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Abstract. Let B be a ring with 1, C the center of B, and G an
automorphism group of B of order n for some integer n. Assume B is
a Galois algebra over R with Galois group G. For a nonzero idempotent
e ∈ R, if the rank of Be over Ce is defined and equal to the order of H|Be

where H = {g ∈ G | g(c) = c for each c ∈ C}, then Be is a central Galois
algebra with Galois group H|Be. This generalizes the F. R. DeMeyer and
T. Kanzaki theorems for Galois algebras. Moreover, a structure theorem for
a Galois algebra is given in terms of the concept of the rank of a projective
module.

1. Introduction

Galois theory for rings has been intensively investigated since 1960.
Recently, several types of Galois extensions of noncommutative rings were
studied ([5],[7],[8],[9]). Let B be a Galois algebra over a commutative ring R
with Galois group G. F. R. DeMeyer (see [2]) and T. Kanzaki (see [4]) gave
different conditions under which B is a central Galois algebra as follows:
(1) (see [2, Lemma 4]) Assume B is a Galois R-algebra with Galois group
G. If C (= the center of B) contains no idempotents except 0 and 1, then
C = BH where H = {g ∈ G | g(c) = c for each c ∈ C}.
(2) (see [4, Proposition 3]) Let B be a Galois algebra over R with Galois
group G, C the center of B, and H = {g ∈ G | g(c) = c for each c ∈ C}.
Then B is a central Galois algebra over C with Galois group H if and only if
Jg = {0} for each g 6∈ H where Jg = {b ∈ B | bx = g(x)b for all x ∈ B} for
each g ∈ G.
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The purpose of the present paper is to generalize the above two theorems
of DeMeyer and Kanzaki. We shall show that, for a Galois algebra B over
R and a nonzero idempotent e ∈ R, the rank of Be over Ce is defined and
equal to the order of H |Be if and only if Be is a central Galois algebra over
Ce with Galois group H |Be. Moreover, we shall give a structure theorem for
a Galois algebra B in terms of the rank of a projective module as given in
the theorem. The present paper was written during the visit of Professor S.
Ikehata to Bradley University in winter, 1999, and supported by a Caterpillar
Fellowship at Bradley University. We would like to thank Professor Ikehata
for many useful discussions and Caterpillar Inc. for the support. This paper
was also revised under the suggestions of the referee. We would like to thank
the referee for the valuable suggestions.

2. Definitions and Notations

Throughout this paper, B will represent a ring with 1, G an automorphism
group of B of order n for some integer n, C the center of B, BG the set of
elements in B fixed under each element in G, and B ∗ G a skew group ring
of group G over B. We denote Jg = {b ∈ B | bx = g(x)b for all x ∈ B} and
Ig = BJg ∩ C for each g ∈ G.

Let A be a subring of a ring B with the same identity 1. We call B a
separable extension of A if there exist {ai, bi in B, i = 1, 2, ...,m for some
integer m} such that

∑
aibi = 1, and

∑
bai ⊗ bi =

∑
ai ⊗ bib for all b in

B where ⊗ is over A. An Azumaya algebra is a separable extension of its
center. B is called a Galois extension of BG with Galois group G if there
exist elements {ai, bi in B, i = 1, 2, ...,m} for some integer m such that∑m

i=1
aig(bi) = δ1,g for each g ∈ G. Such a set {ai, bi} is called a G-Galois

system for B. B is called a Galois algebra over R if B is a Galois extension
of R which is contained in C, and B is called a central Galois extension if B
is a Galois extension of C. Let P be a projective module over a commutative
ring R. Then for a prime ideal p of R, Pp(= P ⊗R Rp) is a free module over
Rp(= the local ring of R at p), and the rank of Pp over Rp is the number of
copies of Rp in Pp; rankR(P ) = m if rankRp

(Pp) = m for some integer m for
all prime ideals p of R.

3. A Generalization

Let B be a Galois algebra over R with Galois group G and C the
center of B. In this section, we shall give a condition under which B is
a composition of a central Galois algebra and a commutative Galois algebra.
This generalizes the theorems of DeMeyer and Kanzaki. At first, we recall the
rank function of a finitely generated projective module P over a commutative
ring R. Let Spec(R) be the set of prime ideals of R with the Zariski topology
and Z the set of integers with the discrete topology. It is well known that
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rkR(P ) : Spec(R) −→ Z by rkR(P )(p) = rankRp
(Pp) is a continuous function

and there exist orthogonal idempotents {ei | i = 1, 2, ...,m for some integer
m} in R such that P = ⊕∑m

i=1
Pei and rankRei(Pei) = ki is defined for each

i, and ki 6= kj for i 6= j.

Theorem 3.1. Let B be a Galois algebra over R with Galois group G, C
the center of B, and H = {g ∈ G | g(c) = c for each c ∈ C}. Then, rankC(B)
is defined and equal to |H |, the order of H if and only if B is a central Galois

algebra with Galois group H.

Proof. Since B is a Galois algebra over R with Galois group G, B =
⊕
∑

g∈G Jg = (⊕
∑

h∈H Jh) ⊕ (⊕
∑

g 6∈H Jg) (see [4, Theorem 1]). But H is
a C-automorphism group of B, so Jh is a finitely generated and projective
C-module of rank 1 and JhJh−1 = J1 = C for each h ∈ H (see [6]). By
hypothesis, rankC(B) = |H |, so B = ⊕∑

h∈H Jh (and so Jg = {0} for each
g 6∈ H). Therefore, B is a central Galois algebra over C with Galois group H
(see [3, Theorem 1]). Conversely, assume B is a central Galois algebra with
Galois group H . Then B = ⊕∑

h∈H Jh and Jh is a finitely generated and
projective C-module of rank 1 for each h ∈ H . Thus, rankC(B) = |H |.

Next we show that Theorem 3.1 generalizes DeMeyer’s theorem and is
equivalent to Kanzaki’s theorem.

Corollary 3.2 (F. R. DeMeyer). Let B be a Galois algebra over R with

Galois group G and H = {g ∈ G | g(c) = c for each c ∈ C}. If C is

indecomposable, then B is a central Galois algebra with Galois group H.

Proof. Since B is a Galois algebra over R with Galois group G,
B = ⊕

∑
g∈G Jg = (⊕

∑
h∈H Jh) ⊕ (⊕

∑
g 6∈H Jg) where JgJg−1 = egC for

some idempotents eg in C (see [4, Theorem 2]). Since C is indecomposable,
JgJg−1 = {0} or C for each g ∈ G. We claim that JgJg−1 = {0} for each
g 6∈ H . Suppose that JgJg−1 = C. Then 1 ∈ JgJg−1 . Hence 1 =

∑m

i=1
xiyi

for some xi ∈ Jg and yi ∈ Jg−1 . Since g 6∈ H , there exists c ∈ C such that
g(c) = c′ 6= c. But, then c′ = 1c′ =

∑m

i=1
xiyic

′ =
∑m

i=1
xig

−1(c′)yi =∑m

i=1
xicyi = c

∑m

i=1
xiyi = c1 = c. This is a contradiction. Thus,

JgJg−1 = {0} for each g 6∈ H . Next, we claim that Jg = {0} for each
g 6∈ H . Since B is a Galois algebra over R, B is an Azumaya C-algebra.
Noting that BJg is an ideal of B and Ig = BJg ∩C is an ideal of C, we have
that BJg = BIg (see [1, Corollary 3.7, page 54]). Also, by Proposition 2 in
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[4], I2g = Ig for all g ∈ G. Hence, for each g 6∈ H ,

Jg ⊂BJg = BIg = BI2g = (BIg)(BIg) = (BJg)(BJg)

=BJgJg = BIgJg2 = BJgJg2 = BIgJg3

=BJgJg3 = BIgJg4 = · · · · · ·
=BJgJgl−1 (where l is the order of g)

=BJgJg−1 = {0}.

This shows that Jg = {0} for each g 6∈ H . Thus, B = (⊕∑
h∈H Jh). Since

rankC(Jh) = 1, rankC(B) = |H |. Hence, by Theorem 3.1, B is a central
Galois algebra with Galois group H .

Remark. It is well known that for a Galois algebra B over R, if B is
a central Galois algebra over C with Galois group H , then C is a Galois
algebra over R with Galois group G/H . Thus, Theorem 3.1 shows that a
Galois algebra B is a composition of a central Galois algebra with Galois
group H and a commutative Galois algebra C with Galois group G/H when
rankC(B) = |H |.

Theorem 3.3. Let B be a Galois algebra over R with Galois group G and

H = {g ∈ G | g(c) = c for each c ∈ C}. Then, rankC(B) = |H | if and only if

Jg = {0} for each g 6∈ H.

Proof. Since B is a Galois algebra over R with Galois group G, B =
⊕
∑

g∈G Jg = (⊕
∑

h∈H Jh)⊕ (⊕
∑

g 6∈H Jg) as C-module (see [4, Theorem 1]).
For each h ∈ H , Jh is a finitely generated and projective C-module of rank 1
(see [6]). Thus, rankC(B) = |H | if and only if Jg = {0} for each g 6∈ H .

To generalize the Kanzaki’s theorem, we put Theorem 3.1 in a “local”
form at a nonzero idempotent in R.

Theorem 3.4. Let B be a Galois algebra over R with Galois group G,

e a nonzero idempotent in R, and H = {g ∈ G | g(c) = c for each c ∈ C}.
Then, Be is a central Galois algebra over Ce with Galois group H |Be if and

only if rankCe(Be) is defined and equal to |H |Be|, the order of H |Be.

Proof. We first claim that Be is a Galois algebra over Re with Galois
group G|Be

∼= G. In fact, by hypothesis, B is a Galois algebra over R
with Galois group G, so there exists a G-Galois system for B {aj, bj in B,

j = 1, 2, ..., t} for some integer t such that
∑t

j=1
ajg(bj) = δ1,g for each

g ∈ G. Hence
∑t

j=1
(aje)g(bje) = e

∑t

j=1
ajg(bj) = eδ1,g for each g ∈ G.

Therefore, {aje, bje in Be, j = 1, 2, ..., t} is a G-Galois system for Be and

e =
∑t

j=1
(aje)(g(bje) − bje) for each g 6= 1 in G. But e 6= 0, so g|Be 6= 1

whenever g 6= 1 in G. Thus, Be is a Galois algebra over Re with Galois group
G|Be

∼= G. Thus, Theorem 3.4 holds by Theorem 3.1 for Be.
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Corollary 3.5 (T. Kanzaki). Let B be a Galois algebra over R with

Galois group G and H = {g ∈ G | g(c) = c for each c ∈ C}. Then, Jg = {0}
for each g 6∈ H if and only if B is a central Galois algebra with Galois group

H.

Proof. This is a consequence of Theorem 3.3 and Theorem 3.4 for e = 1.

4. A Structure Theorem

In this section, we shall show that any Galois algebra is a direct sum of
Galois algebras each with Galois group isomorphic with and induced by G
and a well defined rank over its center.

Theorem 4.1. Let B be a Galois algebra over R with Galois group G.

Then there are orthogonal idempotents {ei | i = 1, 2, ...,m for some integer

m} in CG such that B = ⊕∑m

i=1
Bei where Bei is a Galois algebra over Rei

with Galois group G|Bei
∼= G and rankCei(Bei) = ki for distinct integers ki,

i = 1, 2, ...,m.

Proof. Since B is a Galois algebra over R, B is separable over R. Hence
B is an Azumaya C-algebra (see [1, Theorem 3.8, page 55]), and so it is a
finitely generated and projective C-module. Therefore, there exist orthogonal
non-zero idempotents ei in C, i = 1, 2, ...,m for some integer m such that
B = ⊕∑m

i=1
Bei and rankCei(Bei) = ki for some integer ki, and ki 6= kj for

i 6= j. This implies that g(Bei) = Bei for g preserves the rank of Bei over
Cei for each g ∈ G. Thus, for each ei ∈ CG(= R), Bei is a Galois algebra
over Rei with Galois group G|Bei

∼= G by the proof of Theorem 3.4. This
completes the proof.

Theorem 4.1 is another general form of Theorem 3.1 different from
Theorem 3.4. We can use Theorem 3.1 to identify which direct summand
of B is a composition of a central Galois algebra and a commutative Galois
algebra.

Corollary 4.2. Let B and ei’s be as given in Theorem 4.1, and Hi =
{g ∈ G|Bei | g(cei) = cei for each cei ∈ Cei}. Then Bei is a central Galois

algebra with Galois group Hi if and only if rankCei(Bei) = |Hi|, the order of

Hi.

We conclude the present paper with two examples of a Galois algebra B:
(1) B is a composition of a central Galois algebra and a commutative Galois
algebra, (2) B is not so as given in (1), but has a direct summand which is so
as given in (1).

Example 4.3. Let R[i, j, k] be the real quaternion algebra over R,
B = R[i, j, k] ⊕ R[i, j, k], and G = {1, gi, gj , gk, g0

, g
0
gi, g0

gj , g0
gk} where
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gi(a1, a2) = (ia1i
−1, ia2i

−1), gj(a1, a2) = (ja1j
−1, ja2j

−1), gk(a1, a2) =
(ka1k

−1, ka2k
−1), and g

0
(a1, a2) = (a2, a1) for all (a1, a2) in B. Then,

(1) B is a Galois extension with a G-Galois system:

{a1 = (1, 0), a2 = (i, 0), a3 = (j, 0), a4 = (k, 0),

a5 = (0, 1), a6 = (0, i), a7 = (0, j), a8 = (0, k);

b1 =
1

4
(1, 0), b2 = −1

4
(i, 0), b3 = −1

4
(j, 0), b4 = −1

4
(k, 0),

b5 =
1

4
(0, 1), b6 = −1

4
(0, i), b7 = −1

4
(0, j), b8 = −1

4
(0, k)}.

(2) BG = {(r, r) | r ∈ R} ∼= R.
(3) C = R ⊕R.
(4) By (1), (2), and (3), B is a Galois algebra over R with Galois group

G, but not a central Galois algebra with Galois group G.
(5) H = {g ∈ G | g(c) = c for each c ∈ C} = {1, gi, gj, gk}.
(6) B is a central Galois algebra with Galois group H and C is a Galois

algebra over R with Galois group G/H ∼= {1, g
0
}.

Example 4.4. Let R[i, j, k] be the real quaternion algebra over R, D the
field of complex numbers, B = R[i, j, k]⊕R[i, j, k]⊕ (D ⊗R D) ⊕ (D ⊗R D),
and
G = {1, gi, gj, gk, g0

, g
0
gi, g0

gj , g0
gk} where

gi(a1, a2, d1 ⊗ d2, d3 ⊗ d4) = (ia1i
−1, ia2i

−1, d̄1 ⊗ d2, d̄3 ⊗ d4)

gj(a1, a2, d1 ⊗ d2, d3 ⊗ d4) = (ja1j
−1, ja2j

−1, d1 ⊗ d̄2, d3 ⊗ d̄4)

gk(a1, a2, d1 ⊗ d2, d3 ⊗ d4) = (ka1k
−1, ka2k

−1, d̄1 ⊗ d̄2, d̄3 ⊗ d̄4)

g
0
(a1, a2, d1 ⊗ d2, d3 ⊗ d4) = (a2, a1, d3 ⊗ d4, d1 ⊗ d2)

for all (a1, a2, d1 ⊗ d2, d3 ⊗ d4) in B, where d̄ is the conjugate of the complex
number d. Then,
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(1) B is a Galois extension with a G-Galois system:

{x1 = (1, 0, 0, 0), x2 = (i, 0, 0, 0), x3 = (j, 0, 0, 0), x4 = (k, 0, 0, 0),

x5 = (0, 1, 0, 0), x5 = (0, i, 0, 0), x7 = (0, j, 0, 0), x8 = (0, k, 0, 0),

x9 = (0, 0, 1⊗ 1, 0), x10 = (0, 0,
√
−1⊗ 1, 0),

x11 = (0, 0, 1⊗
√
−1, 0), x12 = (0, 0,

√
−1⊗

√
−1, 0),

x13 = (0, 0, 0, 1⊗ 1), x14 = (0, 0, 0,
√
−1⊗ 1),

x15 = (0, 0, 0, 1⊗
√
−1), x16 = (0, 0, 0,

√
−1⊗

√
−1);

yl =
1

4
xl for l = 1, 5, 9, 12, 13, 16,

yl = −1

4
xl for l = 2, 3, 4, 6, 7, 8, 10, 11, 14, 15}.

(2) BG = {(r, r, r′, r′) | r ∈ R, r′ ∈ R⊗R R} ∼= R⊕R.
(3) C = R ⊕R⊕ (D ⊗R D)⊕ (D ⊗R D).
(4) By (1), (2), and (3), B is a Galois algebra over R ⊕ R with Galois

group G, but not a central Galois algebra with Galois group G.
(5) H = {g ∈ G | g(c) = c for each c ∈ C} = {1}, and so B is not a central

Galois algebra with Galois group H .
(6) Let e1 = (1, 1, 0, 0) and e2 = (0, 0, 1, 1). Then B = Be1 ⊕ Be2

where Be1 = R[i, j, k]⊕R[i, j, k] is a Galois algebra with Galois group
G|Be1

∼= G, and Be1 is a composition of a central Galois algebra and
a commutative Galois algebra as given in Example 1.
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