A GENERALIZATION OF A RESULT ON MAXIMUM MODULUS OF POLYNOMIALS

V. K. JAIN

Indian Institute of Technology, Kharagpur, India

Abstract. For an arbitrary entire function $f(z)$, let

$$M(f, d) = \max_{|z|=d} |f(z)|.$$

It is known that if the geometric mean of the moduli of the zeros of a polynomial $p(z)$ of degree n is at least 1, and $M(p, 1) = 1$, then for $R > 1$

$$M(p, R) \leq \left\{ \begin{array}{ll}
\frac{R}{2} + \frac{1}{2}, & \text{if } n = 1, \\
\frac{R^n}{n} + \frac{(n+2)nR^n - 2}{2} & \text{if } n \geq 2.
\end{array} \right.$$

We have obtained a generalization of this result, by assuming the geometric mean of the moduli of the zeros of the polynomial to be at least k, ($k > 0$).

1. Introduction and statement of result

For a polynomial $p(z)$ of degree n, we have, as a simple consequence [4, Part III, Chapter 6, Problem no. 269] of maximum modulus principle

Theorem 1.1. If $p(z)$ is a polynomial of degree n such that $M(p, 1) = 1$, then for $R > 1$

$$M(p, R) \leq R^n.$$

Equality holds in (1.1) for $p(z) = az^n$, with $|a| = 1$.

Ankeny and Rivlin [1] considered a restricted class of polynomials and obtained the following refinement

2000 Mathematics Subject Classification. 30C10, 30A10.

Key words and phrases. Polynomials, zeros, geometric mean, maximum modulus.
THEOREM 1.2. If the moduli of the zeros of a polynomial \(p(z) \) of degree \(n \) are all \(\geq 1 \) and \(M(p, 1) = 1 \), then for \(R > 1 \)

\[
M(p, R) \leq \frac{R^n + 1}{2}.
\]

Equality holds in (1.2) for \(p(z) = (bz^n + d)/2 \), with \(|b| = |d| = 1 \).

Frappier and Rahman [3] in a somewhat different context, obtained a similar type of result for a broader class of polynomials and proved

THEOREM 1.3. If the geometric mean of the moduli of the zeros of a polynomial \(p(z) \) of degree \(n \) is at least 1 and \(M(p; 1) = 1 \), then for \(R > 1 \)

\[
M(p, R) \leq \left\{
\begin{array}{ll}
\frac{R^n}{2} + \frac{1}{2}, & n = 1, \\
\frac{R^n}{2} + \frac{(3+2\sqrt{2})R^{n-2}}{2}, & n \geq 2.
\end{array}
\right.
\]

In this note, we have obtained a generalization of Theorem 1.3, by assuming the geometric mean of the moduli of the zeros of the polynomial \(p(z) \) to be at least \(k \), \((k > 0)\). More precisely, we prove

THEOREM 1.4. If the geometric mean of the moduli of the zeros of a polynomial \(p(z) \) of degree \(n \) is at least \(k \), \((k > 0)\), and \(M(p, 1) = 1 \), then for \(R > 1 \)

\[
M(p, R) \leq \left\{
\begin{array}{ll}
\frac{R^n}{1+k^n} + k^{1+k^n}, & n = 1, \\
\frac{R^n}{1+k^n} + \frac{R^{n-2}}{4} \left[(5+k^n) + \frac{1}{1+k^n} \sqrt{D}\right], & n \geq 2.
\end{array}
\right.
\]

where

\[
D = k^{4n} + 4k^{3n} + 30k^{2n} + 52k^n + 41.
\]

Equality holds in (1.3) for \(p(z) = (z+k)/(1+k) \).

2. LEMMAS

For the proof of the theorem, we require following lemmas.

LEMMA 2.1. If \(p(z) = \sum_{k=0}^{n} a_k z^k \) is a polynomial of degree \(n \) such that \(M(p, 1) = 1 \), then

\[
|a_0| + |a_n| \leq 1.
\]

This lemma is due to Visser [5].

LEMMA 2.2. If \(p(z) = \sum_{k=0}^{n} a_k z^k \) is a polynomial of degree \(n \) such that \(M(p, 1) = 1 \), then

\[
2|a_0| \cdot |a_n| + \sum_{k=0}^{n} |a_k|^2 \leq 1.
\]

This lemma is due to van der Corput and Visser [2].
3. Proof of Theorem 1.4

If

\[p(z) = a_0 + a_1 z, \]

then

\[\frac{M(p, R)}{M(p, 1)} = \frac{|a_0| + |a_1|R}{|a_0| + |a_1|} \leq \frac{R + k}{1 + k}, \]

thereby proving the theorem for this particular case. Therefore we now assume that

\[n \geq 2, \]

and

\[p(z) = a_n z^n + a_{n-1} z^{n-1} + a_{n-2} z^{n-2} + \cdots + a_0, \]

As the geometric mean of the moduli of the zeros of the polynomial is at least \(k \), we have

\[|a_0| \geq k^n |a_n|, \]

and therefore, by Lemma 2.1

\[\alpha := |a_n| \leq \frac{1}{1 + k^n}. \]

Further, by Lemma 2.2, we have

\[(|a_0| + |a_n|)^2 + |a_{n-1}|^2 \leq 1, \]

which, by (3.2) and (3.3), implies

\[(k^n \alpha + \alpha)^2 + |a_{n-1}|^2 \leq 1, \]

i.e.

\[|a_{n-1}| \leq \sqrt{1 - \alpha^2 (1 + k^n)^2}. \]

Using (3.3) and (3.4), we can now say that

\[|a_n z^n + a_{n-1} z^{n-1}| \leq \alpha |z|^n + |z|^{n-1} \sqrt{1 - \alpha^2 (1 + k^n)^2} \]

\[\leq \frac{1}{1 + k^n} |z|^n + \frac{(1 + k^n) + \alpha (1 + k^n)^2}{4} |z|^{n-2}, \]

by (3.3). And, by (3.1)

\[r(z) = p(z) - a_n z^n - a_{n-1} z^{n-1} \]

is a polynomial, of degree at most \(n - 2 \), with

\[M(r, 1) \leq 1 + \alpha + \sqrt{1 - \alpha^2 (1 + k^n)^2}, \]

(by (3.3) and (3.4)), thereby implying, by Theorem 1.1, for \(R > 1 \)

\[M(r, R) \leq \left[1 + \alpha + \sqrt{1 - \alpha^2 (1 + k^n)^2} \right] R^{n-2}. \]
Hence, by (3.1) and (3.5), we have, for \(R > 1 \)
\[
M(p, R) \leq \frac{R^n}{1 + k^n} + \left[\frac{5 + k^n}{4} + \alpha \left\{ 1 + \frac{(1 + k^n)^2}{4} \right\} \right] + \sqrt{\{1 - \alpha^2(1 + k^n)^2\}} R^{n-2},
\]
from which, the inequality (1.32) follows, on finding the maximum value of the function
\[
\phi(\alpha) = \alpha \left\{ 1 + \frac{(1 + k^n)^2}{4} \right\} + \sqrt{\{1 - \alpha^2(1 + k^n)^2\}},
\]
on the interval \([0, 1/(1 + k^n)]\). This completes the proof of Theorem 1.4.

REFERENCES