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ABSTRACT. In this paper we consider the fuzzification of ideals
in the sense of W. A. Dudek in BCC-algebras. We discuss the relations
among fuzzy BCK-ideal, fuzzy BCC-ideal and fuzzy g-ideal. We state fuzzy
characteristic g-ideals, and also discuss fuzzy relations on BCC-algebras.

1. INTRODUCTION

In 1966, Y. Imai and K. Iséki ([12]) defined a class of algebras of type
(2,0) called BCK-algebras which generalizes on one hand the notion of algebra
of sets with the set subtraction as the only fundamental non-nullary opera-
tion, on the other hand the notion of implication algebra ([14]). The class
of all BCK-algebras is a quasivariety. K. Iséki posed an interesting problem
(solved by A. Wronski [17]) whether the class of BCK-algebras is a variety. In
connection with this problem, Y. Komori ([15]) introduced a notion of BCC-
algebras, and W. A. Dudek ([3, 4]) redefined the notion of BCC-algebras by
using a dual form of the ordinary definition in the sense of Y. Komori. In [9],
W. A. Dudek and X. H. Zhang introduced a notion of BCC-ideals in BCC-
algebras and described connections between such ideals and congruences. W.
A. Dudek and Y. B. Jun ([6]) considered the fuzzification of BCC-ideals in
BCC-algebras. They showed that every fuzzy BCC-ideal of a BCC-algebra is
a fuzzy BCK-ideal, and showed that the converse is not true by providing an
example. They also proved that in a BCC-algebra every fuzzy BCK-ideal is a
fuzzy BCC-subalgebra, and in a BCK-algebra the notion of a fuzzy BCK-ideal
and a fuzzy BCC-ideal coincide. W. A. Dudek, Y. B. Jun and Z. Stojakovié
([7]) described several properties of fuzzy BCC-ideals in BCC-algebras, and
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discussed an extension of fuzzy BCC-ideals. In [5], W. A. Dudek introduced
a new notion of ideals in BCC-algebras, and gave its characterizations.

In this paper we consider the fuzzification of ideals in the sense of W. A.
Dudek in BCC-algebras. We discuss the relations among fuzzy BCK-ideal,
fuzzy BCC-ideal and fuzzy g-ideal. We state fuzzy characteristic g-ideals, and
also discuss fuzzy relations on BCC-algebras.

2. PRELIMINARIES

By a BCK-algebra we mean an algebra (G, *,0) of type (2,0) satisfying
the following axioms:
() ((wey)s(wes)x(zey) =0,
() (o (wy) +y=0,
(III) z*xz=0,
(IV) 0xz=0,
(V) zxy=0and y*z =0 imply z =y,

for all z,y,z € G.

In what follows, a binary multiplication will be denoted by juxtaposition.
Dots we use only to avoid repetitions of brackets. For example, the formula
((xy)(zy))(zz) = 0 will be written as (xy - zy) - zz = 0.

DEFINITION 2.1. A non-empty set G with a constant 0 and a binary
operation denoted by juxtaposition is called a BCC-algebra if for all x,y,z € G
the following axioms hold:

(1) (zy-zy) -xzz=0,

(2) xx=0,
(3) 0z =0,
(4) 20=u=,

(5) zy=0 and yxr=0 imply z=y.

Any BCK-algebra is a BCC-algebra, but there are BCC-algebras which
are not BCK-algebras (cf. [4]). Note that a BCC-algebra is a BCK-algebra if
and only if it satisfies: (6) ay-z=2xz-y.

On any BCC-algebra (similarly as in the case of BCK-algebras) one can
define the natural order “<” by putting (7) z <y <= a2y =0.

It is not difficult to verify that this order is partial and 0 is its smallest
element. Moreover, in any BCC-algebra (also in BCK-algebra), the following
are true:

(8) ay-zy <uwz,
(9) x <y implies zz<yz and zy < zx.

A non-empty subset A of a BCK-algebra G is called an ideal if 0 € A and
y,zy € A imply x € A. In the sequel this ideal will be called a BCK-ideal
and will be considered also in BCC-algebras.
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A non-empty subset A of a BCC-algebra G is called a BCC-ideal if 0 € A
and y,zy - z € A imply zz € A.

DEFINITION 2.2. A fuzzy set u in a BCK-algebra G is called a fuzzy BCK-
ideal of G if
(FK1) u(0) > u(x), Vz €G,
(FK2) p(x) = min{p(zy), p(y)}, Va,y€G.

DEFINITION 2.3. ([6]). A fuzzy set pu in a BCC-algebra G is called a fuzzy
BCC-ideal of G if

(FK1) p(0) > p(x), Vae€G,
(FC]') u(xy) > mm{u(xa ! y)7 ,u(a)}, vaaxay €G.

3. Fuzzy ¢g-IDEALS IN BCC-ALGEBRAS

DEFINITION 3.1. ([5]). A subset A of a BCC-algebra G is called an ideal
if it satisfies
(I1) 0€ A,
(12) abe A for a€ A and be G,
(13) b(bay -az) € A for ai,az € A and be G.

Here we call this ideal A a g-ideal to avoid the confusion. We begin with
the fuzzification of the above g-ideal.

DEFINITION 3.2. A fuzzy set p in a BCC-algebra G is called a fuzzy g-
ideal if it satisfies
(FK1) 1(0) > p(a), YaeG,
(FI1) w(ab) > p(a), VYa,be G,
(FI2) p(b(bar - az)) > minfp(ar), plas)}, b,a1,az € G.

Observe that (FK1) follows from (FI1) and (2). Using (FI1) we know
that every fuzzy g-ideal is a fuzzy subalgebra. Moreover, putting a; = a and
as = 0 in (FI2) we obtain the following proposition.

ProprosITION 3.3. If i is a fuzzy g-ideal of a BCC-algebra G, then
w(b-ba) > p(a), Va,bed.

COROLLARY 3.4. Every fuzzy g-ideal p of a BCC-algebra G is order re-
versing, i.e., if © <a then u(x) > u(a) for all a,z € G.

PRrROOF. If z,a € G are such that = < a, then u(z) = p(x0) = p(z-za) >
u(a), which completes the proof. O

THEOREM 3.5. A fuzzy set p in a BCC-algebra G is a fuzzy g-ideal if and
only if it is a fuzzy BCC-ideal.
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PROOF. Let i be a fuzzy g-ideal and let a,z,y € G. Then

w(zry) = p(ry - 0)
= p(zy - ((zy - (za - y))(z - za)))
> min{p(za - y), p(z - va)}
= min{u(za - y), p(a)},

which shows that p satisfies (FC1). Hence p is a fuzzy BCC-ideal.

Conversely, let p be a fuzzy BCC-ideal. Then u(y) < p(z) for all z < y.

Indeed,
px) = p(@0) = p(z - wy) > min{u(zy - zy), py)}
= min{u(0), u(y)} = ().
Moreover, for all a,z € G, we have
plaz) > min{p(aa - x), u(a)}
= minfu(02). ()}
= min{u(0), fi(a)} = u(a),
which proves (FI1). To prove (FI2), let x,a1,a2 € G. Note that
p(o - war) > min{u(zar - war), p(ar)}
= min{u(0), p(a1)} = p(ar).
Since zas - (zay - az) < x - xaq by (8), then
m(zas - (zay - az)) > p(z - zar) > plar).
By using (FC1), we see that
p(e(zar - az) > min{u(zas - (var - a2)), p(az)}
> min{u(a), p(az)},
which proves (FI2). Hence p is a fuzzy g-ideal.

O

THEOREM 3.6. Let p be a fuzzy set in a BCK-algebra G. Then p is a

fuzzy g-ideal if and only if p is a fuzzy BCK-ideal.

PROOF. Since every BCK-algebra is a BCC-algebra, every fuzzy g-ideal
is a fuzzy BCC-ideal (see Theorem 3.5) and hence a fuzzy BCK-ideal. Let p

be a fuzzy BCK-ideal. Then
plaz) > minfju(as - a), (o)}

which shows (FI1). Now let z,a1,a2 € G. Using (6), (8) and (II), we have

x(zay - ag) - as = zas - (zray - az) < x-zay < aj.
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Since every fuzzy BCK-ideal of a BCK-algebra is order reversing, it follows
that p(z(xay - az) - az2) > p(ar), and hence using (FK2) we obtain

p(x(zay - ag)) > min{p(z(zar - az) - az), p(az)}
> min{u(a1), paz)},

which proves that p satisfies (FI12). This completes the proof. O

The following example shows that a fuzzy BCK-ideal of a BCC-algebra may
not be a fuzzy g-ideal.

EXAMPLE 3.7. Consider a BCC-algebra G = {0,a,b, ¢, d} with Cayley
table as follows (cf. [9]):

-|0abcd
0(0 0 0 0 O
ala 0 0 0 O
bib b 0 0 O
cle ¢ a 0 O
dld ¢ d ¢ 0

Let p be a fuzzy set in G defined by

M(J?) — { t if x € {0,(1},

to otherwise,

where t; > t5 in [0,1]. Tt is easy to verify that p is a fuzzy BCK-ideal of G,
but it is not a fuzzy g-ideal since

p(d(da - a)) =tz < t; = min{u(a), p(a)}.

PRrROPOSITION 3.8. Let A be a non-empty subset of a BCC-algebra G and
let u be a fuzzy set in G defined by

t1 ifac€A,
pa) = {

otherwise,

where t; > to in [0,1]. Then p is a fuzzy g-ideal of G if and only if A is a
g-ideal of G.

PROOF. Assume that p is a fuzzy g-ideal of G. Since p(0) > u(a) for
all @ € G, we have p(0) = t; and so 0 € A. Let a € A and b € G. Then
w(ab) > u(a) = t; and thus p(ab) = t1. Hence ab € A. For any aj,as € A
and b € G, we get pu(b(bay - az)) > min{u(a1), p(az)} = t1 which implies that
w(b(bay - az)) = t1. It follows that b(bay - az) € A. Therefore A is a g-ideal of
G.

Conversely suppose that A is a g-ideal of GG. Since 0 € A, it follows that
1(0) =t1 > p(a) for all a € G. Let a,b € G. If a € A, then ab € A and so
pu(ab) =t1 = p(a). If a € G\ A, then p(a) = t2 and hence p(ab) > ta = p(a).
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Finally let aq,a2,b € G. If a3 € G\ A or az € G\ A, then u(a;) = t3 or
ulag) = to. Tt follows that
pu(b(bay - az)) = t2 = min{p(ar), p(az)}
Assume that aq,a2 € A. Then b(ba; - a2) € A and thus
p(b(bay - az)) = t1 = min{pu(a1), p(az)}-
Hence p is a fuzzy g-ideal of G. O
LEMMA 3.9. ([5]). An initial segment [0,c]:={z € G:0<z <c}ofa

BCC-algebra G is a g-ideal if and only if the inequality z(xzc-c¢) < ¢ holds
forall z €@.

If we combine Proposition 3.8 with Lemma 3.9, then we have the following
theorem.

THEOREM 3.10. Let u be a fuzzy set in a BCC-algebra G defined by

(z) = t1 ifze|0,c,
)= to otherwise,

where ¢1 > t2 in [0,1]. Then p is a fuzzy g-ideal if and only if the inequality
z(zc-¢) < cholds for all z € G.

As a simple consequence of the above Theorem and [10, Proposition 2.7]
we obtain

COROLLARY 3.11. Let p be as in Theorem 3.10. Then
(i) p is a fuzzy g-ideal if and only if zc-y < ¢ implies zy < c for all z, y € G.
(ii) p is a fuzzy g-ideal if and only if zc < ¢ implies 2 < ¢ for all z € G.

4. FuUzzZY CHARACTERISTIC g-IDEALS

For an endomorphism f of a BCC-algebra G and a fuzzy set p in G, we
define a new fuzzy set u/ in G by pf(x) = u(f(x)) for all z € G.

PROPOSITION 4.1. Let f be an endomorphism of a BCC-algebra G. If p
is a fuzzy g-ideal of G, then so is uf.

ProOF. We first have that uf(z) = pu(f(x)) < u(0) = u(f(0)) = p/(0)
for all z € G. Let a,b € G. Then
p! (ab) = p(f(ab)) = u(f(a) f(b)) = p(f(a)) = p! (a),
proving the condition (FI1). Finally for any b, a1, a2 € G we get
! (b(bar - az)) = u(f(b(bas - az)))
= u(f(0)(f(b)f(a1) - f(az)))
= min{pu(f(a1)), p(f(az))}
= min{u/ (a1), p' (a2)},
ending the proof. O
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DEFINITION 4.2. A g-ideal A of a BCC-algebra G is said to be char-
acteristic if f(A) = A for all f € Aut(G), where Aut(G) is the set of all
automorphisms of G.

DEFINITION 4.3. A fuzzy g-ideal p of a BCC-algebra G is said to be fuzzy
characteristic if u/ (z) = u(x) for all x € G and f € Aut(G).

LEMMA 4.4. Let p be a fuzzy set in a BCC-algebra G and let ¢ € Im(p).
Then p is a fuzzy g-ideal of G if and only if the level subset

pr = A{z € Glu(x) = t}
is a g-ideal of G, which is called a level g-ideal of p.

PROOF. Assume that p is a fuzzy g-ideal of G. Clearly 0 € u;. Let
a € pr and b € G. Then u(a) > t and so p(ab) > p(a) > ¢, which implies that
ab € put. Now let a1,a2 € puy and b € G. Then

p(b(bay - az)) = min{pu(ar), plaz)} = ¢
and thus b(ba; - a2) € ;. Hence p; is a g-ideal of G.

Conversely suppose that p; is a g-ideal of G. If there exists a9 € G
such that p(0) < p(ag), then 1(0) < 3(u(0) + p(ag)) < p(ag) and hence
ap € ps where s = 1(p(0) + p(ag)). Since 0 € p,, we have p(0) > s, a
contradiction. Assume that u(aoby) < p(ag) for some ag,bg € G. Taking
u = %(,u(aobo) + 1(ag)), then p(aghy) < u < p(ag) and thus ag € p, and
aobg & - This is a contradiction. Finally suppose that there exist a1, a2,b €
G such that

p(b(bay - az)) < min{u(ar), p(az)}-
If we take v = 3 (pu(b(bay - az)) +min{yu(ar), p(az)}), then p(b(bay - asz)) < v <
min{p(a1), pu(az)} and so ai,az € u, and b(ba; - az) & py, a contradiction.
This completes the proof. 0

LEMMA 4.5. Let u be a fuzzy g-ideal of a BCC-algebra G and let x € G.
Then p(x) =t if and only if x € u; and © & pg for all s > ¢.

PROOF. Straightforward. O

THEOREM 4.6. For a fuzzy g-ideal p of a BCC-algebra G, the following
are equivalent:
(i) p is fuzzy characteristic.
(ii) Each level g-ideal of u is characteristic.

PROOF. Assume that p is a fuzzy characteristic and let ¢t € Im(u), f €
Aut(G) and = € py. Then pf(z) = p(z) > t, ie., u(f(x)) > t, and so
f(x) € py, ie, f(uet) C pe. Now let € g and let y € G be such that
f(y) = @ Then p(y) = p/(y) = u(f(y)) = w(x) > t, whence y € s, so that

v = f(y) € fu). Consequently iy C f(u). Hence f(ue) = i and g is
characteristic.
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Conversely suppose that each level g-ideal of y is characteristic and let
x € G, f € Awt(G) and p(x) = t. Then, by virtue of Lemma 4.5, € pq
and x & us for all s > ¢t. It follows from hypothesis that f(x) € f(ut) = p,
so that pf(2) = pu(f(z)) > t. Let s = u/(z) and assume that s > ¢. Then
f(@) € pus = f(us), which implies from the injectivity of f that x € pus, a
contradiction. Hence uf(z) = pu(f(z)) =t = u(x) showing that u is fuzzy
characteristic. O

5. CARTESIAN PRODUCT OF FUZZY g-IDEALS

DEFINITION 5.1. ([1]). A fuzzy relation on any set S is a fuzzy set
S xS —[0,1].

DEFINITION 5.2. ([1]). If p is a fuzzy relation on a set S and v is a fuzzy
set in S, then u is a fuzzy relation on v if

p(z,y) < min{v(z),v(y)}, Vo,yeSs.

DEFINITION 5.3. ([1]). Let u and v be fuzzy sets in a set S. The Cartesian
product of u and v is defined by

(1 x v)(z,y) = min{u(x), v(y)}, Vz,y €S

LEMMA 5.4. ([1]). Let 4 and v be fuzzy sets in a set S. Then
(i) p X v is a fuzzy relation on S,
(ii) (X v)y = pg X vy for all t € [0, 1].

DEFINITION 5.5. ([1]). If v is a fuzzy set in a set S, the strongest fuzzy
relation on S that is a fuzzy relation on v is u,, given by

Nu(xay) = min{y(x), V(y)}7 Va,y € S.

LEMMA 5.6. ([1]). For a given fuzzy set v in a set S, let u, be the strongest
fuzzy relation on S. Then for ¢ € [0, 1], we have that () = v4 X v4.

ProprosITION 5.7. For a given fuzzy set v in a BCC-algebra G, let u,
be the strongest fuzzy relation on G. If pu, is a fuzzy g-ideal of G x G, then
v(a) <v(0) for all a € G.

PROOF. From the fact that u, is a fuzzy g-ideal of G x G, it follows from
(FK1) that py(a,a) < p,(0,0) for all a € G, where (0, 0) is the zero element of
G x G. But this means that min{r(0),v(0)} > min{v(a),v(a)}, which implies
that v(0) > v(a). O

The following proposition is an immediate consequence of Lemma 5.6, and we
omit the proof.

ProrosiTiON 5.8. If v is a fuzzy g-ideal of a BCC-algebra G, then the
level g-ideals of u, are given by (u,): = 14 x vy for all ¢t € [0, 1].
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THEOREM 5.9. Let p and v be fuzzy g-ideals of a BCC-algebra GG. Then
w X vis a fuzzy g-ideal of G x G.

PRrROOF. Note first that for every (z,y) € G x G,

(1 x 1)(0,0) = min{u(0), ¥(0)} = min{u(z), v(y)} = (1 v)(w,1).
Let (al,ag), (bl,bg) € G x G. Then

(1 x v)((a1,az) * (b1, b2)) = (1 x v)(a1b1, azbs)
= min{y(a1b1), v(azbz)} = min{p(a1), v(az)} = (1 x v)(a1, az).

For any (b1,b2), (71, %2), (y1,92) € G x G, we have

(1 X v)((b1,02) * (((b1,b2) * (w1, 22)) * (Y1, Y2)))
= (u x v)((b1,b2) * ((brz1, b22) * (Y1, Y2)))

= (u x v)((b1,b2) * (biz1 - Y1, baza - Y2))

(1 x v)(b1(br1 - Y1), b2(b2w2 - y2))

min{p(by (b171 - y1)), v(b2(b2w2 - y2))}
min{min{zx(z1), u(y1)}, min{v(zz), v(y2)} }
min{min{p(z1), v(z2)}, min{u(y1), v(y2)}}
= min{(u x v)(z1,22), (1 X V)(y1,92)}.

Hence p x v is a fuzzy g-ideal of G x G. o

v

THEOREM 5.10. Let p and v be fuzzy sets in a BCC-algebra G such that
1 X v is a fuzzy g-ideal of G x G. Then
(i) either p(x) < u(0) or v(z) < v(0) for all x € G.
(i) if p(x) < p(0) for all = € G, then either u(z) < v(0) or v(z) < v(0).
(iii) if v(z) < v(0) for all z € G, then either p(x) < p(0) or v(z) < u(0).
(iv) either p or v is a fuzzy g-ideal of G.

PROOF. (i) Suppose that u(z) > 1(0) and v(y) > v(0) for some z,y € G.
Then (uxv)(z,y) = min{ju(z), v(y)} > mingu(0), 1(0)} = (4x1)(0,0), which
is a contradiction and we obtain (i).

(ii) Assume that there exist z,y € G such that p(xz) > v(0) and v(y) >
v(0). Then (u x v)(0,0) = min{x(0),»(0)} = v(0) and hence

(1 x v)(@,y) = min{u(z),v(y)} > v(0) = (1 x v)(0,0).
This is a contradiction. Hence (ii) holds.

(iii) is by similar method to part (ii).

(iv) Since, by (i), either p(z) < u(0) or v(z) < v(0) for all z € G, without
loss of generality we may assume that v(z) < v(0) for all x € G. It follows
from (iii) that either p(z) < w(0) or v(x) < wu(0). If v(xr) < wp(0) for any
x € G, then

—~ =

v(z) =min{p(0),v(z)} = (1 x v)(0,z)
< (1 x v)((0,2) * (y1,92)) = (1 X v)(0y1, TY2)
= (1 x v)(0, vy2) = v(zy2)
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for all x,y1,y2 € G, which proves that v satisfies the condition (FI1). Now

min{(ar), v(a2)}

= min{min{4(0), v(a1)}, min{.(0), v(az) }}
min{(M X V)(O’ a’l)a (/J X V)(07a2)}

(1 x V) ((br,b2) * (((b1,b2) * (0,a1)) * (0, a2)))
(1 x 2)((b1.b3) * (b10 - 0,b301 - a3))

= (1 X v)((b1, b2) * (b1, b2a1 - az))

([IJ X I/)(blbl, bg(b2a1 . (ZQ))

(M X l/) O b2(b2a1 . ag))

= min{4(0), v(bz(b2a1 - az))}

= I/(bQ(bgal . (ZQ))

for all a;,b; € G, i =1,2; j = 1,2. Hence v is a fuzzy g-ideal of G. Now we
consider the case p(z) < p(0) for all z € G. Suppose that v(y) > p(0) for some
y € G. Then v(0) > v(y) > p(0). Since u(0) > p(x) for all x € G, it follows
that v(0) > p(x) for any x € G. Hence (uxv)(x,0) = min{pu(x),v(0)} = p(z)
for all z € G. Thus

(@) = (pxv)(2,0) < (ux v)((x,0) * (y1,y2))
= (u x v)(zy1,0y2) = (u x v)(zy1,0) = p(zyr)

for all x,y1,y2 € G. Moreover

IHIA

min{y(a1), p(az)}
= min{(u x v)(a1,0), (1 x v)(az,0)}
< (u x v)((b1,b2) * (((b1,b2) * (a1,0)) * (az,0)))
= (M X l/)((bl,bg) (b1a1 ag,bQO O))
(1 x v)(b1(bray - az), babs)
= (1 x v)(bi(bras - a2),0)
= p(b1(bray - az))

for all a;,b; € G, i =1,2; j = 1,2, which proves that p is a fuzzy g-ideal of
G. This completes the proof. O

Now we give an example to show that if u x v is a fuzzy g-ideal of G x G,
then p and v both need not be fuzzy g-ideals of G.

EXAMPLE 5.11. Let G be a BCC-algebra with |G| > 2 and let s,t € [0,1)
be such that s < ¢. Define fuzzy sets p and v in G by p(z) = s and

V(x):{ t ifx:Q,

1 otherwise,

for all z € G, respectively. Then (u x v)(z,y) = min{u(z),v(y)} = s for all
(z,y) € G x G, that is, p X v is a constant function and so p X v is a fuzzy
g-ideal of G x G. Now p is a fuzzy g-ideal of G, but v is not a fuzzy g-ideal
of G since for x # 0 we have v(0) =t < 1 = v(x).
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THEOREM 5.12. Let v be a fuzzy set in a BCC-algebra G and let u, be
the strongest fuzzy relation on G. Then v is a fuzzy g-ideal of G if and only
if p, is a fuzzy g-ideal of G x G.

PROOF. Assume that v is a fuzzy g-ideal of G. Clearly p,,(0,0) > u,(z,y)
for any (z,y) € G x G. Now
ty(ar,a2) = min{r(ay),v(az)} < min{v(ai1b1),v(azb2)}
= piv(a1b1, azb2) = v ((a1, az) = (b1, b2))
for all (al,ag), (bl,bg) e G x G and
min{uy (a1, az2), pw (b1, b2)}
= min{min{v(a1),v(az2)}, min{v(by),v(b2)}}
= min{min{v(a1),v(b1)}, min{r(az),v(b2)}}
< min{v(z(zay - b)), v(y(yaz - b2))}
= p(x(way - b1),y(yaz - bz))
= p((z, ) * (((z,y) * (a1, a2)) * (b1, b2)))
for all (z,vy), (a1, a2), (b1,b2) € G x G. Hence p,, is a fuzzy g-ideal of G x G.
Conversely suppose that u, is a fuzzy g-ideal of G x G. Then

min{v(0),(0)} = 1,(0,0) > po (2, y) = min{v (), v(y)}
for all (z,y) € G x G. Tt follows that v(z) < v(0) for all z € G. Now we have
v(a) =min{v(a),v(0)} = u(a,0) < u((a,0) * (b1, b2))
= p(aby,0b2) = py(aby,0) = min{v(aby),v(0)} = v(aby)

for all a,b; € G, and

min{min{v (a1 ), v(az2)}, min{v(by),v(b2)}}

= min{ﬂv(ala a2)a My (bla b2)}

< w((z,y) * (((z,y) * (a1, az)) * (b1, b2)))

= pw(z(zay - br),y(yas - ba))

= min{v(z(zay - b)), v(y(yas - b2))}
for all (x,y), (a1,a2), (b1,b2) € Gx G. Taking az = by =0 (resp. a1 = by =0)
and using (2) and (4), then

min{v(a1),v(b1)} < v(z(zay - b1))

(resp. min{v(az),v(b2)} < v(z(xzasz - bs2))).
Hence v is a fuzzy g-ideal of G. O
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