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FUZZY P -SPACES GAMES AND METACOMPACTNESS
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Abstract. Fuzzy P -spaces are introduced and a characterization for
the same in terms of a particular type of fuzzy topological game is obtained.
Further some applications of fuzzy P -spaces in product α-metacompact
spaces are also investigated.

1. Introduction

The concept of P -spaces was introduced by K. Morita and a characteri-
sation for the same was given by Telgarsky in [10]. Just like the applications
of P -spaces in general topology, fuzzy P -spaces help the study of covering
properties in fuzzy topological spaces. In [8] and [9] the author introduced
metacompactness for [0, 1] and L-Fuzzy Topological Spaces respectively and
in [8] it is shown that the product of two α-metacompact spaces need not be
α-metacompact. But if we impose some conditions on one of these spaces, we
can make the product α-metacompact. This is done in terms of fuzzy topo-
logical games and fuzzy P -spaces and this was the main motivation behind
the study of fuzzy P -spaces. For this reason, we generalize the concept of
P -spaces to fuzzy topological spaces (fts) and a characterization for the same
in terms of some particular kind of fuzzy topological game is obtained. Some
basic definitions and results regarding fuzzy topological games are given in [6]
by the author.

2. Basic definitions and results

In this section we collect the basic definitions and results regarding meta-
compact spaces, fuzzy topological games and fuzzy P -spaces.
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Definition 2.1. [1] Let (X,T ) be a fts and α ∈ [0, 1). A collection U of
fuzzy sets is called an α-shading (resp. (α∗-shading) of X if for each x ∈ X,
there exists g ∈ U with g(x) > α (resp. g(x) ≥ α).

Definition 2.2. [3] A family {as : s ∈ S} of fuzzy sets in a fts (X,T ) is
said to be point finite if for each x in X, as(x) = 0 for all but at most finitely
many s in S (or equivalently as as(x) > 0 for at most finitely many s in S).
Where S is an indexing set.

Definition 2.3. [3] Let (X,T ) be a fts and α ∈ [0, 1). Let U and V
be any two α-shadings (resp. α∗-shading) of X. Then U is a refinement of
V(U < V) if for each g ∈ U there is an h ∈ V such that g ≤ h. Also a
refinement {bt : t ∈ T} of {as : s ∈ S} is said to be precise if T = S and
as ≤ bs for each s ∈ S. Where S and T are indexing sets.

Definition 2.4. [1] A fuzzy topological space (X,T ) is α-compact (resp.
countably α-compact) if every α-shading of X by open fuzzy sets has a finite
(resp. countable) α-sub shading.

Definition 2.5. [8] A fuzzy topological space (X,T ) is said to be α -
metacompact if each α-shading (resp. (α∗- shading) of X by open fuzzy sets
has a point finite α-shading refinement by open fuzzy sets.

Definition 2.6. [2] A fuzzy topological space (X,T ) is said to be fuzzy
regular if and only if for every fuzzy point p in X, and for every open fuzzy
set U containing p, there exists an open fuzzy set W such that p ≤ W ≤ cl
W ≤ U . Where p ≤ W means that p(x) ≤ W (x), x being the support of the
fuzzy point p.

Definition 2.7. [12] Let {Xi}i∈I be a family of fuzzy topological spaces.
Let X =

∏
i∈I Xi be the usual Cartesian product and let Pi be the projection

from X on to Xi for each i ∈ I. The set X with fuzzy topology having the
family F = {P−1

i (B) : B ∈ Ti, i ∈ I} as a subbase is called the product fuzzy
topological space.

Definition 2.8. Let X × Y be a fuzzy product space. A subset of the
form R = R1 × R2 where R1 and R2 are projections of R in to X and Y
respectively is called a fuzzy rectangle in X × Y .

As a generalization of Topological Game G(K, X) introduced by Telgar-
sky [10], the author [6] introduced the Fuzzy Topological Game G′(K, X) in
the following way.

Definition 2.9. [6] Let K be a non empty family of fuzzy topological
spaces, where all spaces are assumed to be T1 (fuzzy singletons are fuzzy
closed). Ix denote the family of all fuzzy closed subsets of X. Also X ∈ K
implies Ix ⊆ K. Let X ∈ K. Then the fuzzy topological game G′(K, X) is
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defined as follows. There are two players Player I and Player II. They alter-
natively choose consecutive terms of the sequence (E1, F1, E2, F2, . . .) of fuzzy
subsets of X. When each player chooses his term he knows K, X and their
previous choices. A sequence (E1, F1, E2, F2, · · · ) is a play for G′(K, X) if it
satisfies the following conditions for each n ≥ 1.

1. En is a choice of Player I
2. Fn is a choice of Player II
3. En ∈ Ix ∩K
4. Fn ∈ Ix
5. En ∨ Fn < Fn−1 where F0 = X
6. En ∧ Fn = 0

Player I wins the play if infn≥1 Fn = 0. Otherwise Player II wins the
Game. A finite sequence (E1, F1, E2, F2, . . . , Em, Fm) is admissible if it sat-
isfies conditions (1) – (6) for each n ≤ m.

Definition 2.10. Let S′ be a crisp function defined as follows

(2.1) S′ : ∪(Ix)n into−−→ Ix ∩K n > 1

Let S1 = {X}, S2 = {F ∈ Ix : (S′(X), F ) is admissible for G′(K, X)}. Con-
tinuing like this inductively we get Sn = {(F1, F2, F3, . . . , Fn) : (E1, F1, E2, F2,
. . . En, Fn) is admissible for G(K, X) where F0 = X and Ei = S′(E1, F1,
E2, F2, . . . Fi−1) for each i < n}. Then the restriction S of S ′ to ∪n>1Sn is
called a fuzzy strategy for Player I in G′(K, X). If Player I wins every play
(E1, F1, E2, F2, . . . En, Fn, . . .) such that En = S(F1, F2, . . . , Fn−1), then we
say that S is a fuzzy winning strategy.

Definition 2.11. S : Ix into−−→ Ix ∩ K is called a fuzzy stationary

strategy for Player I in G′(K, X) if S(F ) < F for each F ∈ Ix. We
say that S is a fuzzy stationary winning strategy if he wins every play
(S(X), F1, S(F1), F2, . . .)

Definition 2.12. A collection {Ui : i = 1, 2, 3, . . .} of fuzzy subsets of a
set X is called an increasing family if Ui < Ui+1 for every i = 1, 2, 3, . . ..

As a generalization of P -spaces defined by K. Morita, Fuzzy P -spaces are
defined as follows.

Definition 2.13. A fts X is said to be a Pα-space if for every increasing
family U = {U(a1, a2, . . . , ai)/a1, a2, . . . , ai ∈ A, i = 1, 2, 3, . . .} of open fuzzy
sets in X, there exists a precise refinement

F = {F (a1, a2, . . . , ai)/a1, a2, . . . , ai ∈ A, i = 1, 2, 3 . . .}
by closed fuzzy sets satisfying the condition that if U is an α-shading of X,
then F is also an α-shading of X where α ∈ [0, 1).
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Theorem 2.14. A fts X is a Pα-space if and only if there exists a crisp
function

p : ∩Gn → F

such that

1. If (G1, G2, G3, . . . , Gn) ∈ Gn, n ∈ N then p(G1, G2, G3, . . .) <
sup{Gk : 1 ≤ k ≤ n}

2. If {G1, G2, G3, . . .} is an α-shading of X, then so is {p(G1), p(G1, G2),
p(G1, G2, G3), . . .}. Where G and F represent the family of all open
and closed fuzzy subsets of X respectively.

Proof. Let X be a Pα-space. Let (G1, G2, G3, . . .Gn) ∈ Gn and take
ai = Gi in the definition of Pα-spaces and define

U(a1, a2, . . . an) = U(G1, G2, G3, . . . Gn) = sup{Gi : 1 ≤ i ≤ n}.
Then clearly U(G1, G2, G3, . . .Gn) < U(G1, G2, G3, . . . Gn+1). Then from the
definition of Pα-spaces the remaining follows.

Conversely let U = {U(a1, a2, . . . ai) ai ∈ A, i = 1, 2, 3 . . .} be an
increasing family of open fuzzy sets in X . Now corresponding to each
U(a1, a2, a3, . . . ai) in U, we define

F (a1, a2, . . . ai) = p(U(a1), U(a1, a2, )U(a1, a2, a3), . . . U(a1, a2, a3, . . . an))

< sup{U(a1, a2, . . . ai) : 1 ≤ i ≤ n}
= U(a1, a2, . . . an) since U is increasing.

Now if U is an α-shading of X , for every x ∈ X , there exists a U(a1, a2,
a3, . . . ak) such that U(a1, a2, a3, . . . ak)(x) > α. Now clearly by definition, we
have F (a1, a2, a3, . . . ak)(x) > α and hence {F (a1, a2, a3, . . . ai) : ai ∈ A, i =
1, 2, 3, . . .} is an α-shading of X . Hence X is a Pα-space.

From the definition of Pα-Spaces and Theorem 2.14, next theorem follows
clearly.

Theorem 2.15. A fuzzy topological space X is a Pα-space if and only
if there is a crisp function p defined from the family of all increasing finite
sequences of open fuzzy sets G to the collection of all closed fuzzy sets F
with p(G1, G2, G3, . . .Gn) < Gn where (G1, G2, G3, . . . Gn) ∈ Gn and if Gn <
Gn+1 for each n ∈ N and if {G1, G2, G3 . . . Gn} is an α-shading then so is
{p(G1), p(G1, G2), p(G1, G2, G3), . . .}.

Theorem 2.16. A fts X is a Pα-space if and only if there exists a crisp
function p : ∪(F)n → F such that

i) For each (F0, F1, . . . Fn) ∈ (F)n , n ≥ 0

p(F0, F1, . . . Fn) ∧ inf
i≤n

Fi = 0.
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ii) For each (F0, F1, . . .) ∈ (F)∞ with infn≥1 Fn = 0, the collection
{p(F0, F1, . . . Fn) : n ≥ 0} is an α-shading of X.

Proof. Let (F1, . . . Fn) ∈ (F)n. Then F c
1 , F c

1 ∧ F c
2 , F c

1 ∧ F c
2 ∧ F c

3 , . . .
is an increasing family of open sets. Take U(a1) = F c

1 , U(a1, a2) = F c
1 ∧

F c
2 . . . U(a1, a2 . . . , an) = F c

1 ∧ F c
2 ∧ . . . ∧ F c

n. Now since X is a Pα-space,
there exists a collection {F (a1), F (a1, a2) . . .} such that F (a1, a2, . . . ai) <
U(a1, a2, . . . ai) for each i = 1, 2, 3, . . .

Now define

p(F1, . . . Fn) =

{
0, if inf i≤n Fi 6= 0,

F (a1, a2, . . . an), otherwise.

Clearly p has properties (i) and (ii).
Conversely let (G1, G2, . . . Gn) ∈ Gn. Then F1 = Gc

1, F2 = Gc
2, . . . Fn =

Gc
n are all closed and hence there exists a function p′ : (F)n → F such that

p′(F1, . . . Fn) ∧ inf
i≤n

Fi = 0.

Take p(G1, G2, . . .Gn) = p′(F1, . . . Fn) in Theorem 2.14, then

p(G1, G2, . . . Gn) ∧ inf
i≤n

Fi = 0.

Therefore

p(G1, G2, . . . Gn) < (inf
i≤n

F c
i )

= sup
i≤n

F c
i

= sup
i≤n

Gi

and hence p satisfies (i) and (ii) of Theorem 2.14 and hence X is a Pα-space.

Theorem 2.17. If a fuzzy topological space X has a σ- closure preserving
fuzzy closed α-shading by countably α-compact sets, then X is a Pα-space.

Proof. Let F = ∪{Fn : n ∈ N} be an α-shading of X such that
each Fn is closure preserving and every Fn(Fn is countably α-compact. Let
{U(a1, a2, . . . an) : ai ∈ A, i = 1, 2, 3, . . .} be an increasing sequence of open
fuzzy sets. Now corresponding to each U(a1, a2, . . . an) we define

F (a1, a2, . . . an) = sup{F : F < U(a1, a2, . . . an), F ∈ ∪n
i=1Fi}

Since ∪n
i=1Fi is closure preserving it follows that F (a1, a2, . . . an) is fuzzy

closed and F (a1, a2, . . . an) < U(a1, a2, . . . an) for each n ≥ 1.
Again let {U(a1, a2, . . . ai) : i = 1, 2, 3 . . .} be an α-shading of X . Let

x ∈ X . Now since F is an α-shading of X , there exists an F0 ∈ F such that
F0(x) > α. Let F0 ∈ Fk for some k. Since F0 is countably α-compact, and
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U(a1, a2, . . .)’s are increasing we can find out some j ∈ N such that j ≥ k and
F0 < U(a1, a2, . . . , aj).

Now

F (a1, a2, . . . , aj)(x) = sup
F<U(a1,...aj)

{F (x) : F ∈ ∪j
i=1Fi} ≥ F0(x) > α.

Thus {F (a1, a2, . . . , aj) : ai ∈ A, i = 1, 2, 3 . . .} is also an α-shading of X .
This completes the proof.

3. A characterisation of Pα-spaces using the game Gα(X)

In this section we describe a game associated with Pα-spaces. HereGα(X)
denote the following infinite positional fuzzy topological game. Let G and F
denote the collection of all open (resp. closed) fuzzy subsets of an fts X .
There are two players Player I and Player II. Players alternatively choose
fuzzy subsets of X so that each player knows X and first k elements when he
is choosing the (k + 1)th element.

We say that a sequence (G1, F1, . . . Gn, Fn) is a play for Gα(X) if for each
n ≥ 1, we have

i. Gn ∈ G is a choice of Player I.
ii. Fn ∈ F and Fn < sup{Gk : 1 ≤ k ≤ n} is a choice of Player II.

Player I wins the play (G1, F1, G2, F2 . . .) if {Gn : n ∈ N} is an α-shading
of X and {Fn : n ∈ N} is not. And Player II wins if {Fn : n ∈ N} or both
{Gn : n ∈ N} and {Fn : n ∈ N} are α-shadings of X .

A strategy for Player I is a crisp function s : {0} ∪∞n=1 Fn → G and that
of Player II is t: Gn → F such that t(G1, G2, . . . Gn) < sup{Gi : 1 ≤ i ≤ n}
for each (G1, G2, . . . Gn) ∈ Gn and n ≥ 1.

Now clearly for each pair of strategies (s, t) there exists a unique Play
(G1, F1, G2, F2, . . .) of Gα(X) defined as follows.

Take G1 = s(0), F1 = t(G1), G2 = s(F1), F2 = t(G1, G2) and so on.
A strategy s (resp. t) is winning for Player I (resp. Player II) if he wins

every play of Gα(X) using it.
From Theorem 2.17 and definition of Gα(X), we get the following game

theoretic characterization of Pα-spaces.

Theorem 3.1. A fuzzy topological space X is a Pα-space if and only if
Player II has a winning strategy in Gα(X).

4. Applications in metacompact spaces

Theorem 4.1. Let X be a fuzzy regular α-metacompact Pα-space and
Player I has a winning strategy in G′(DC, X), then X×Y is α-metacompact
for every α-metacompact space Y . Where DC denote the class of all fts
which have a discrete fuzzy closed α-shading by members of C. Where C is
the collection of all α-compact spaces.
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Proof. We use the following notations. If a = (a1, a2 . . . , an) then a ⊕
ζ = (a1, a2 . . . an, ζ), a/k = (a1, a2, . . . ak) and a− = a/n − 1. Also ′ and ′′

represents the projections on X and Y respectively.
Given that Player I has a fuzzy winning strategy in G′(DC, X). Therefore

by Theorem 2.4 of [8] it follows that Player I has a stationary winning strategy
and let this be s. Let p be a function defined as in 2.16. We will prove that
every α-shading G of X × Y by open fuzzy sets has a point finite α-shading
refinement by open fuzzy rectangles.

Let U0 = {0}, A0 = {0} and R(0) = H(0) = X × Y . For each n ≥ 1,
we shall construct a collection Un of open fuzzy rectangles and a collection
{{R(a), H(a)} : a = (a1, a2, . . . an) ∈ An} of pairs consisting of fuzzy closed
× open rectangle R(a) and open rectangle H(a) satisfying the following con-
ditions.

For each n ≥ 1

(i) Un is a point finite collection in X × Y .
(ii) For every U × V (Un, there is a G ∈ G such that U × V < G.
(iii) {H(a) : a ∈ An} is point finite in X × Y .
(iv) sup{U : U(Un} < sup{H(a) : a ∈ An−1}.
(v) a− ∈ An−1.
(vi) R(a) < R(a−) and R(a) < H(a) < H(a−).
(vii) S(R(a−)′) ∧ R(a)′ = 0.
(viii) R(a)\ sup{U : U ∈ Un+1} < sup{R(a+ ζ) ; {a+ ζ) ∈ An+1}.
(ix) p(R(a/1)′, . . . , R(a/n− 1), R(a)′) ∧H(a)′′ = 0.

Assume that for each i ≤ n, the collections Ui and {R(a), H(a); a ∈ Ai}
have been constructed.

Now for any a ∈ An, let {Cγ : γ ∈ Γ(a)} be a discrete collection
of α-compact sets whose supremum is S(R(a)′). From the fact that X is
fuzzy regular α-metacompact it follows that there exists point finite col-
lections {Wγ : γ ∈ Γ(a)} and {Oγ : Γ(a)} of open fuzzy sets such that
Cγ < Wγ < clWγ < Oγ < H(a)| sup{Cβ : β ∈ Γ(a), β 6= γ} for each
γ ∈ Γ(a). Now Y is α-metacompact and R′′(a) is open in Y . Now R′′(a) is
α-metacompact (Since α-metacompact is hereditary with respect to open sub-
sets) and hence for each γ ∈ Γ(a), there exists a collection Uγ = Uδ,j × Vδ : j
j = 1, 2, 3 . . .mδ and δ ∈ ∆(γ)} such that

i) Cγ < Uδ = supi≤δ Uδ,j < Wδ for each δ ∈ ∆(γ).
ii) Each Uδ,j × Vδ is contained in some G ∈ G.
iii) {Vδ : δ ∈ ∆(γ)} is point finite α-shading of R(a)′′.

Set Un+1 = ∪{Uγ : Γ(a) and a ∈ An} and

An+1 = {a⊕ δ : δ ∈ ∆(γ), γ ∈ Γ(a), a ∈ An} ∪ {a+ θ : a ∈ An}

Take any a+ ζ ∈ An+1. Then observe that a/i ∈ Ai for all i ∈ n.
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If ζ = δ for some δ ∈ ∆(γ) and, γ ∈ Γ(a) put R(a ⊕ δ) = [(clWγ\Vδ) ∧
R(a)′]× Vδ and H(a⊕ δ) = Oγ\p(R(a/1)′, . . . R(a/n)′, R(a+ θ)′)× Vδ .

If ζ = θ, put R(a+ θ) = R(a)‘\ supγ∈Γ(a)W ×R(a)′′ and

H(a+ θ) = H(a)′\p(R(a/1)′, . . . R(a/n)′, R(a+ θ)′)θH(a)′′

Then clearly Un+1 and {R(a), H(a) : a ∈ An+1} satisfies conditions (i) – (ix).
Now take U = ∪n≥1Un. Now it can be shown that U is an α-shading of

X and we will prove that U is also point finite. Also by (ii) U is a collection
of open fuzzy rectangles in X × Y and any U × V ∈ U is contained in some
G ∈ G.

Proceeding in a similar manner as in the proof of Theorem 2.4 in [7], we
get if {an} is a sequence such that an ∈ An and (an)− = an−1 for each n ≥ 1
where a0 = 0, then

(4.2) inf
n≥1

H(an)′ = 0.

Again we claim that infn≥1(supHn) = 0. Where Hn = {H(a) : a ∈ An}. For
if possible let there be an z0 such that infn≥1(sup Hn)(z0) > η = for some
η > 0. TakeAn(z0) = {a ∈ An : H(a)(z0) ≥ η}. By (iii) we get An(z0) is finite
and by (v) and (vi) a ∈ An(z0)⇒ a− ∈ An−1(z0). Then by Konings Lemma,
there exists (β1, β2, β3, . . .) such that an ∈ (β1, β2, . . . βn) ∈ An(z0) for each
n ≥ 1. Then H(an)(z0) ≥ η for each n ≥ 1. Hence infn≥1H(an)(z0) ≥ η.
This is a contradiction to our claim.

Let Z ∈ X × Y then by claim above we can find an m ≥ 1 such that
supHm(z) = 0. Now from (v) and (vi) it follows that supHn+1 < supHn

for each n ≥ 1. Since supHn(z) = 0 for each n ≥ m, from (iv) we get that
supUn(z) = 0 whenever n > m. Hence it follows from (i) that U is point
finite in X × Y . This completes the proof.

Theorem 4.2. [5] If a fts X has a σ-closure preserving α-shading by fuzzy
closed α-compact sets, then Player I has fuzzy winning strategy in G′(DK, X).

From Theorems 2.17, 4.1, and 4.2 next corollary follows easily.

Corollary 4.3. If X is a fuzzy regular α-metacompact space with a α-
closure preserving α-shading by α-compact sets, then X×Y is α-metacompact
for every α-metacompact space Y .
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