BANACH-STEINHAUS THEOREMS FOR BOUNDED LINEAR OPERATORS WITH VALUES IN A GENERALIZED 2-NORMED SPACE

ZOFIA LEWANDOWSKA
Pedagogical University, Slupsk, Poland

Abstract. In this paper we will prove Banach-Steinhaus Theorems for some families of bounded linear operators from a normed space into a generalized 2-normed space.

1. Introduction

In 1964 S. Gahler introduced the concept of linear 2-normed spaces and he has investigated many important properties and examples for the above spaces ([1, 2]).

Definition 1.1 ([1]). Let X be a real linear space of dimension greater than 1 and let $\| \cdot , \cdot \|$ be a real valued function on $X \times X$ satisfying the following four properties:

(G1) $\| x, y \| = 0$ if and only if the vectors x and y are linearly dependent;
(G2) $\| x, y \| = \| y, x \| ;$
(G3) $\| x, \alpha y \| = |\alpha| \| x, y \|$ for every real number $\alpha ;$
(G4) $\| x, y + z \| \leq \| x, y \| + \| x, z \|$ for every $x, y, z \in X .

The function $\| \cdot , \cdot \|$ will be called a 2-norm on X and the pair $(X, \| \cdot , \cdot \|)$ a linear 2-normed space.

In [3] and [4] we gave a generalization of the Gähler’s 2-normed space. Namely a generalized 2-norm need not be symmetric and satisfy the first condition of the above definition.

2000 Mathematics Subject Classification. 46A99, 46A32.
Key words and phrases. 2-normed space, Banach-Steinhaus theorems, 2-norm in the space of linear operators.
Definition 1.2 ([3]). Let X and Y be real linear spaces. Denote by \mathcal{D} a non-empty subset of $X \times Y$ such that for every $x \in X$, $y \in Y$ the sets $D_x = \{ y \in Y; (x, y) \in \mathcal{D} \}$ and $D^y = \{ x \in X; (x, y) \in \mathcal{D} \}$ are linear subspaces of the space Y and X, respectively.

A function $\| \cdot, \cdot \| : \mathcal{D} \to [0, \infty)$ will be called a generalized 2-norm on \mathcal{D} if it satisfies the following conditions:

(N1) $\| \alpha x, y \| = |\alpha| \| x, y \|$ for any real number α and all $(x, y) \in \mathcal{D}$;
(N2) $\| x, y + z \| \leq \| x, y \| + \| x, z \|$ for $x \in X$, $y, z \in Y$ such that $(x, y), (x, z) \in \mathcal{D}$;
(N3) $\| x + y, z \| \leq \| x, z \| + \| y, z \|$ for $x, y \in X$, $z \in Y$ such that $(x, z), (y, z) \in \mathcal{D}$.

The set \mathcal{D} is called a 2-normed set.

In particular, if $\mathcal{D} = X \times Y$, the function $\| \cdot, \cdot \|$ will be called a generalized 2-norm on $X \times Y$ and the pair $(X \times Y, \| \cdot, \cdot \|)$ a generalized 2-normed space. Moreover, if $X = Y$, then the generalized 2-normed space will be denoted by $(X, \| \cdot, \cdot \|)$.

In [3] and [4] we considered properties of generalized 2-normed spaces on $X \times Y$. In what follows we shall use the following results:

Theorem 1.3 ([3]). Let $(X \times Y, \| \cdot, \cdot \|)$ be a generalized 2-normed space. Then the family \mathcal{B} of all sets defined by

$$\bigcap_{i=1}^{n} \{ x \in X; \| x, y_i \| < \varepsilon \},$$

where $y_1, y_2, \ldots, y_n \in Y, n \in \mathbb{N}$ and $\varepsilon > 0$, forms a complete system of neighborhoods of zero for a locally convex topology in X.

We will denote it by the symbol $T(X, Y)$. Similarly, we have the preceding theorem for a topology $T(Y, X)$ in the space Y. In the case when $X = Y$ we will denote the above topologies as follows: $T_1(X) = T(X, Y)$ and $T_2(X) = T(Y, X)$.

Theorem 1.4 ([4]). Let $(X \times Y, \| \cdot, \cdot \|)$ be a generalized 2-normed space. Let Σ be a directed set.

(a) A net $\{ x_\sigma; \sigma \in \Sigma \}$ is convergent to $x_\omega \in X$ in $(X, T(X, Y))$ if and only if for all $y \in Y$ and $\varepsilon > 0$ there exists $\sigma_\omega \in \Sigma$ such that $\| x_\sigma - x_\omega, y \| < \varepsilon$ for all $\sigma \geq \sigma_\omega$.

(b) A net $\{ y_\sigma; \sigma \in \Sigma \}$ is convergent to $y_\omega \in Y$ in $(Y, T(Y, X))$ if and only if for all $x \in X$ and $\varepsilon > 0$ there exists $\sigma_\omega \in \Sigma$ such that $\| x, y_\sigma - y_\omega \| < \varepsilon$ for all $\sigma \geq \sigma_\omega$.

Theorem 1.5 ([4]). Let $(X \times Y, \| \cdot, \cdot \|)$ be a generalized 2-normed space. If the generalized 2-norm $\| \cdot, \cdot \| : X \times Y \to [0, \infty)$ is jointly continuous and
a sequence \(\{(x_n, y_n); n \in N\} \subset X \times Y \) is convergent, then the sequence of 2-norms \(\{\|x_n, y_n\|; n \in N\} \) is bounded.

Definition 1.6 ([4]). Let \((X \times Y, \| \cdot \cdot \|) \) be a generalized 2-normed space. A sequence \(\{x_n; n \in N\} \subset X \) is called a Cauchy sequence if for every \(y \in Y \) and \(\varepsilon > 0 \) there exists a number \(n_0 \in N \) such that inequality \(n, m > n_0 \) implies \(\|x_n - x_m, y\| < \varepsilon \).

Definition 1.7 ([4]). Let \((X \times Y, \| \cdot \cdot \|) \) be a generalized 2-normed space. A space \((X, T(X, Y)) \) is called sequentially complete if every Cauchy sequence in \(X \) is convergent in this space.

By analogy we obtain definitions of a Cauchy sequence in the space \(Y \) and the sequential completeness of the space \((Y, T(Y, X)) \).

In what follows \(L(X, Y) \) stands for the linear space of all linear operators from \(X \) with values in \(Y \), where \(X, Y \) are real linear spaces.

Definition 1.8 ([5]). Let \(X \) be a real normed space and \(Y \subset Y \times Y \) be a 2-normed set, where \(Y \) denotes a real linear space. A set \(\mathcal{M} \) is defined as follows:

\[
\mathcal{M} = \{(f, g) \in L(X, Y)^2; \forall x \in X (f(x), g(x)) \in Y \\
\land \exists M > 0 \forall x \in X \|f(x), g(x)\| \leq M \cdot \|x\|^2 \}.
\]

The set \(\mathcal{M} \) defined in Definition 1.8 has the following property:

For every \(f, g \in L(X, Y) \) the sets

\[
\mathcal{M}^g = \{f' \in L(X, Y); (f', g) \in \mathcal{M}\} \quad \text{and} \quad \mathcal{M}_f = \{g' \in L(X, Y); (f, g') \in \mathcal{M}\}
\]

are linear subspaces of the space \(L(X, Y) \).

For \((f, g) \in \mathcal{M} \) we introduce the number

\[
(1.1) \quad \|f, g\| = \inf\{M > 0; \forall x \in X \|f(x), g(x)\| \leq M \cdot \|x\|^2 \}.
\]

Then

\[
(1.2) \quad \|f(x), g(x)\| \leq \|f, g\| \cdot \|x\|^2 \quad \text{for all} \quad x \in X;
\]

\[
(1.3) \quad \|f, g\| = \sup\{\|f(x), g(x)\|; x \in X \land \|x\| = 1 \}
\]

\[
= \sup\{\|f(x), g(x)\|; x \in X \land \|x\| \leq 1 \}
\]

\[
= \sup\left\{\frac{\|f(x), g(x)\|}{\|x\|^2}; x \in X \land \|x\| \neq 0 \right\}.
\]

Moreover, the set \(\mathcal{M} \) is a 2-normed set with the 2-norm defined by the formula (1.1) (cf. [5]).
Definition 1.9 ([5]). Let X be a real normed space and $\mathcal{Y} \subset Y \times Y$ be a 2-normed set, where Y denotes a real linear space. A set \mathcal{N} is defined as follows:

$$\mathcal{N} = \left\{ (f, g) \in L(X, Y)^2; \forall_{x, y \in X} (f(x), g(y)) \in \mathcal{Y}\right\}$$

$$\wedge \exists_{M > 0} \forall_{x, y \in X} \|f(x), g(y)\| \leq M \cdot \|x\| \cdot \|y\|.$$

The set \mathcal{N} defined in Definition 1.9 has similar properties:

For every $f, g \in L(X, Y)$ the sets

$$\mathcal{N}^g = \{ f' \in L(X, Y); (f', g) \in \mathcal{N} \} \quad \text{and} \quad \mathcal{N}_f = \{ g' \in L(X, Y); (f, g') \in \mathcal{N} \}$$

are linear subspaces of the space $L(X, Y)$.

For $(f, g) \in \mathcal{N}$ we introduce the number

$$\|f, g\| = \inf \{ M > 0; \forall_{x, y \in X} \|f(x), g(y)\| \leq M \cdot \|x\| \cdot \|y\| \}.$$

Then

$$\|f(x), g(y)\| \leq \|f, g\| \cdot \|x\| \cdot \|y\|$$

for all $x, y \in X$;

$$\|f, g\| = \sup \{ \|f(x), g(y)\|; x, y \in X \wedge \|x\| = \|y\| = 1 \}$$

$$= \sup \{ \|f(x), g(y)\|; x, y \in X \wedge \|x\| \leq 1, \|y\| \leq 1 \}$$

$$= \sup \left\{ \frac{\|f(x), g(y)\|}{\|x\| \cdot \|y\|}; x, y \in X \wedge \|x\| \neq 0, \|y\| \neq 0 \right\}.$$

Moreover, the set \mathcal{N} is a 2-normed set with the 2-norm defined by the formula (1.4) (cf. [5]).

2. Banach-Steinhaus Theorems for bounded linear operators

In this section we will consider properties of sequences of operators, which are contained in $\mathcal{M}^g, \mathcal{M}_f$ or $\mathcal{N}^g, \mathcal{N}_f$ for some $f, g \in L(X, Y)$. Moreover we will investigate sequences $\{(f_n, g_n); n \in \mathbb{N}\}$ from \mathcal{M} or \mathcal{N}. In every case we will formulate Banach-Steinhaus Theorems. Because any theorem for sequences of operators from \mathcal{M}^g or \mathcal{N}^g is also true (after making necessary changes) for sequences of operators from \mathcal{M}_f or \mathcal{N}_f, we will give only one version of theorems.

Theorem 2.1. Let $(X, \| \cdot \|)$ be a normed space, $(Y, \| \cdot \cdot \|)$ a generalized 2-normed space and $g \in L(X, Y)$. Then:

(a) If a sequence $\{f_n; n \in \mathbb{N}\} \subset \mathcal{M}^g$ and the sequence of 2-norms $\{\|f_n\|; n \in \mathbb{N}\}$ is bounded, then for every $x \in X$ the sequence $\{\|f_n(x), g(x)\|; n \in \mathbb{N}\}$ is bounded.

(b) If a sequence $\{f_n; n \in \mathbb{N}\} \subset \mathcal{N}^g$ and the sequence of 2-norms $\{\|f_n\|; n \in \mathbb{N}\}$ is bounded, then for every $x, y \in X$ the sequence $\{\|f_n(x), g(y)\|; n \in \mathbb{N}\}$ is bounded.
Proof. (a) Let \(\|f_n, g\| \leq M \) for every \(n \in N \). Then for \(x \in X \) we have
\[
\|f_n(x), g(x)\| \leq \|f_n, g\| \cdot \|x\|^2 \leq M \cdot \|x\|^2.
\]
Hence for every \(x \in X \) the sequence \(\{\|f_n(x), g(x)\|; n \in N\} \) is bounded by the number \(M \cdot \|x\|^2 \).

(b) If \(\|f_n, g\| \leq M \) for every \(n \in N \), then for \(x, y \in X \) we have
\[
\|f_n(x), g(y)\| \leq \|f_n, g\| \cdot \|x\| \cdot \|y\| \leq M \cdot \|x\| \cdot \|y\|.
\]
Thus for every \(x, y \in X \) the sequence \(\{\|f_n(x), g(y)\|; n \in N\} \) is bounded by the number \(M \cdot \|x\| \cdot \|y\| \).

Theorem 2.2. Let \((X, \| \cdot \|)\) be a Banach space, \((Y, \| \cdot \|)\) a generalized 2-normed space and \(\{f_n; n \in N\}\) a sequence of elements from \(\mathcal{N}^g\) for some \(g \in L(X, Y)\). Then the following conditions are equivalent:

(a) The sequence of 2-norms \(\{\|f_n, g\|; n \in N\}\) is bounded.
(b) \(\exists M > 0 \forall x, y \in X, \|x\| \leq 1, \|y\| \leq 1 \forall n \in N \|f_n(x), g(y)\| \leq M\).
(c) The following conditions are true:

(i) \(\forall x \in X \exists M_x > 0 \forall y \in X, \|y\| \leq 1 \forall n \in N \|f_n(x), g(y)\| \leq M_x\).
(ii) \(\forall y \in Y \exists M_y > 0 \forall x \in X, \|x\| \leq 1 \forall n \in N \|f_n(x), g(y)\| \leq M_y\).

Proof. At first let us suppose that the sequence of 2-norms \(\{\|f_n, g\|; n \in N\}\) is bounded. From this it follows that there exists a positive number \(M\) such that \(\|f_n, g\| \leq M\) for each \(n \in N\). Thus for \(x, y \in X, \|x\| \leq 1, \|y\| \leq 1\) and \(n \in N\) we have \(\|f_n(x), g(y)\| \leq \|f_n, g\| \cdot \|x\| \cdot \|y\| \leq M\).

Now, let the condition (b) be satisfied. We fix \(x \in X \setminus \{0\}\). Then for each \(y \in X, \|y\| \leq 1\) and \(n \in N\) we obtain the inequalities:
\[
\|f_n(x), g(y)\| = \|f_n\left(\frac{x}{\|x\|} \cdot \|y\|\right), g(y)\| = \|x\| \cdot \|f_n\left(\frac{x}{\|x\|}\right), g(y)\| \leq M \cdot \|x\|.
\]
If we choose \(M_x = M \cdot \|x\|\), then we have the condition (i). Moreover, for \(x = 0\) the condition (i) is satisfied for every positive number \(M_x\). Analogously, taking \(M_y = M \cdot \|y\|\) for each \(y \in X \setminus \{0\}\) and any positive number for \(y = 0\) we obtain (ii).

Conversely, let (i) and (ii) be satisfied. In \(X \times X\) let us define a norm by the formula:
\[
\|(x, y)\|_* = \|x\| + \|y\| \text{ for each } (x, y) \in X \times X.
\]
It is easy to verify that \((X \times X, \|(\cdot, \cdot)_*\|)\) is a Banach space. Put
\[
A_{nm} = \{(x, y) \in X \times X; \|f_n(x), g(y)\| \leq m\}
\]
and
\[
B_m = \bigcap_{n=1}^{\infty} A_{nm}
\]
for \(m, n \in N\). We shall show that sets \(B_m\) are closed in \((X \times X, \|(\cdot, \cdot)_*\|)\) for each \(m \in N\).
At first we shall show that sets A_{nm} are closed in this space. Let $m, n \in N$ and let $\{(x_k, y_k); k \in N\} \subset A_{nm}$ be a sequence converging to $(x', y') \in X \times X$. Then
\[
\|f_n(x_k), g(y_k)\| \leq m \text{ and } \|(x_k, y_k) - (x', y')\|_* \rightarrow 0, k \rightarrow \infty.
\]
The last condition is equivalent to the following: $\|x_k - x'\| \rightarrow 0$ and $\|y_k - y'\| \rightarrow 0$, which implies the convergence of the sequences $\{x_k; k \in N\}, \{y_k; k \in N\}$. As a consequence these sequences are bounded. There exists $K > 0$ such that the inequalities $\|x_k\| \leq K$, $\|y_k\| \leq K$ are true for each $k \in N$. Using these results we get
\[
\|f_n(x'), g(y')\| \leq m + K \cdot \|f_n, g\| \cdot \|x_k - x'\| + K \cdot \|f_n, g\| \cdot \|y_k - y'\|
\]
\[
+ \|f_n, g\| \cdot \|x_k - x'\| \cdot \|y_k - y'\|.
\]
Letting $k \rightarrow \infty$ we obtain $\|f_n(x'), g(y')\| \leq m$, which means that $(x', y') \in A_{nm}$. Therefore the sets A_{nm} are closed for each $n, m \in N$, and hence the sets B_m are also closed in $(X \times X, \|\cdot\|_*)$.

Now, we shall show that the equality
\[
X \times X = \bigcup_{m=1}^{\infty} B_m
\]
is true. Let $x, y \in X, x \neq 0$. Then $\|\frac{x}{|x|}\| = 1$. By virtue (ii) there exists $M_y > 0$ such that
\[
\|f_n\left(\frac{x}{|x|}\right), g(y)\| \leq M_y \text{ for each } n \in N.
\]
Thus $\|f_n(x), g(y)\| \leq M_y \cdot \|x\|$ for each $n \in N$.

If $x = 0$, then $\|x\| \leq 1$ and $\|f_n(x), g(y)\| = \|0, g(y)\| = 0 = M_y \cdot \|0\|$. As a consequence, for every $x, y \in X$ the sequence $\{\|f_n(x), g(y)\|; n \in N\}$ is bounded. From this it follows that for any point $(x, y) \in X \times X$ there exists $n \in N$ such that $\|f_n(x), g(y)\| \leq m$ for every $m \in N$, i.e.
\[
(x, y) \in \bigcup_{m=1}^{\infty} B_m.
\]
Thus
\[
X \times X = \bigcup_{m=1}^{\infty} B_m.
\]
By the well known Baire theorem there exists a set B_{m_0} with non-empty interior. Therefore B_{m_0} contains some closed ball with the center (x_o, y_o) and radius r. Denote it by $K((x_o, y_o), r)$. Thus for each $n \in N$ and $(x, y) \in K((x_o, y_o), r)$ we have $\|f_n(x), g(y)\| \leq m_o$.

Let us take $x, y \in X$ such that $\|x\| \leq \frac{r}{2}$ and $\|y\| \leq \frac{r}{2}$. Then $\|(x, y)\|_* = \|x\| + \|y\| \leq r$ and $\|(x, y)\|_* = \|(x + x_o, y + y_o) - (x_o, y_o)\|_* \leq r$.
Therefore \(\|f_n(x + x_o), g(y + y_o)\| \leq m_o. \) In particular \(\|f_n(x_o), g(y_o)\| \leq m_o. \) Thus

\[
\|f_n(x), g(y)\| \leq \|f_n(x + x_o), g(y + y_o)\| + \|f_n(x + x_o), g(y_o)\|
\]
\[
+ \|f_n(x_o), g(y + y_o)\| + \|f_n(x_o), g(y_o)\|
\]
\[
\leq 2m_o + \|f_n(x) + f_n(x_o), g(y_o)\| + \|f_n(x_o), g(y) + g(y_o)\|
\]
\[
\leq 4m_o + \|f_n(x), g(y_o)\| + \|f_n(x_o), g(y)\|
\]

So we have shown that the inequalities \(\|x\| \leq \frac{r}{2} \) and \(\|y\| \leq \frac{r}{2} \) imply the condition

\[
\|f_n(x), g(y)\| \leq 4m_o + \|f_n(x), g(y_o)\| + \|f_n(x_o), g(y)\|
\]

Now, let \(x, y \in X, \|x\| \leq 1 \) and \(\|y\| \leq 1. \) Because \(\|\frac{r}{2}x\| \leq \frac{r}{2} \) and \(\|\frac{r}{2}y\| \leq \frac{r}{2}, \)
then

\[
\|f_n(\frac{r}{2}x), g(\frac{r}{2}y)\| \leq 4m_o + \|f_n(\frac{r}{2}x), g(y_o)\| + \|f_n(x_o), g(\frac{r}{2}y)\|
\]

As a consequence we obtain

\[
\|f_n(x), g(y)\| \leq \frac{16m_o}{r^2} + \frac{2}{r}(\|f_n(x), g(y_o)\| + \|f_n(x_o), g(y)\|)
\]

for each \(n \in N. \) Applying (i) we have that there exists \(M_{x_o} > 0 \) such that for every \(y \in X, \|y\| \leq 1 \) and \(n \in N \) the inequality \(\|f_n(x), g(y)\| \leq M_{x_o} \) is true. However the assumption (ii) implies there exists \(M_{y_o} > 0 \) such that for every \(x \in X, \|x\| \leq 1 \) and \(n \in N \) the inequality \(\|f_n(x), g(y_o)\| \leq M_{y_o} \) is satisfied. So

\[
\|f_n(x), g(y)\| \leq \frac{16m_o}{r^2} + \frac{2}{r} \cdot (M_{y_o} + M_{x_o})
\]

for each \(n \in N \) and \(x, y \in X \) such that \(\|x\| \leq 1, \|y\| \leq 1. \) Therefore

\[
\|f_n, g\| = \sup\{\|f_n(x), g(y)\|, x, y \in X \wedge \|x\| \leq 1, \|y\| \leq 1\}
\]
\[
\leq \frac{16m_o + 2r(M_{x_o} + M_{y_o})}{r^2}
\]

for each \(n \in N. \) So the sequence \(\{\|f_n, g\|, n \in N\} \) is bounded and the proof is completed.

Let \(g \in L(X, Y). \) A sequence \(\{f_n; n \in N\} \subset N^g \) is pointwise convergent to \(f \in L(X, Y), \) if

\[
\forall x \in X \forall z \in Y \lim_{n \to \infty} \|f_n(x) - f(x), z\| = 0
\]

(cf. [4]). However, if \(g \) is the operator from \(X \) on \(Y, \) then the sequence \(\{f_n; n \in N\} \subset N^g \) is pointwise convergent to \(f \in L(X, Y), \) if

\[
\forall x \in X \forall y \in Y \lim_{n \to \infty} ||f_n(x) - f(x), g(y)|| = 0
\]

We will use the above note in the following theorem.
Theorem 2.3. Let \((X, \| \cdot \|)\) be a Banach space, \((Y, \| \cdot \cdot \|)\) a generalized 2-normed space and \(g\) a linear operator from \(X\) on \(Y\). If \(\{f_n; n \in N\} \subset N^9\) is pointwise convergent to \(f \in L(X,Y)\) and satisfies one of the conditions (a), (b), (c) from Theorem 2.2, then \(f \in N^9\).

Proof. From Theorem 2.2 the sequence of 2-norms \(\{\|f_n, g\|; n \in N\}\) is bounded. Thus there exists \(M > 0\) such that \(\|f_n, g\| \leq M\) for each \(n \in N\). For points \(x, y \in X\) we have

\[
\|f_n(x), g(y)\| \leq \|f_n, g\| \cdot \|x\| \cdot \|y\| \leq M \cdot \|x\| \cdot \|y\|
\]

So \(\|f(x), g(y)\| \leq \|f(x) - f_n(x), g(y)\| + M \cdot \|x\| \cdot \|y\|.\) Letting \(n \to \infty\) in the above inequality we obtain

\[
\|f(x), g(y)\| \leq M \cdot \|x\| \cdot \|y\|
\]

which implies \(f \in N^9\).

Definition 2.4 ([6]). A set \(A\) of elements of a normed space \(X\) is said to be linearly dense in \(X\), if the set \(X_0\) of all linear combinations of elements from \(A\) is dense in \(X\).

Theorem 2.5. Let \(A\) be a linearly dense set in a Banach space \((X, \| \cdot \|), (Y, \| \cdot \cdot \|)\) a generalized 2-normed space such that \((Y, T_1(Y))\) is a Hausdorff sequentially complete space. Let \(g\) be a linear operator from \(X\) on \(Y\) and \(\{f_n; n \in N\} \subset N^9\). The following conditions are equivalent:

(a) The sequence \(\{f_n; n \in N\}\) is pointwise convergent to \(f \in L(X,Y)\) and the conditions (i), (ii) from Theorem 2.2 are satisfied.

(b) The sequence \(\{f_n; n \in N\}\) is pointwise convergent to \(f \in N^9\) on the set \(A\) and the sequence of 2-norms \(\{\|f_n, g\|; n \in N\}\) is bounded.

Proof. If the sequence \(\{f_n(x); n \in N\}\) is convergent to \(f(x) \in Y\) for each \(x \in X\), then it is convergent also for \(x \in A \subset X\). Moreover - this follows from Theorem 2.2 and Theorem 2.3 - the sequence \(\{\|f_n, g\|; n \in N\}\) is bounded and \(f \in N^9\).

Now, we will suppose that the sequence \(\{f_n; n \in N\}\) is pointwise convergent to \(f \in N^9\) on the set \(A\) and the sequence of 2-norms \(\{\|f_n, g\|; n \in N\}\) is bounded. By Theorem 2.2 the conditions (i), (ii) hold. Let \(X_0\) be the vector subspace of the Banach space \(X\) generated by \(A\). So \(X_0\) is a normed space.

Let \(x, y \in X_0\). Then \(x = a_1x_1 + \cdots + a_kx_k, y = b_1y_1 + \cdots + b_ly_l\), where \(a_i, b_j \in \mathbb{R}, x_i, y_j \in A, i = 1, 2, \ldots, k, j = 1, 2, \ldots, t, k, t \in N\). Thus, it follows from assumptions on \(f_n, f, g\) that

\[
\|f_n(x) - f(x), g(y)\| =
\]

\[
= \|a_1(f_n(x_1) - f(x_1)) + \cdots + a_k(f_n(x_k) - f(x_k)), b_1g(y_1) + \cdots + b_lg(y_l)\|.
\]
Using properties of 2-norms we get:
\[
\|f_n(x) - f(x), g(y)\| \leq \sum_{i=1}^{k} \sum_{j=1}^{t} |a_ib_j| \cdot \|f_n(x_i) - f(x_i), g(y_j)\|.
\]
Because
\[\lim_{n \to \infty} \|f_n(x_i) - f(x_i), g(y_j)\| = 0\]
for each \(x_i, y_j \in A\), then
\[\lim_{n \to \infty} \|f_n(x) - f(x), g(y)\| = 0,
\]
i.e. the sequence \(\{f_n; n \in N\}\) is convergent to \(f\) on \(X_o\).

Let \(\|f_n, g\| \leq M\) for every \(n \in N\). Let us take a number \(\varepsilon > 0\), \(x \in X\) and \(y \in X\) such that \(y \neq 0\). Since \(X_o\) is a dense set in \(X\), we can choose \(x_o \in X_o, x_o \neq 0\) such that
\[\|x - x_o\| < \frac{\varepsilon}{6M \cdot \|y\|}.
\]
Moreover there exists \(y_o \in X_o\) with the property
\[\|y - y_o\| < \frac{\varepsilon}{6M \cdot \|x_o\|}.
\]
The sequence \(\{f_n(x_o); n \in N\}\) is convergent in \((Y, T_1(Y))\), so it is a Cauchy sequence in this space. Therefore there exists a number \(n_o\) such that
\[\|f_n(x_o) - f_m(x_o), g(y_o)\| < \frac{\varepsilon}{3}\]
for each \(n, m \geq n_o\).

As a consequence we obtain
\[
\|f_n(x) - f_m(x), g(y)\| \leq
\]
\[
\leq \|f_n(x) - f_n(x_o), g(y)\| + \|f_n(x_o) - f_m(x_o), g(y)\|
\]
\[
+ \|f_m(x_o) - f_m(x), g(y)\|
\]
\[
\leq \|f_n, g\| \cdot \|x - x_o\| \cdot \|y\| + \|f_n(x_o) - f_m(x_o), g(y - y_o) + g(y_o)\|
\]
\[
+ \|f_m, g\| \cdot \|x - x_o\| \cdot \|y\|
\]
\[
\leq 2M \|x - x_o\| \cdot \|y\| + \|f_n(x_o) - f_m(x_o), g(y - y_o)\|
\]
\[
+ \|f_m(x_o) - f_m(x), g(y_o)\|
\]
\[
< 2M \|x - x_o\| \cdot \|y\| + \|f_n(x_o), g(y - y_o)\| + \|f_m(x_o), g(y - y_o)\| + \frac{\varepsilon}{3}
\]
\[
< 2M \frac{\|y\|}{6M \|y\|} \|y\| + \|f_n, g\| \cdot \|x_o\| \cdot \|y - y_o\|
\]
\[
+ \|f_m, g\| \cdot \|x_o\| \cdot \|y - y_o\| + \frac{\varepsilon}{3}
\]
\[
< \frac{2}{3} \varepsilon + 2M \|x_o\| \cdot \|y - y_o\| < \frac{2}{3} \varepsilon + 2M \|x_o\| \frac{\varepsilon}{6M \|x_o\|} = \varepsilon
\]
for \(n, m \geq n_o\). If \(y = 0\), then the inequality \(\|f_n(x) - f_m(x), g(y)\| = 0 < \varepsilon\) is also true.
Hence we have shown that \(\{f_n(x); n \in N\} \) is a Cauchy sequence in
\((Y, T_1(Y))\) for every \(x \in X \). Because \((Y, T_1(Y))\) is a sequentially complete
space, then the sequence \(\{f_n; n \in N\} \) is pointwise convergent.

Let us denote

\[h(x) = \lim_{n \to \infty} f_n(x) \] for every \(x \in X \).

The fact that \((Y, T_1(Y))\) is a Hausdorff space implies \(h(x) = f(x) \) for \(x \in A \), i.e. \((h - f)(x) = 0\) for \(x \in A \). The operator \(h - f \) is linear, thus \((h - f)(x) = 0\) for every \(x \in X_0 \). Using Theorem 2.3 we see that \(h \in \mathcal{N}^9 \). Because \(\mathcal{N}^9 \) is a linear subspace, then \(h - f \in \mathcal{N}^9 \). Thus there exists a positive number \(K \) such that

\[\|(h - f)(x), g(y)\| \leq K \cdot \|x\| \cdot \|y\| \] for every \(x, y \in X \).

Let \(\varepsilon > 0, x, y \in X, y \neq 0 \). Since the set \(X_0 \) is dense in \(X \) we can choose \(x_o \in X_0 \) such that

\[\|x - x_o\| < \frac{\varepsilon}{K \cdot \|y\|} \]

Then

\[0 \leq \|(h - f)(x), g(y)\| = \|(h - f)(x - x_o) + (h - f)(x_o), g(y)\|
= \|(h - f)(x - x_o), g(y)\| \leq K \cdot \|x - x_o\| \cdot \|y\| < \varepsilon \]

This gives \(\|(h - f)(x), g(y)\| = 0 \) for each \(x \in X, y \in X \setminus \{0\} \). Thus \(h(x) = f(x) \) for every \(x \in X \). As a consequence we have shown that the sequence \(\{f_n; n \in N\} \) is pointwise convergent to \(f \), which finishes the proof.

Theorem 2.6. Let \((X, \| \cdot \|)\) be a Banach space, \((Y, \| \cdot \|, \cdot \|)\) a
generalized 2-normed space such that \((Y, T_1(Y))\) is a Hausdorff sequentially
complete space. Let \(g \) be a linear operator from \(X \) on \(Y \). If a sequence
\(\{f_n; n \in N\} \subset \mathcal{N}^9 \) is pointwise convergent to \(f \in \mathcal{N}^9 \) on a linearly dense
set \(A \) in \(X \) and the sequence of 2-norms \(\{\|f_n, g\|; n \in N\} \) is bounded, then
\(\{f_n; n \in N\} \) is pointwise convergent to \(f \) and \(\|f, g\| \leq \sup\{\|f_n, g\|; n \in N\} \).

Proof. It follows from Theorem 2.5 that the sequence \(\{f_n(x); n \in N\} \) is
convergent in \(Y \) to \(f(x) \) for every \(x \in X \). Let us denote \(M = \sup\{\|f_n, g\|; n \in N\} \).
Then for every \(n \in N \) and \(x, y \in X \) such that \(\|x\| \leq 1, \|y\| \leq 1 \) we have
\(\|f_n(x), g(y)\| \leq M \). Thus

\[\|f(x), g(y)\| \leq \|f_n(x) - f(x), g(y)\| + \|f_n(x), g(y)\| \leq \|f_n(x) - f(x), g(y)\| + M. \]

By letting \(n \to \infty \) we obtain

\[\|f(x), g(y)\| \leq M \] for \(x, y \in X, \|x\| \leq 1, \|y\| \leq 1 \).

This implies \(\|f, g\| \leq M \), which finishes the proof.

Now, let us consider sequences \(\{(f_n, g_n); n \in N\} \) from \(\mathcal{M} \) or \(\mathcal{N} \). Using analogous arguments as in proofs of the foregoing theorems we can show that the following theorems are true.
Theorem 2.7. Let \((X, \| \cdot \|)\) be a normed space and \((Y, \| \cdot , \cdot \|)\) a generalized 2-normed space.

(a) If \(\{(f_n, g_n); n \in N\} \subset \mathcal{M}\) and the sequence of 2-norms \(\{\|f_n, g_n\|; n \in N\}\) is bounded, then for every \(x \in X\) the sequence \(\{\|f_n(x), g_n(x)\|; n \in N\}\) is bounded.

(b) If \(\{(f_n, g_n); n \in N\} \subset \mathcal{N}\) and the sequence of 2-norms \(\{\|f_n, g_n\|; n \in N\}\) is bounded, then for every \(x, y \in X\) the sequence \(\{\|f_n(x), g_n(y)\|; n \in N\}\) is bounded.

Theorem 2.8. Let \((X, \| \cdot \|)\) be a Banach space, \((Y, \| \cdot , \cdot \|)\) a generalized 2-normed space and \(\{(f_n, g_n); n \in N\}\) a sequence of elements from \(\mathcal{N}\). Then the following conditions are equivalent:

(a) The sequence of 2-norms \(\{\|f_n, g_n\|; n \in N\}\) is bounded;

(b) \(\exists M > 0 \forall x, y \in X, \|x\| \leq 1, \|y\| \leq 1 \forall n \in N \|f_n(x), g_n(y)\| \leq M\);

(c) The following conditions are satisfied:

(i) \(\forall x \in X \exists M_x > 0 \forall y \in X, \|y\| \leq 1 \forall n \in N \|f_n(x), g_n(y)\| \leq M_x\);

(ii) \(\forall y \in X \exists M_y > 0 \forall x \in X, \|x\| \leq 1 \forall n \in N \|f_n(x), g_n(y)\| \leq M_y\).

Theorem 2.9. Let \((X, \| \cdot \|)\) be a Banach space, \((Y, \| \cdot , \cdot \|)\) a generalized 2-normed space with the continuous 2-norm. If a sequence \(\{(f_n, g_n); n \in N\} \subset \mathcal{N}\) is pointwise convergent to \((f, g) \in L(X, Y)^2\) and one of three conditions (a), (b), (c) of Theorem 2.8 is true, then \((f, g) \in \mathcal{N}\).

Proof. Using Theorem 2.8 we have that the sequence of 2-norms \(\{\|f_n, g_n\|; n \in N\}\) is bounded, i.e. there exists \(M > 0\) such that \(\|f_n, g_n\| \leq M\) for each \(n \in N\). Let \(x, y \in X\) be arbitrary. Then

\[
\|f_n(x), g_n(y)\| \leq \|f_n, g_n\| \cdot \|x\| \cdot \|y\| \leq M \|x\| \cdot \|y\|
\]

Since the 2-norm is continuous, then

\[
\|f(x), g(y)\| = \lim_{n \to \infty} \|f_n(x), g_n(y)\| \leq M \|x\| \cdot \|y\|
\]

i.e. \((f, g) \in \mathcal{N}\). \(\square\)

From Theorem 1.5 the following follows

Theorem 2.10. Let \((X, \| \cdot \|)\) be a normed space, \((Y, \| \cdot , \cdot \|)\) a generalized 2-normed space. If a sequence \(\{(f_n, g_n); n \in N\} \subset \mathcal{N}\) is pointwise convergent to \((f, g) \in L(X, Y) \times L(X, Y)\) and the 2-norm is continuous, then the sequence \(\{\|f_n(x), g_n(y)\|; n \in N\}\) is bounded for each \(x, y \in X\).

References

Z. Lewandowska
Department of Mathematics
Pedagogical University
Arciszewskiego 22 b
Pl-76-200 Slupsk
Poland
E-mail: Lewandowscy@rene.com.pl, lewandow@pap.edu.pl

Received: 11.07.2002.