) − 2ABA

= 3(A2B +BA2) − (AB +BA)A−A(AB +BA) − 2ABA

= 2(A2B +BA2) − 4ABA.

We have therefore A2B + BA2 = 2ABA, which can be written according to
the relation (5) in the form T (A2) = ABA, which reduces the relation (6) to

(7) 2T (A2) = T (A)A+AT (A).

The relation (5) makes it possible to concluded that T maps F (X) into itself
and that T is linear on F (X). Therefore we have a linear mapping T : F (X) →
F (X) satisfying the relation (7) for all A ∈ F (X). Since F (X) is prime one
can conclude according to Theorem in [9] that T is a left and also a right
centralizer. We intend to prove that there exists an operator C ∈ L(X), such
that

(8) T (A) = CA, for all A ∈ F (X)

For any fixed x ∈ X and f ∈ X∗ we denote by x ⊗ f an operator from
F (X) defined by (x ⊗ f)y = f(y)x, for all y ∈ X. For any A ∈ L(X) we
have A(x ⊗ f) = ((Ax) ⊗ f). Let us choose f and y such that f(y) = 1 and
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define Cx = T (x ⊗ f)y. Obviously, C is linear. Using the fact that T is left
centralizer on F (X) we obtain

(CA)x = C(Ax) = T ((Ax) ⊗ f)y = T (A(x⊗ f))y

= T (A)(x⊗ f)y = T (A)x, x ∈ X.

We have therefore T (A) = CA for any A ∈ F (X). Since T right centralizer
on F (X) we obtain C(AB) = T (AB) = AT (B) = ACB. We have therefore
[A,C]B = 0 for any A,B ∈ F (X) whence it follows that [A,C] = 0 for
any A ∈ F (X). Using closed graph theorem one can easily prove that C is
continuous. Since C commutes with all operators from F (X) one can conclude
that Cx = λx holds for any x ∈ X and some λ ∈ F, which gives together with
the relation (8) that T is of the form

(9) T (A) = λA

any A ∈ F (X) and some λ ∈ F. It remains to prove that the above relation
holds on A(X) as well. Let us introduce T1 : A(X) → L(X) by T1(A) = λA

and consider T0 = T −T1. The mapping T0 is, obviously, additive and satisfies

the relation (1). Besides, T0 vanishes on F (X). Let A ∈ A(X), let P be a
one-dimensional projection and S = A+PAP − (AP +PA). Since, obviously,
S − A ∈ F (X), we have T0(S) = T0(A). Besides, SP = PS = 0. We have
therefore the relation

(10) T0(A3) = AT0(A)A,

for all A ∈ A(X). Applying the above relation we obtain

ST0(S)S = T0(S3) = T0(S3 + P ) = T0((S + P )3)

= (S + P )T0(S + P )(S + P ) = (S + P )T0(S)(S + P )

= ST0(S)S + PT0(S)S + ST0(S)P + PT0(S)P.

We have therefore

(11) PT0(A)S + ST0(A)P + PT0(A)P = 0.

Multiplying the above relation from both sides by P we obtain

(12) PT0(A)P = 0,

which reduces the relation (11) to

(13) PT0(A)S + ST0(A)P = 0.

Right multiplication of the above relation by P gives

(14) ST0(A)P = 0.

Applying (12) the relation (14) reduces to

(15) AT0(A)P − PAT0(A)P = 0.
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Putting in the above relation A + B for A, where A is from A(X) and
B from F (X), using the fact that T0 vanishes on F (X), and applying the
relation (15), we obtain

0 = (A+B)T0(A)P − P (A+B)T0(A)P = BT0(A)P − PBT0(A)P

We have therefore proved that

BT0(A)P − PBT0(A)P = 0

holds for any A ∈ A(X) and all B ∈ F (X). Putting in the above relation
T0(A)PB for B and applying the relation (12), we obtain

(T0(A)P )B(T0(A)P ) = 0, for all B ∈ F (X),

whence it follows T0(A)P = 0 by primeness of F (X). Since P is an arbitrary
one-dimensional, one can conclude that T0(A) = 0, for any A ∈ A(X), which
completes the proof of the theorem.

In the proof of Theorem 1 we used some ideas from Molnár’s paper [8].
Let us point out that in Theorem 1 we obtain as a result the continuity of T
under purely algebraic conditions concerning T, which means that Theorem
1 might be of some interest from the automatic continuity point of view.

Theorem 2. Let A be a semisimple H∗−algebra and let T : A → A be
such an additive mapping that T

(
x3
)

= xT (x)x holds for all x ∈ A. In this
case T is a left and a right centralizer.

Proof. The proof goes through using the same arguments as in the proof
of Theorem in [8] with the exception that one has to use Theorem 1 instead
of Lemma in [8].

Since in the formulation of the theorem above we have used only algebraic
concepts, it would be interesting to study the relevant problem in a purely
ring theoretical context. Let us point out that Vukman [9] has proved the
following result. Let R be a 2−torsion free semiprime ring and let T : R → R
be an additive mapping. If T (xyx) = xT (y)x holds for all x, y ∈ R, then T
is a left and a right centralizer. In the same paper one can find also a result
which states that in case we have a 2−torsion free semiprime ring with the
identity element and an additive mapping T : R → R satisfying the relation
T (x3) = xT (x)x for all x ∈ R, then T (x) = ax holds for all x ∈ R and some

a ∈ Z(R).
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[3] M. Brešar, J. Vukman, Jordan derivations on prime rings, Bull. Austral. Math. Soc.
37 (1988), 321-322.
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