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Abstract. In this paper we consider the fuzzification of ideals
in the sense of W. A. Dudek in BCC-algebras. We discuss the relations
among fuzzy BCK-ideal, fuzzy BCC-ideal and fuzzy g-ideal. We state fuzzy
characteristic g-ideals, and also discuss fuzzy relations on BCC-algebras.

1. Introduction

In 1966, Y. Imai and K. Iséki ([12]) defined a class of algebras of type
(2,0) called BCK-algebras which generalizes on one hand the notion of algebra
of sets with the set subtraction as the only fundamental non-nullary opera-
tion, on the other hand the notion of implication algebra ([14]). The class
of all BCK-algebras is a quasivariety. K. Iséki posed an interesting problem
(solved by A. Wroński [17]) whether the class of BCK-algebras is a variety. In
connection with this problem, Y. Komori ([15]) introduced a notion of BCC-
algebras, and W. A. Dudek ([3, 4]) redefined the notion of BCC-algebras by
using a dual form of the ordinary definition in the sense of Y. Komori. In [9],
W. A. Dudek and X. H. Zhang introduced a notion of BCC-ideals in BCC-
algebras and described connections between such ideals and congruences. W.
A. Dudek and Y. B. Jun ([6]) considered the fuzzification of BCC-ideals in
BCC-algebras. They showed that every fuzzy BCC-ideal of a BCC-algebra is
a fuzzy BCK-ideal, and showed that the converse is not true by providing an
example. They also proved that in a BCC-algebra every fuzzy BCK-ideal is a
fuzzy BCC-subalgebra, and in a BCK-algebra the notion of a fuzzy BCK-ideal
and a fuzzy BCC-ideal coincide. W. A. Dudek, Y. B. Jun and Z. Stojaković
([7]) described several properties of fuzzy BCC-ideals in BCC-algebras, and
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discussed an extension of fuzzy BCC-ideals. In [5], W. A. Dudek introduced
a new notion of ideals in BCC-algebras, and gave its characterizations.

In this paper we consider the fuzzification of ideals in the sense of W. A.
Dudek in BCC-algebras. We discuss the relations among fuzzy BCK-ideal,
fuzzy BCC-ideal and fuzzy g-ideal. We state fuzzy characteristic g-ideals, and
also discuss fuzzy relations on BCC-algebras.

2. Preliminaries

By a BCK-algebra we mean an algebra (G, ∗, 0) of type (2,0) satisfying
the following axioms:

(I) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(II) (x ∗ (x ∗ y)) ∗ y = 0,

(III) x ∗ x = 0,
(IV) 0 ∗ x = 0,
(V) x ∗ y = 0 and y ∗ x = 0 imply x = y,

for all x, y, z ∈ G.

In what follows, a binary multiplication will be denoted by juxtaposition.
Dots we use only to avoid repetitions of brackets. For example, the formula
((xy)(zy))(xz) = 0 will be written as (xy · zy) · xz = 0.

Definition 2.1. A non-empty set G with a constant 0 and a binary
operation denoted by juxtaposition is called a BCC-algebra if for all x, y, z ∈ G
the following axioms hold:
(1) (xy · zy) · xz = 0,
(2) xx = 0,
(3) 0x = 0,
(4) x0 = x,
(5) xy = 0 and yx = 0 imply x = y.

Any BCK-algebra is a BCC-algebra, but there are BCC-algebras which
are not BCK-algebras (cf. [4]). Note that a BCC-algebra is a BCK-algebra if
and only if it satisfies: (6) xy · z = xz · y.

On any BCC-algebra (similarly as in the case of BCK-algebras) one can
define the natural order “≤” by putting (7) x ≤ y ⇐⇒ xy = 0.

It is not difficult to verify that this order is partial and 0 is its smallest
element. Moreover, in any BCC-algebra (also in BCK-algebra), the following
are true:
(8) xy · zy ≤ xz,
(9) x ≤ y implies xz ≤ yz and zy ≤ zx.

A non-empty subset A of a BCK-algebra G is called an ideal if 0 ∈ A and
y, xy ∈ A imply x ∈ A. In the sequel this ideal will be called a BCK-ideal
and will be considered also in BCC-algebras.
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A non-empty subset A of a BCC-algebra G is called a BCC-ideal if 0 ∈ A
and y, xy · z ∈ A imply xz ∈ A.

Definition 2.2. A fuzzy set µ in a BCK-algebra G is called a fuzzy BCK-
ideal of G if
(FK1) µ(0) ≥ µ(x), ∀x ∈ G,
(FK2) µ(x) ≥ min{µ(xy), µ(y)}, ∀x, y ∈ G.

Definition 2.3. ([6]). A fuzzy set µ in a BCC-algebra G is called a fuzzy
BCC-ideal of G if

(FK1) µ(0) ≥ µ(x), ∀x ∈ G,
(FC1) µ(xy) ≥ min{µ(xa · y), µ(a)}, ∀a, x, y ∈ G.

3. Fuzzy g-ideals in BCC-algebras

Definition 3.1. ([5]). A subset A of a BCC-algebra G is called an ideal
if it satisfies
(I1) 0 ∈ A,
(I2) ab ∈ A for a ∈ A and b ∈ G,
(I3) b(ba1 · a2) ∈ A for a1, a2 ∈ A and b ∈ G.

Here we call this ideal A a g-ideal to avoid the confusion. We begin with
the fuzzification of the above g-ideal.

Definition 3.2. A fuzzy set µ in a BCC-algebra G is called a fuzzy g-
ideal if it satisfies
(FK1) µ(0) ≥ µ(a), ∀a ∈ G,
(FI1) µ(ab) ≥ µ(a), ∀a, b ∈ G,
(FI2) µ(b(ba1 · a2)) ≥ min{µ(a1), µ(a2)}, ∀b, a1, a2 ∈ G.

Observe that (FK1) follows from (FI1) and (2). Using (FI1) we know
that every fuzzy g-ideal is a fuzzy subalgebra. Moreover, putting a1 = a and
a2 = 0 in (FI2) we obtain the following proposition.

Proposition 3.3. If µ is a fuzzy g-ideal of a BCC-algebra G, then

µ(b · ba) ≥ µ(a), ∀a, b ∈ G.

Corollary 3.4. Every fuzzy g-ideal µ of a BCC-algebra G is order re-
versing, i.e., if x ≤ a then µ(x) ≥ µ(a) for all a, x ∈ G.

Proof. If x, a ∈ G are such that x ≤ a, then µ(x) = µ(x0) = µ(x·xa) ≥
µ(a), which completes the proof.

Theorem 3.5. A fuzzy set µ in a BCC-algebra G is a fuzzy g-ideal if and
only if it is a fuzzy BCC-ideal.
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Proof. Let µ be a fuzzy g-ideal and let a, x, y ∈ G. Then

µ(xy) = µ(xy · 0)
= µ(xy · ((xy · (xa · y))(x · xa)))
≥ min{µ(xa · y), µ(x · xa)}
≥ min{µ(xa · y), µ(a)},

which shows that µ satisfies (FC1). Hence µ is a fuzzy BCC-ideal.
Conversely, let µ be a fuzzy BCC-ideal. Then µ(y) ≤ µ(x) for all x ≤ y.

Indeed,

µ(x) = µ(x0) = µ(x · xy) ≥ min{µ(xy · xy), µ(y)}
= min{µ(0), µ(y)} = µ(y).

Moreover, for all a, x ∈ G, we have

µ(ax) ≥ min{µ(aa · x), µ(a)}
= min{µ(0x), µ(a)}
= min{µ(0), µ(a)} = µ(a),

which proves (FI1). To prove (FI2), let x, a1, a2 ∈ G. Note that

µ(x · xa1) ≥ min{µ(xa1 · xa1), µ(a1)}
= min{µ(0), µ(a1)} = µ(a1).

Since xa2 · (xa1 · a2) ≤ x · xa1 by (8), then

µ(xa2 · (xa1 · a2)) ≥ µ(x · xa1) ≥ µ(a1).

By using (FC1), we see that

µ(x(xa1 · a2) ≥ min{µ(xa2 · (xa1 · a2)), µ(a2)}
≥ min{µ(a1), µ(a2)},

which proves (FI2). Hence µ is a fuzzy g-ideal.

Theorem 3.6. Let µ be a fuzzy set in a BCK-algebra G. Then µ is a
fuzzy g-ideal if and only if µ is a fuzzy BCK-ideal.

Proof. Since every BCK-algebra is a BCC-algebra, every fuzzy g-ideal
is a fuzzy BCC-ideal (see Theorem 3.5) and hence a fuzzy BCK-ideal. Let µ
be a fuzzy BCK-ideal. Then

µ(ax) ≥ min{µ(ax · a), µ(a)}
= min{µ(aa · x), µ(a)}
= min{µ(0x), µ(a)}
= min{µ(0), µ(a)}
= µ(a),

which shows (FI1). Now let x, a1, a2 ∈ G. Using (6), (8) and (II), we have

x(xa1 · a2) · a2 = xa2 · (xa1 · a2) ≤ x · xa1 ≤ a1.



FUZZIFICATIONS OF IDEALS IN BCC-ALGEBRAS 131

Since every fuzzy BCK-ideal of a BCK-algebra is order reversing, it follows
that µ(x(xa1 · a2) · a2) ≥ µ(a1), and hence using (FK2) we obtain

µ(x(xa1 · a2)) ≥ min{µ(x(xa1 · a2) · a2), µ(a2)}
≥ min{µ(a1), µ(a2)},

which proves that µ satisfies (FI2). This completes the proof.

The following example shows that a fuzzy BCK-ideal of a BCC-algebra may
not be a fuzzy g-ideal.

Example 3.7. Consider a BCC-algebra G = {0, a, b, c, d} with Cayley
table as follows (cf. [9]):

· 0 a b c d
0 0 0 0 0 0
a a 0 0 0 0
b b b 0 0 0
c c c a 0 0
d d c d c 0

Let µ be a fuzzy set in G defined by

µ(x) :=

{
t1 if x ∈ {0, a},
t2 otherwise,

where t1 > t2 in [0, 1]. It is easy to verify that µ is a fuzzy BCK-ideal of G,
but it is not a fuzzy g-ideal since

µ(d(da · a)) = t2 < t1 = min{µ(a), µ(a)}.
Proposition 3.8. Let A be a non-empty subset of a BCC-algebra G and

let µ be a fuzzy set in G defined by

µ(a) :=

{
t1 if a ∈ A,
t2 otherwise,

where t1 > t2 in [0, 1]. Then µ is a fuzzy g-ideal of G if and only if A is a
g-ideal of G.

Proof. Assume that µ is a fuzzy g-ideal of G. Since µ(0) ≥ µ(a) for
all a ∈ G, we have µ(0) = t1 and so 0 ∈ A. Let a ∈ A and b ∈ G. Then
µ(ab) ≥ µ(a) = t1 and thus µ(ab) = t1. Hence ab ∈ A. For any a1, a2 ∈ A
and b ∈ G, we get µ(b(ba1 · a2)) ≥ min{µ(a1), µ(a2)} = t1 which implies that
µ(b(ba1 · a2)) = t1. It follows that b(ba1 · a2) ∈ A. Therefore A is a g-ideal of
G.

Conversely suppose that A is a g-ideal of G. Since 0 ∈ A, it follows that
µ(0) = t1 ≥ µ(a) for all a ∈ G. Let a, b ∈ G. If a ∈ A, then ab ∈ A and so
µ(ab) = t1 = µ(a). If a ∈ G \A, then µ(a) = t2 and hence µ(ab) ≥ t2 = µ(a).
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Finally let a1, a2, b ∈ G. If a1 ∈ G \ A or a2 ∈ G \ A, then µ(a1) = t2 or
µ(a2) = t2. It follows that

µ(b(ba1 · a2)) ≥ t2 = min{µ(a1), µ(a2)}.
Assume that a1, a2 ∈ A. Then b(ba1 · a2) ∈ A and thus

µ(b(ba1 · a2)) = t1 = min{µ(a1), µ(a2)}.
Hence µ is a fuzzy g-ideal of G.

Lemma 3.9. ([5]). An initial segment [0, c] := {x ∈ G : 0 ≤ x ≤ c} of a
BCC-algebra G is a g-ideal if and only if the inequality x(xc · c) ≤ c holds
for all x ∈ G.

If we combine Proposition 3.8 with Lemma 3.9, then we have the following
theorem.

Theorem 3.10. Let µ be a fuzzy set in a BCC-algebra G defined by

µ(x) :=

{
t1 if x ∈ [0, c],
t2 otherwise,

where t1 > t2 in [0, 1]. Then µ is a fuzzy g-ideal if and only if the inequality
x(xc · c) ≤ c holds for all x ∈ G.

As a simple consequence of the above Theorem and [10, Proposition 2.7]
we obtain

Corollary 3.11. Let µ be as in Theorem 3.10. Then
(i) µ is a fuzzy g-ideal if and only if xc · y ≤ c implies xy ≤ c for all x, y ∈ G.
(ii) µ is a fuzzy g-ideal if and only if xc ≤ c implies x ≤ c for all x ∈ G.

4. Fuzzy characteristic g-ideals

For an endomorphism f of a BCC-algebra G and a fuzzy set µ in G, we
define a new fuzzy set µf in G by µf (x) = µ(f(x)) for all x ∈ G.

Proposition 4.1. Let f be an endomorphism of a BCC-algebra G. If µ
is a fuzzy g-ideal of G, then so is µf .

Proof. We first have that µf (x) = µ(f(x)) ≤ µ(0) = µ(f(0)) = µf (0)
for all x ∈ G. Let a, b ∈ G. Then

µf (ab) = µ(f(ab)) = µ(f(a)f(b)) ≥ µ(f(a)) = µf (a),

proving the condition (FI1). Finally for any b, a1, a2 ∈ G we get

µf (b(ba1 · a2)) = µ(f(b(ba1 · a2)))
= µ(f(b)(f(b)f(a1) · f(a2)))
≥ min{µ(f(a1)), µ(f(a2))}
= min{µf (a1), µf (a2)},

ending the proof.
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Definition 4.2. A g-ideal A of a BCC-algebra G is said to be char-
acteristic if f(A) = A for all f ∈ Aut(G), where Aut(G) is the set of all
automorphisms of G.

Definition 4.3. A fuzzy g-ideal µ of a BCC-algebra G is said to be fuzzy
characteristic if µf (x) = µ(x) for all x ∈ G and f ∈ Aut(G).

Lemma 4.4. Let µ be a fuzzy set in a BCC-algebra G and let t ∈ Im(µ).
Then µ is a fuzzy g-ideal of G if and only if the level subset

µt := {x ∈ G|µ(x) ≥ t}
is a g-ideal of G, which is called a level g-ideal of µ.

Proof. Assume that µ is a fuzzy g-ideal of G. Clearly 0 ∈ µt. Let
a ∈ µt and b ∈ G. Then µ(a) ≥ t and so µ(ab) ≥ µ(a) ≥ t, which implies that
ab ∈ µt. Now let a1, a2 ∈ µt and b ∈ G. Then

µ(b(ba1 · a2)) ≥ min{µ(a1), µ(a2)} ≥ t
and thus b(ba1 · a2) ∈ µt. Hence µt is a g-ideal of G.

Conversely suppose that µt is a g-ideal of G. If there exists a0 ∈ G
such that µ(0) < µ(a0), then µ(0) < 1

2 (µ(0) + µ(a0)) < µ(a0) and hence

a0 ∈ µs where s = 1
2 (µ(0) + µ(a0)). Since 0 ∈ µs, we have µ(0) ≥ s, a

contradiction. Assume that µ(a0b0) < µ(a0) for some a0, b0 ∈ G. Taking
u = 1

2 (µ(a0b0) + µ(a0)), then µ(a0b0) < u < µ(a0) and thus a0 ∈ µu and
a0b0 6∈ µu. This is a contradiction. Finally suppose that there exist a1, a2, b ∈
G such that

µ(b(ba1 · a2)) < min{µ(a1), µ(a2)}.
If we take v = 1

2 (µ(b(ba1 ·a2)) + min{µ(a1), µ(a2)}), then µ(b(ba1 ·a2)) < v <
min{µ(a1), µ(a2)} and so a1, a2 ∈ µv and b(ba1 · a2) 6∈ µv, a contradiction.
This completes the proof.

Lemma 4.5. Let µ be a fuzzy g-ideal of a BCC-algebra G and let x ∈ G.
Then µ(x) = t if and only if x ∈ µt and x 6∈ µs for all s > t.

Proof. Straightforward.

Theorem 4.6. For a fuzzy g-ideal µ of a BCC-algebra G, the following
are equivalent:
(i) µ is fuzzy characteristic.
(ii) Each level g-ideal of µ is characteristic.

Proof. Assume that µ is a fuzzy characteristic and let t ∈ Im(µ), f ∈
Aut(G) and x ∈ µt. Then µf (x) = µ(x) ≥ t, i.e., µ(f(x)) ≥ t, and so
f(x) ∈ µt, i.e., f(µt) ⊂ µt. Now let x ∈ µt and let y ∈ G be such that
f(y) = x. Then µ(y) = µf (y) = µ(f(y)) = µ(x) ≥ t, whence y ∈ µt, so that
x = f(y) ∈ f(µt). Consequently µt ⊂ f(µt). Hence f(µt) = µt and µt is
characteristic.



134 WIES LAW A. DUDEK AND YOUNG BAE JUN

Conversely suppose that each level g-ideal of µ is characteristic and let
x ∈ G, f ∈ Aut(G) and µ(x) = t. Then, by virtue of Lemma 4.5, x ∈ µt

and x 6∈ µs for all s > t. It follows from hypothesis that f(x) ∈ f(µt) = µt,
so that µf (x) = µ(f(x)) ≥ t. Let s = µf (x) and assume that s > t. Then
f(x) ∈ µs = f(µs), which implies from the injectivity of f that x ∈ µs, a
contradiction. Hence µf (x) = µ(f(x)) = t = µ(x) showing that µ is fuzzy
characteristic.

5. Cartesian product of fuzzy g-ideals

Definition 5.1. ([1]). A fuzzy relation on any set S is a fuzzy set

µ : S × S → [0, 1].

Definition 5.2. ([1]). If µ is a fuzzy relation on a set S and ν is a fuzzy
set in S, then µ is a fuzzy relation on ν if

µ(x, y) ≤ min{ν(x), ν(y)}, ∀x, y ∈ S.
Definition 5.3. ([1]). Let µ and ν be fuzzy sets in a set S. The Cartesian

product of µ and ν is defined by

(µ× ν)(x, y) = min{µ(x), ν(y)}, ∀x, y ∈ S.
Lemma 5.4. ([1]). Let µ and ν be fuzzy sets in a set S. Then

(i) µ× ν is a fuzzy relation on S,
(ii) (µ× ν)t = µt × νt for all t ∈ [0, 1].

Definition 5.5. ([1]). If ν is a fuzzy set in a set S, the strongest fuzzy
relation on S that is a fuzzy relation on ν is µν , given by

µν(x, y) = min{ν(x), ν(y)}, ∀x, y ∈ S.
Lemma 5.6. ([1]). For a given fuzzy set ν in a set S, let µν be the strongest

fuzzy relation on S. Then for t ∈ [0, 1], we have that (µν)t = νt × νt.

Proposition 5.7. For a given fuzzy set ν in a BCC-algebra G, let µν

be the strongest fuzzy relation on G. If µν is a fuzzy g-ideal of G × G, then
ν(a) ≤ ν(0) for all a ∈ G.

Proof. From the fact that µν is a fuzzy g-ideal of G×G, it follows from
(FK1) that µν(a, a) ≤ µν(0, 0) for all a ∈ G, where (0, 0) is the zero element of
G×G. But this means that min{ν(0), ν(0)} ≥ min{ν(a), ν(a)}, which implies
that ν(0) ≥ ν(a).

The following proposition is an immediate consequence of Lemma 5.6, and we
omit the proof.

Proposition 5.8. If ν is a fuzzy g-ideal of a BCC-algebra G, then the
level g-ideals of µν are given by (µν)t = νt × νt for all t ∈ [0, 1].
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Theorem 5.9. Let µ and ν be fuzzy g-ideals of a BCC-algebra G. Then
µ× ν is a fuzzy g-ideal of G×G.

Proof. Note first that for every (x, y) ∈ G×G,

(µ× ν)(0, 0) = min{µ(0), ν(0)} ≥ min{µ(x), ν(y)} = (µ× ν)(x, y).

Let (a1, a2), (b1, b2) ∈ G×G. Then

(µ× ν)((a1, a2) ∗ (b1, b2)) = (µ× ν)(a1b1, a2b2)
= min{µ(a1b1), ν(a2b2)} ≥ min{µ(a1), ν(a2)} = (µ× ν)(a1, a2).

For any (b1, b2), (x1, x2), (y1, y2) ∈ G×G, we have

(µ× ν)((b1, b2) ∗ (((b1, b2) ∗ (x1, x2)) ∗ (y1, y2)))
= (µ× ν)((b1, b2) ∗ ((b1x1, b2x2) ∗ (y1, y2)))
= (µ× ν)((b1, b2) ∗ (b1x1 · y1, b2x2 · y2))
= (µ× ν)(b1(b1x1 · y1), b2(b2x2 · y2))
= min{µ(b1(b1x1 · y1)), ν(b2(b2x2 · y2))}
≥ min{min{µ(x1), µ(y1)},min{ν(x2), ν(y2)}}
= min{min{µ(x1), ν(x2)},min{µ(y1), ν(y2)}}
= min{(µ× ν)(x1, x2), (µ× ν)(y1, y2)}.

Hence µ× ν is a fuzzy g-ideal of G×G.

Theorem 5.10. Let µ and ν be fuzzy sets in a BCC-algebra G such that
µ× ν is a fuzzy g-ideal of G×G. Then
(i) either µ(x) ≤ µ(0) or ν(x) ≤ ν(0) for all x ∈ G.
(ii) if µ(x) ≤ µ(0) for all x ∈ G, then either µ(x) ≤ ν(0) or ν(x) ≤ ν(0).
(iii) if ν(x) ≤ ν(0) for all x ∈ G, then either µ(x) ≤ µ(0) or ν(x) ≤ µ(0).
(iv) either µ or ν is a fuzzy g-ideal of G.

Proof. (i) Suppose that µ(x) > µ(0) and ν(y) > ν(0) for some x, y ∈ G.
Then (µ×ν)(x, y) = min{µ(x), ν(y)} > min{µ(0), ν(0)} = (µ×ν)(0, 0), which
is a contradiction and we obtain (i).

(ii) Assume that there exist x, y ∈ G such that µ(x) > ν(0) and ν(y) >
ν(0). Then (µ× ν)(0, 0) = min{µ(0), ν(0)} = ν(0) and hence

(µ× ν)(x, y) = min{µ(x), ν(y)} > ν(0) = (µ× ν)(0, 0).

This is a contradiction. Hence (ii) holds.
(iii) is by similar method to part (ii).
(iv) Since, by (i), either µ(x) ≤ µ(0) or ν(x) ≤ ν(0) for all x ∈ G, without

loss of generality we may assume that ν(x) ≤ ν(0) for all x ∈ G. It follows
from (iii) that either µ(x) ≤ µ(0) or ν(x) ≤ µ(0). If ν(x) ≤ µ(0) for any
x ∈ G, then

ν(x) = min{µ(0), ν(x)} = (µ× ν)(0, x)
≤ (µ× ν)((0, x) ∗ (y1, y2)) = (µ× ν)(0y1, xy2)
= (µ× ν)(0, xy2) = ν(xy2)
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for all x, y1, y2 ∈ G, which proves that ν satisfies the condition (FI1). Now

min{ν(a1), ν(a2)}
= min{min{µ(0), ν(a1)},min{µ(0), ν(a2)}}
= min{(µ× ν)(0, a1), (µ× ν)(0, a2)}
≤ (µ× ν)((b1, b2) ∗ (((b1, b2) ∗ (0, a1)) ∗ (0, a2)))
= (µ× ν)((b1, b2) ∗ (b10 · 0, b2a1 · a2))
= (µ× ν)((b1, b2) ∗ (b1, b2a1 · a2))
= (µ× ν)(b1b1, b2(b2a1 · a2))
= (µ× ν)(0, b2(b2a1 · a2))
= min{µ(0), ν(b2(b2a1 · a2))}
= ν(b2(b2a1 · a2))

for all ai, bj ∈ G, i = 1, 2; j = 1, 2. Hence ν is a fuzzy g-ideal of G. Now we
consider the case µ(x) ≤ µ(0) for all x ∈ G. Suppose that ν(y) > µ(0) for some
y ∈ G. Then ν(0) ≥ ν(y) > µ(0). Since µ(0) ≥ µ(x) for all x ∈ G, it follows
that ν(0) > µ(x) for any x ∈ G. Hence (µ×ν)(x, 0) = min{µ(x), ν(0)} = µ(x)
for all x ∈ G. Thus

µ(x) = (µ× ν)(x, 0) ≤ (µ× ν)((x, 0) ∗ (y1, y2))
= (µ× ν)(xy1, 0y2) = (µ× ν)(xy1, 0) = µ(xy1)

for all x, y1, y2 ∈ G. Moreover

min{µ(a1), µ(a2)}
= min{(µ× ν)(a1, 0), (µ× ν)(a2, 0)}
≤ (µ× ν)((b1, b2) ∗ (((b1, b2) ∗ (a1, 0)) ∗ (a2, 0)))
= (µ× ν)((b1, b2) ∗ (b1a1 · a2, b20 · 0))
= (µ× ν)(b1(b1a1 · a2), b2b2)
= (µ× ν)(b1(b1a1 · a2), 0)
= µ(b1(b1a1 · a2))

for all ai, bj ∈ G, i = 1, 2; j = 1, 2, which proves that µ is a fuzzy g-ideal of
G. This completes the proof.

Now we give an example to show that if µ × ν is a fuzzy g-ideal of G × G,
then µ and ν both need not be fuzzy g-ideals of G.

Example 5.11. Let G be a BCC-algebra with |G| ≥ 2 and let s, t ∈ [0, 1)
be such that s ≤ t. Define fuzzy sets µ and ν in G by µ(x) = s and

ν(x) =

{
t if x = 0,
1 otherwise,

for all x ∈ G, respectively. Then (µ × ν)(x, y) = min{µ(x), ν(y)} = s for all
(x, y) ∈ G ×G, that is, µ × ν is a constant function and so µ × ν is a fuzzy
g-ideal of G ×G. Now µ is a fuzzy g-ideal of G, but ν is not a fuzzy g-ideal
of G since for x 6= 0 we have ν(0) = t < 1 = ν(x).
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Theorem 5.12. Let ν be a fuzzy set in a BCC-algebra G and let µν be
the strongest fuzzy relation on G. Then ν is a fuzzy g-ideal of G if and only
if µν is a fuzzy g-ideal of G×G.

Proof. Assume that ν is a fuzzy g-ideal of G. Clearly µν(0, 0) ≥ µν(x, y)
for any (x, y) ∈ G×G. Now

µν(a1, a2) = min{ν(a1), ν(a2)} ≤ min{ν(a1b1), ν(a2b2)}
= µν(a1b1, a2b2) = µν((a1, a2) ∗ (b1, b2))

for all (a1, a2), (b1, b2) ∈ G×G, and

min{µν(a1, a2), µν(b1, b2)}
= min{min{ν(a1), ν(a2)},min{ν(b1), ν(b2)}}
= min{min{ν(a1), ν(b1)},min{ν(a2), ν(b2)}}
≤ min{ν(x(xa1 · b1)), ν(y(ya2 · b2))}
= µν(x(xa1 · b1), y(ya2 · b2))
= µν((x, y) ∗ (((x, y) ∗ (a1, a2)) ∗ (b1, b2)))

for all (x, y), (a1, a2), (b1, b2) ∈ G×G. Hence µν is a fuzzy g-ideal of G×G.
Conversely suppose that µν is a fuzzy g-ideal of G×G. Then

min{ν(0), ν(0)} = µν(0, 0) ≥ µν(x, y) = min{ν(x), ν(y)}
for all (x, y) ∈ G×G. It follows that ν(x) ≤ ν(0) for all x ∈ G. Now we have

ν(a) = min{ν(a), ν(0)} = µν(a, 0) ≤ µν((a, 0) ∗ (b1, b2))
= µν(ab1, 0b2) = µν(ab1, 0) = min{ν(ab1), ν(0)} = ν(ab1)

for all a, b1 ∈ G, and

min{min{ν(a1), ν(a2)},min{ν(b1), ν(b2)}}
= min{µν(a1, a2), µν(b1, b2)}
≤ µν((x, y) ∗ (((x, y) ∗ (a1, a2)) ∗ (b1, b2)))
= µν(x(xa1 · b1), y(ya2 · b2))
= min{ν(x(xa1 · b1)), ν(y(ya2 · b2))}

for all (x, y), (a1, a2), (b1, b2) ∈ G×G. Taking a2 = b2 = 0 (resp. a1 = b1 = 0)
and using (2) and (4), then

min{ν(a1), ν(b1)} ≤ ν(x(xa1 · b1))

(resp. min{ν(a2), ν(b2)} ≤ ν(x(xa2 · b2))).

Hence ν is a fuzzy g-ideal of G.
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