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Abstract. We investigate finite linear spaces consisting of two sym-
metric configurations. A construction method using projective planes is
presented, giving a possibly infinite number of examples. Other examples
are constructed by difference families and authomorphism groups, includ-
ing a complete classification of the smallest case. A question whether any
Steiner 2-design with twice as many lines as points belongs to this family
of linear spaces is raised, and answered in the affirmative for all known
examples of such designs.

1. Introduction

A finite linear space is an incidence structure with v points and b lines,
subject to the conditions:

(1) any two points are joined by a unique line and
(2) each line is incident with at least two points.

A line incident with exactly k points is said to be of length k and is also called
a k-line. Assume that k and l are integers with 2 ≤ k ≤ l. A linear space will
be called a TSC space for (k, l), briefly a TSC(k, l), if the following conditions
are met:

(3) the set of lines can be partitioned into two subsets, the first containing
only k-lines, the second only l-lines;

(4) each point is incident with exactly k lines from the first subset and l
lines from the second subset.
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140 V. KRČADINAC AND J. ŠIFTAR

Here, TSC stands for “twofold symmetric configuration”. Namely, in a TSC
space the set of points together with the first subset of lines is a (vk) config-
uration, and with the second subset it is a (vl) configuration. Consequently,
the total number of lines in a TSC(k, l) is twice the number of points, b = 2v.
By counting incident point-line pairs for all the lines through an arbitrary
point, the following relation is obtained:

v = k(k − 1) + l(l− 1) + 1.

Furthermore, TSC spaces are regular, both in the usual sense (each point
is incident with exactly k + l lines), and in the stronger sense of A. Betten
and D. Betten [1]. This means that the lines through any point partition the
complement of this point equivalently, or alternatively that for each k all k-
lines in the linear space constitute a configuration (not necessarily symmetric).
In [1] the authors study small examples of such linear spaces, including a
complete classification up to v = 14. Regular linear spaces in the usual sense
were classified up to v = 12 by H. Gropp [3].

Two extreme cases for the parameters of TSC spaces occur for 2 = k < l
and 2 < k = l. In the former case we have v = l(l−1)+3. For l = 3 this gives
v = 9, corresponding to incidence structures obtained from the well-known
(93) configurations (the Pappus configuration and two others) by adding a 2-
line for each pair of points not joined in the original configuration. Generally,
any (vl) configuration with v = l(l − 1) + 3 allows such a simple completion
to a TSC(2, l).

On the other hand, any TSC(k, k) is actually a Steiner system S(2, k, v)
with b = 2v, e.g. S(2, 3, 13), S(2, 4, 25), S(2, 5, 41), etc. A question of in-
terest is whether the converse holds, i.e. can any S(2, k, v) with b = 2v be
decomposed into two symmetric (vk) configurations?

The main subject of this paper are “proper” TSC spaces, with parameters
2 < k < l. All TSC(3, 4) will be fully determined and some constructions,
using difference families and automorphism groups, will be given for other
small parameters. It appears that most of these linear spaces are new. Firstly,
however, a direct construction of TSC spaces based on projective planes will
be presented.

2. A geometric construction

Let P be a projective plane of order n and B a closed Baer subset of P ,
other than a subplane. B either consists of (i) all the points on an arbitrary
line and all the lines through one of these points, or (ii) all the points on
an arbitrary line, another point outside that line and all the lines joining the
chosen points. Removing B from P , there remains a group divisible design
n-GDD of type nn or (n − 1)n+1, respectively. More precisely, we get an
incidence structure with n points on each line and n lines through each point,
such that the points can be partitioned into n groups of size n, or n+1 groups



TWOFOLD SYMMETRIC CONFIGURATION SPACES 141

of size n− 1. No pair of points from the same group is joined by a line, while
each pair of points from different groups is joined by a unique line.

If we take another projective plane P ′ of order m with the total number
of points equal to the group size from either of the previous two cases, a
TSC(m+ 1, n) can be constructed by covering all the groups by copies of P ′.
In the new incidence structure every pair of points is uniquely joined either by
an n-line from the GDD, or by an (m+ 1)-line from a copy of P ′. Obviously,
every point is incident with exactly n lines of length n and m + 1 lines of
length m+ 1. Hence, we have

Theorem 2.1. Provided there exist projective planes of order m and of
order n, with n = m2 +m+ 1 or n = m2 +m + 2, there exists a TSC space
for (m+ 1, n).

All known projective planes are of prime power order. Thus, to actually
obtain TSC spaces in the described manner, we need both m and n to be
powers of primes. According to a famous conjecture in [10], the integers m
and n = m2 +m+ 1 are indeed simultaneously prime infinitely many times.
If the conjecture is true, the first case yields an infinite family of TSC spaces,
starting with TSC(3, 7), TSC(4, 13), TSC(6, 31), etc.

In the second case n = m2 + m + 2 is even, and thus for our purposes
necessarily a power of two. The equation m2 +m + 2 = 2r is equivalent to
the celebrated Nagell-Ramanujan equation (2m + 1)2 + 7 = 2r+2, known to
have exactly five solutions (for a simple proof see [4]). Among them only
m = 2, r = 3 and m = 5, r = 5 suit our purposes, yielding TSC(3, 8) and
TSC(6, 32). These are the only TSC spaces arising in the second case from
projective planes of prime power order. Of course, the construction would
work just as well without m and n being prime powers if projective planes of
non-prime power order were available.

The construction method of Theorem 2.1 allows much variation, produc-
ing many nonisomorphic TSC spaces for fixed parameters. Obviously, if non-
isomorphic projective planes P and/or P ′ are used, different TSC spaces will
arise. In general, by varying the closed Baer subset B nonisomorphic GDDs
may be obtained, except in Desarguesian planes where any two closed Baer
subsets of the same type can be mapped onto each other by a collineation.
Even in this case, relabelling the points of P ′ within a single or several groups
generally gives rise to nonisomorphic TSC spaces. For example, many noniso-
morphic TSC(3, 7) can be constructed although projective planes of order 2
and 7 are unique and all GDDs obtained by deleting type (i) Baer subsets of
PG(2, 7) are isomorphic.

Finally, let us point out that an analogous construction is not possible
if the closed Baer subset B is chosen as a subplane. After removing such a
subplane, there remains an n-GDD with groups of size n−√n. Since n−√n is
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an even number, these groups cannot be covered by projective planes, which
always have an odd number of points.

3. Complete classification of TSC(3, 4)

The smallest proper TSC spaces are TSC(3, 4), with 19 points and 38
lines. A cyclic example was discovered by A. Beutelspacher and J. Mein-
hardt [2], by virtue of being a 4-semiaffine plane. More generally, any
TSC(k, l) is {k, l}-semiaffine, meaning that for nonincident point-line pairs
(p, L), the number of lines through p missing L is either k or l.

Our goal is to determine all TSC(3, 4) up to isomorphism by an exhaustive
computer search and to find invariants by which they can be distinguished.
The algorithm that was used builds up incidence matrices of TSC(3, 4) row by
row, eliminating isomorphic partial matrices at each step. The search starts
from the following 7× 38 partial incidence matrix:

1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0

The first part of any complete incidence matrix can obviously be put into this
form. Suppose that at some step the algorithm produces a list of r×38 partial
incidence matrices. In the next step each of these matrices is expanded by
one row in all possible ways consistent with the axioms of TSC(3, 4). The
added row has 31 entries equal to 0 and 7 entries equal to 1, a single 1-entry
in common with each of the previous rows, and column sums in the expanded
matrix do not exceed 4. Among the expanded matrices isomorphic copies
(equivalent under rearrangement of rows and columns to one of the previous
matrices) are omitted. For this task nauty [9] by B.D. McKay is used.

Take an incidence matrix of an arbitrary TSC(3, 4) and order its rows
and columns as above. It is not difficult to show by induction that for each
r = 7, 8, . . . , 19 the first r rows of the matrix are isomorphic to one of the
constructed partial incidence matrices. Consequently, the 56 matrices with 19
rows obtained in the final step indeed represent all possible TSC(3, 4).

Proposition 3.1. Up to isomorphism there are exactly 56 TSC spaces
for (3, 4).

The bulge of the search occurred at row 14, with almost six million non-
isomorphic partial incidence matrices. In the next step there remained well
over five million 15× 38 matrices, but from then on the number of matrices
dropped quite rapidly. The complete list of incidence matrices will not be re-
produced here, but they can be downloaded from the first author’s web page:

http://www.math.hr/~krcko
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No. |Aut| 4-Q Q 3-P 4-P No. |Aut| 4-Q Q 3-P 4-P
1 57 19 99 4 3 29 1 29 108 5 4
2 57 19 93 4 3 30 1 29 91 6 3
3 12 22 114 5 3 31 1 28 97 6 3
4 12 22 107 6 3 32 1 28 94 6 4
5 12 8 101 5 4 33 1 27 102 6 4
6 4 30 116 6 3 34 1 27 100 6 3
7 4 24 102 6 3 35 1 27 98 6 4
8 4 24 95 6 3 36 1 27 95 6 3
9 4 22 102 6 3 37 1 27 94 5 3
10 4 10 107 5 3 38 1 27 92 6 4
11 3 32 111 6 4 39 1 27 89 6 3
12 3 31 98 6 3 40 1 26 104 6 4
13 3 29 106 6 4 41 1 26 98 6 4
14 3 28 104 5 4 42 1 26 98 6 3
15 3 28 83 5 3 43 1 26 96 5 3
16 3 26 116 6 4 44 1 26 95 6 3
17 3 26 101 5 3 45 1 26 92 6 3
18 3 26 91 6 4 46 1 25 108 5 4
19 3 25 105 6 4 47 1 25 102 6 4
20 3 25 101 6 4 48 1 25 97 6 4
21 3 25 101 6 3 49 1 25 97 5 4
22 3 25 94 5 3 50 1 25 94 5 4
23 3 25 88 5 3 51 1 24 98 6 4
24 3 22 109 5 3 52 1 23 102 5 4
25 3 22 101 5 4 53 1 23 101 6 4
26 3 19 100 5 4 54 1 23 91 5 4
27 1 31 94 6 3 55 1 21 100 5 4
28 1 31 88 6 3 56 1 21 98 6 4

Table 1. Invariants for TSC(3, 4).

Each of the TSC(3, 4) can be uniquely identified by invariants provided in
Table 1. The first two columns contain the position at which the incidence
matrix occurs in our complete list of representatives and the order of the
full automorphism group (computed by nauty [9]). The groups of order 57
are isomorphic to the semidirect product Z3.Z19, the groups of order 12 to
the alternating group A4 and the groups of order 4 to the direct product
Z2 × Z2. A powerful invariant turned out to be the number of “complete
quadrilaterals” contained in the TSC(3, 4), i.e. sets of four lines intersecting
in six different points. The total number of such substructures, allowing both
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3-lines and 4-lines, is denoted by Q. Additionally, the number of substructures
consisting only of 4-lines was enumerated and is denoted by 4-Q. All TSC(3, 4)
not distinguished by these numbers could be differentiated by the maximal
number of parallel 3-lines and 4-lines, denoted by 3-P and 4-P.

4. Other small examples

A powerful technique for constructing various kinds of incidence struc-
tures are difference families. Suppose the incidence structure has a point-
regular automorphism group G. We can identify the points with elements of
the group G, and blocks (lines) with subsets of G (provided the structure is
simple, i.e. no two blocks are incident with the same set of points). The whole
incidence structure can be reconstructed from a list of base blocks, comprising
a single representative from each block orbit.

We restrict our attention to cyclic difference families for TSC spaces.
Suppose D1 and D2 are subsets of the cyclic group Zv , with |D1| = k, |D2| = l
and v = k(k − 1) + l(l − 1) + 1. If D1 and D2 have trivial stabilizers, the
development dev{D1, D2} = {x + D1 |x ∈ Zv} ∪ {x + D2 |x ∈ Zv} is an
incidence structure consisting of k-lines and l-lines, with k lines of length k
and l lines of length l through each point. A necessary and sufficient condition
for it to be a TSC space is that every element d ∈ Zv , d 6= 0 is uniquely
expressible as a difference d = x− y with either x, y ∈ D1 or x, y ∈ D2.

(k, l) Group Difference families

(3, 4) Z19 D1 = {0, 1, 8}, D2 = {0, 2, 5, 15}
D1 = {0, 1, 8}, D2 = {0, 2, 6, 16}

(3, 5) Z27 D1 = {0, 1, 5}, D2 = {0, 2, 8, 15, 18}
D1 = {0, 1, 5}, D2 = {0, 2, 11, 14, 21}

(3, 6) Z37 D1 = {0, 1, 11}, D2 = {0, 2, 5, 18, 25, 33}
D1 = {0, 1, 11}, D2 = {0, 2, 6, 14, 21, 34}
D1 = {0, 1, 11}, D2 = {0, 2, 6, 22, 25, 30}
D1 = {0, 1, 11}, D2 = {0, 2, 9, 14, 17, 33}

(3, 7) Z49 D1 = {0, 1, 19}, D2 = {0, 2, 8, 12, 15, 35, 40}
D1 = {0, 1, 19}, D2 = {0, 2, 11, 16, 36, 39, 43}

(3, 8) Z63 D1 = {0, 9, 27}, D2 = {0, 1, 3, 7, 15, 20, 31, 41}
D1 = {0, 9, 27}, D2 = {0, 1, 11, 35, 41, 43, 48, 60}

Table 2. Cyclic difference families for TSC spaces.
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We have mounted a computer search for such difference families. It was
possible to examine all the cases with 2 < k < l < 10 exhaustively. Difference
families were found for k = 3 and l = 4, 5, 6, 7, 8 and are listed in Table 2.
For each pair of parameters there are several difference families, giving rise to
nonisomorphic TSC spaces. Interestingly, the two cyclic TSC(3, 7) cannot be
obtained by Theorem 2.1, because they contain (497) configurations that are
not GDDs. On the other hand, the TSC(3, 8) obtained by difference families
also arise from Theorem 2.1. In fact, the construction of Theorem 2.1 was
discovered while analyzing this particular example.

A more general construction method for incidence structures with a pre-
scribed automorphism group relies on the notion of orbit matrices. The
method is mainly used for block designs (see [7] for more details and ref-
erences), but with some minor modifications it can also be applied to TSC
spaces.

Proposition 4.1. There are exactly 12 TSC spaces for (4, 5) admitting
an automorphism of order 3 without fixed points and lines.

Proof. There are exactly 29712 orbit matrices up to rearrangement of
rows and columns. They were classified by an orderly algorithm, similarly as
in [7]. Only 12 orbit matrices can be transformed into incidence matrices of
TSC(4,5), whereby each of them yields exactly one TSC(4,5). The 12 obtained
TSC spaces are mutually nonisomorphic.

A single incidence matrix of a TSC(4, 5) is reproduced in Figure 1 (empty
squares correspond to zero-entries, filled squares to one-entries). All 12 inci-
dence matrices can be downloaded from our web page, referred to earlier.

Figure 1. An incidence matrix of a TSC(4, 5).
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5. Is every Steiner 2-design with b = 2v a TSC space?

TSC spaces with lines of equal length are Steiner 2-designs having twice as
many lines as points. Such designs have parameters S(2, k, v), v = 2k2−2k+1.
For the converse to be true, it should be possible to partition lines of the design
into two symmetric (vk) configurations. As opposed to the obvious and unique
partition by separating “short” and “long” lines when k < l, the task is far
more difficult if all the lines are of equal length. The partition need not be
unique and we do not know if it always exists. In this section, known examples
of S(2, k, 2k2 − 2k + 1) designs are examined.

Up to isomorphism there are exactly two designs S(2, 3, 13) and 18 de-
signs S(2, 4, 25), enumerated by E. Spence [11]. Using a simple backtracking
algorithm we were able to determine all partitions into (133), resp. (254) con-
figurations. Each of the designs can be partitioned in more ways than one.
The minimum occurred for a S(2, 4, 25) allowing only two partitions, while
the S(2, 4, 25) with the largest automorphism group (of order 504) allows the
most number of partitions, namely 1064.

Proposition 5.1. All Steiner systems S(2, 3, 13) and S(2, 4, 25) are TSC
spaces.

The designs S(2, 5, 41) have not been fully classified yet. R. Mathon
and A. Rosa [8] constructed four S(2, 5, 41)s with automorphisms of order 5
and one more by applying a certain transformation. V. Krčadinac [6] found 9
further examples with automorphisms of order 3 and another one with a single
involution [5]. To the best of our knowledge, these 15 designs are all known
examples of S(2, 5, 41)s. Our program was not fast enough to examine the 15
designs exhaustively, but in each case it was possible to find partitions into
(415) configurations by incomplete search.

The existence of S(2, k, 2k2− 2k+ 1) designs, k ≥ 6, is an open problem.
Thus, all known examples of Steiner 2-designs with b = 2v are TSC spaces,
but we do not feel this is enough evidence to make any general conjectures. A
negative example is provided by the following (146, 283) configuration, which
is quite close to S(2, 3, 13), but cannot be partitioned into two symmetric
(143) configurations.

{1, 2, 12} {1, 3, 5} {1, 6, 10} {1, 7, 13} {1,8, 9}
{1, 11, 14} {2, 3,13} {2, 4, 6} {2, 5, 7} {2, 8, 10}
{2, 9, 11} {3, 4, 8} {3, 7,10} {3, 9, 14} {3, 11, 12}
{4, 5, 13} {4, 7, 11} {4, 9, 12} {4, 10, 14} {5, 6, 11}
{5, 8, 14} {5, 9, 10} {6, 7, 9} {6, 8, 12} {6, 13, 14}
{7, 12, 14} {8, 11, 13} {10, 12, 13}
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V. Krčadinac
Department of Mathematics,
Bijenička 30,
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