THE DEMEYER-KANZAKI GALOIS EXTENSION AND ITS
SKEW GROUP RING

GEORGE SZETO AND LIANYONG XUE
Bradley University, USA

Abstract. Several characterizations are given for a ring B being a DeMeyer-Kanzaki Galois extension with Galois group G in terms of the skew group ring $B \rtimes G$. Consequently, the results of S. Ikehata on commutative Galois algebras are generalized.

1. Introduction

In [5], the class of commutative Galois algebras B with Galois group G was characterized in terms of the Azumaya skew group ring $B \rtimes G$ over B^G and the H-separable skew group ring $B \rtimes G$ of B respectively, where $B^G = \{a \in B \mid g(a) = a \text{ for all } g \in G\}$. In [3], a broader class of DeMeyer-Kanzaki Galois extensions B with Galois group G was investigated where B is called a DeMeyer-Kanzaki Galois extension with Galois group G if B is an Azumaya algebra over its center C and C is a Galois algebra with Galois group induced by and isomorphic with G. Further generalizations to Azumaya Galois extensions and to Hopf Azumaya Galois extensions were also given (see [2, 7]). The purpose of the present paper is to generalize the characterizations of a commutative Galois algebra B in terms of the skew group ring $B \rtimes G$ as given by S. Ikehata (see [5]). We shall show the following equivalent statements:

(1) B is a DeMeyer-Kanzaki Galois extension of B^G with Galois group G.

2000 Mathematics Subject Classification. 16S35, 16W20.

Key words and phrases. Galois extensions, DeMeyer-Kanzaki Galois extensions, commutative Galois algebras, Azumaya algebras, H-separable extensions, skew group rings.

This work was done under the support of a Caterpillar Fellowship at Bradley University. The authors would like to thank Caterpillar Inc. for the support.

263
(2) The skew group ring $B \ast G$ is an Azumaya C^G-algebra and C is a maximal commutative separable subalgebra of $V_{B \ast G}(B^G)$, the commutator subring of B^G in $B \ast G$, over C^G.

(3) The skew group ring $B \ast G$ is an H-separable extension of B (= the Harata separable), B is a separable algebra over C^G, and $J_g = \{ b \in B \mid bx = g(x)b \text{ for all } x \in B \}$ for each $g \neq 1$ in G where $J_g = \{ b \in B \mid bx = g(x)b \text{ for all } x \in B \}$ for each $g \in G$.

(4) B is a separable C^G-algebra, C^G is a direct summand of C as a C^G-submodule, and $C \otimes_{C^G} (B \ast G) \cong M_n(B)$ where $M_n(B)$ is the matrix ring of order n over B and n is the order of G.

(5) B is a separable C^G-algebra, C^G is a direct summand of C as a C^G-submodule, and $C \otimes_{C^G} V_{B \ast G}(B^G) \cong M_n(C)$ where $M_n(C)$ is the matrix ring of order n over C and n is the order of G.

2. Basic definitions and notations

Throughout, B will represent a ring with 1, C the center of B, G a finite automorphism group of B of order n for some integer n, B^G the set of elements fixed under each element in G, and $J_g = \{ b \in B \mid bx = g(x)b \text{ for all } x \in B \}$ for each $g \in G$. For a subring A of B with the same identity 1, we denote the commutator subring of A in B by $V_B(A)$. Following the definitions given in [10], we call B a separable extension of A if there exist \{a_i, b_i \in B, i = 1, 2, \ldots, m\} such that $\sum a_i b_i = 1$, and $\sum b a_i \otimes b_i = \sum a_i \otimes b_i b$ for all $b \in B$ where \otimes is over A. An Azumaya algebra is a separable extension of its center. A ring B is called an H-separable extension of A if $B \otimes_A B$ is isomorphic to a direct summand of a finite direct sum of B as a B-bimodule. B is called a Galois extension of B^G with Galois group G if there exist elements \{a_i, b_i \in B, i = 1, 2, \ldots, m\} such that $\sum_{i=1}^m a_i g(b_i) = \delta_{i,g}$ for each $g \in G$. A Galois extension B with Galois group G is called an Azumaya Galois extension if B^G is an Azumaya algebra over C^G (see [2, 7]), and a DeMeyer-Kanzaki Galois extension if B is an Azumaya algebra over C which is a Galois algebra over C^G with Galois group induced by and isomorphic with G (see [3, 6]).

Let P be a finitely generated and projective module over a commutative ring R. Then for a prime ideal p of R, $P_p := P \otimes_R R_p$ is a free module over $R_p = (\text{the local ring of } R \text{ at } p)$, and the rank of P over R_p is the number of copies of R_p in P_p, that is, $\text{rank}_{R_p}(P_p) = m$ for some integer m. It is known that the rank$_R(P)$ is a continuous function (rank$_R(P)(p) = m$) from Spec(R) to the set of nonnegative integers with the discrete topology (see [4, Corollary 4.11, page 31]). We shall use the rank$_R(P)$-function for a finitely generated and projective module P over a commutative ring R.
3. Characterizations

In this section, keeping all notations as given in section 2, we shall generalize the characterizations of a commutative Galois algebra as given by S. Ikehata (see [5]) to a DeMeyer-Kanzaki Galois extension B with Galois group G in terms of the skew group ring $B \ast G$. We begin with an equivalent condition for a commutative Galois algebra C with Galois group G.

Theorem 3.1. Let C be a commutative ring with a finite automorphism group G. Then, C is a commutative Galois algebra with Galois group G if and only if C^G is a direct summand of C as a C^G-submodule, and $C \otimes_{C^G} (C \ast G) \cong M_n(C)$.

Proof. (\Longrightarrow) By Corollary 1.3 on page 85 in [4], C^G is a direct summand of C as a C^G-submodule, and that $C \otimes_{C^G} (C \ast G) \cong M_n(C)$ is a consequence of Theorem 2 in [5].

(\Longleftarrow) Since $C \otimes_{C^G} (C \ast G) \cong M_n(C)$, $C \otimes_{C^G} (C \ast G)$ is an Azumaya algebra over C. But C^G is a direct summand of C as a C^G-submodule by hypothesis, so $C \ast G$ is an Azumaya C^G-algebra (see [4, Corollary 1.10, page 45]). Hence C is a commutative Galois algebra with Galois group G (see [5, Theorem 2]).

Next we characterize a DeMeyer-Kanzaki Galois extension B in terms of the skew group ring $B \ast G$.

Theorem 3.2. The following statements are equivalent:

1. B is a DeMeyer-Kanzaki Galois extension of B^G with Galois group G.
2. The skew group ring $B \ast G$ is an Azumaya C^G-algebra and C is a maximal commutative separable subalgebra of $V_{B \ast G}(B^G)$ over C^G.
3. The skew group ring $B \ast G$ is an H-separable extension of B, B is a separable algebra over C^G, and $J_g = \{0\}$ for each $g \neq 1$ in G.

Proof. $(1) \implies (2)$ Since B is a DeMeyer-Kanzaki Galois extension of B^G with Galois group G, $B \cong B^G \otimes_{C^G} C$ such that B^G is an Azumaya C^G-algebra (see [3, Lemma 2]). Hence B is an Azumaya Galois extension with Galois group G, and so $B \ast G$ is an Azumaya C^G-algebra (see [2, Theorem 1]). Moreover, C is a commutative Galois algebra with Galois group G by hypothesis, so C is a maximal commutative separable subalgebra of $C \ast G$ over C^G (see [5, Theorem 2]). But $V_{B \ast G}(B^G) = V_B(B^G) \ast G = C \ast G$, so C is a maximal commutative separable subalgebra of $V_{B \ast G}(B^G)$ over C^G.

$(2) \implies (1)$ Since $B \ast G$ is an Azumaya C^G-algebra, B is an Azumaya Galois extension with Galois group G (see [2, Theorem 1]). Hence $V_B(B^G)$ is a Galois algebra over C^G with Galois group G (see [1, Theorem 2]). Thus $V_B(B^G) \ast G \cong \text{Hom}_{C^G}(V_B(B^G), V_B(B^G))$. But C is a maximal commutative separable subalgebra of $V_B(B^G) \ast G (= V_{B \ast G}(B^G))$ over C^G by hypothesis,
so by the proof of Theorem 5.5 on page 64 in [4],

\[C \otimes_{C^G} (V_B(B^G) \star G) \cong \text{Hom}_C(V_B(B^G) \star G, V_B(B^G) \star G). \]

Then we have

\[
\begin{align*}
\text{Hom}_C(V_B(B^G) \star G, V_B(B^G) \star G) & \cong \\
& \cong C \otimes_{C^G} (V_B(B^G) \star G) \\
& \cong C \otimes_{C^G} \text{Hom}_{C^G}(V_B(B^G), V_B(B^G)) \\
& \cong \text{Hom}_C(C \otimes_{C^G} V_B(B^G), C \otimes_{C^G} V_B(B^G)).
\end{align*}
\]

Thus \(V_B(B^G) \star G \cong (C \otimes_{C^G} V_B(B^G)) \otimes_C P \) as a \(C \)-module for some finitely generated and projective \(C \)-module \(P \) such that \(\text{rank}_C(P) = 1 \). Since the rank of a Galois algebra is the order of the Galois group, applying the rank function on both sides of the above isomorphism, we have that

\[
\text{rank}_C(V_B(B^G)) \cdot n = \text{rank}_C(V_B(B^G) \star G) = \text{rank}_C(C \otimes_{C^G} V_B(B^G)) = \text{rank}_{C^G}(V_B(B^G)) = n.
\]

This implies that \(\text{rank}_C(V_B(B^G)) = 1 \). Noting that \(V_B(B^G) \) is an Azumaya \(C \)-algebra and a finitely generated projective \(C^G \)-module, we conclude that \(V_B(B^G) = C \); and so \(C \) is a Galois algebra over \(C^G \) with Galois group \(G \). Consequently, \(B \) is a DeMeyer-Kanzaki Galois extension of \(B^G \) with Galois group \(G \) because \(B \) is also an Azumaya \(C \)-algebra.

(1) \(\implies \) (3) Since \(B \) is a DeMeyer-Kanzaki Galois extension of \(B^G \) with Galois group \(G \), \(B \cong B^G \otimes_{C^G} C \) such that \(B^G \) is an Azumaya \(C^G \)-algebra and \(C \) is a Galois algebra with Galois group induced by and isomorphic with \(G \) (see [3, Lemma 2]). Hence \(B \star G \) is an \(H \)-separable extension of \(B \) (see [9, Lemma 3.1 and Theorem 3.2]) and \(B \) is a separable algebra over \(C^G \). Noting that \(V_B(B^G) = C = J_1 \) and that \(V_B(B^G) = \oplus_{g \in G} J_g \) (see [6, Proposition 1]), we conclude that \(J_g = \{0\} \) for each \(g \neq 1 \) in \(G \).

(3) \(\implies \) (1) Since \(B \) is a separable algebra over \(C^G \), \(B \) is an Azumaya algebra over \(C \). Next we claim that \(C \) is a Galois algebra with Galois group induced by and isomorphic with \(G \). In fact, since \(B \ast G \) is an \(H \)-separable extension of \(B \) by hypothesis and \(B \) is a direct summand of \(B \ast G \) as a left (or right) \(B \)-module, \(V_{B \ast G}(V_{B \ast G}(B)) = B \) (see [8, Proposition 1.2]). This implies that the center of \(B \ast G \) is \(C^G \). Moreover, \(B \) is a separable algebra over \(C^G \), so \(B \ast G \) is a separable algebra over \(C^G \) by the transitivity of separable extensions. Thus \(B \ast G \) is an Azumaya \(C^G \)-algebra; and so \(B \) is an Azumaya Galois extension with Galois group \(G \) (see [2, Theorem 1]). Therefore \(V_B(B^G) \) is a Galois algebra over \(C^G \) with Galois group induced by and isomorphic with \(G \) (see [1, Theorem 2]). But then, by Proposition 1 in [6], \(V_B(B^G) = \oplus_{g \in G} J_g \). Since \(J_g = \{0\} \) for each \(g \neq 1 \) in \(G \) by hypothesis, so \(V_B(B^G) = J_1 = C \). This proves that \(C \) is a Galois algebra with Galois group induced by and isomorphic with \(G \). Thus statement (1) holds.
By generalizing Theorem 3.1, we obtain another two characterizations of a DeMeyer-Kanzaki Galois extension.

Theorem 3.3. The following statements are equivalent:

1. \(B \) is a DeMeyer-Kanzaki Galois extension of \(B^G \) with Galois group \(G \).
2. \(B \) is a separable \(C^G \)-algebra, \(C^G \) is a direct summand of \(C \) as a \(C^G \)-submodule, and \(C \otimes_{C^G} (B \ast G) \cong M_n(B) \).
3. \(B \) is a separable \(C^G \)-algebra, \(C^G \) is a direct summand of \(C \) as a \(C^G \)-submodule, and \(C \otimes_{C^G} V_{B \ast G}(B^G) \cong M_n(C) \).

Proof. (1) \(\implies \) (2) Since \(B \) is a DeMeyer-Kanzaki Galois extension of \(B^G \) with Galois group \(G \), \(B \cong B^G \otimes_{C^G} C \) where \(B^G \) is an Azumaya \(C^G \)-algebra and \(C \) is a Galois algebra with Galois group induced by and isomorphic with \(G \) (see [3, Lemma 2]). Hence \(C^G \) is a direct summand of \(C \) as a \(C^G \)-submodule (see [4, Corollary 1.3, page 85]), and \(V_{B \ast G}(B^G) = C \ast G \) such that \(C \otimes_{C^G} (C \ast G) \cong M_n(C) \) (see [5, Theorem 2]); and so

\[
C \otimes_{C^G} (B \ast G) \cong C \otimes_{C^G} (B^G \otimes_{C^G} C \ast G) \cong C \otimes_{C^G} (C \ast G) \otimes_{C^G} B^G \\
\cong M_n(C) \otimes_{C^G} B^G \cong M_n(B).
\]

(2) \(\implies \) (1) Since \(B \) is a separable \(C^G \)-algebra, \(B \) is an Azumaya algebra over \(C \). Moreover, \(M_n(B) \cong B \otimes_C M_n(C) \), so \(M_n(B) \) is a Galois algebra over \(C \). By hypothesis, \(C \otimes_{C^G} (B \ast G) \cong M_n(B) \), so \(C \otimes_{C^G} (B \ast G) \) is an Azumaya algebra over \(C \). But \(C \) contains \(C^G \) as a direct summand as a \(C^G \)-submodule by hypothesis, so \(B \ast G \) is an Azumaya \(C^G \)-algebra (see [4, Corollary 1.10, page 45]). Hence \(B \) is an Azumaya Galois extension with Galois group \(G \) (see [2, Theorem 1]). Thus \(V_B(B^G) \) is a Galois algebra over \(C^G \) with Galois group \(G \) (see [1, Theorem 2]). Therefore both \(B \) and \(B^G \cdot V_B(B^G) \) are Galois extensions of \(B^G \) with Galois group \(G \) such that \(B^G \cdot V_B(B^G) \subset B \). This implies that \(B = B^G \cdot V_B(B^G) \) such that \(V_B(B^G) \) is a Galois algebra over \(C^G \) with Galois group \(G \); and so \(V_B(B^G) \) an Azumaya \(C \)-algebra and both \(V_B(B^G) \) and \(C \) are finitely generated projective modules over \(C^G \).

Next we claim that \(V_B(B^G) = C \). In fact, since \(C \otimes_{C^G} (B \ast G) \cong M_n(B) \), rank_{C^G}(B \ast G) = rank_C(M_n(B)). This implies that rank_{C^G}(C) \cdot rank_C(B) \cdot n = rank_C(M_n(B)). But V_B(B^G) is a Galois algebra over C^G with Galois group G, so rank_{C^G}(V_B(B^G)) = n. Therefore rank_{C^G}(V_B(B^G)) = n = rank_C(M_n(B)). Noting that V_B(B^G) is an Azumaya C-algebra and a finitely generated projective C^G-module, we conclude that V_B(B^G) = C; and so C is a Galois algebra with Galois group induced by and isomorphic with G. Consequently, \(B \) is a DeMeyer-Kanzaki Galois extension with Galois group \(G \).

(1) \(\iff \) (3) The proof is similar to (1) \(\iff \) (2). \(\square \)
REFERENCES

G. Szeto
Department of Mathematics
Bradley University
Peoria, Illinois 61625
USA
E-mail: szeto@hilltop.bradley.edu

L. Xue
Department of Mathematics
Bradley University
Peoria, Illinois 61625
USA
E-mail: lxue@hilltop.bradley.edu

Received: 06.09.2002.