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1 Motivation

Global warming is affecting the Earth climate year by year, the biggest difference being observ-
able in increasing temperatures in the World Ocean. In particular, coral reefs are increasingly
threatened worldwide as they are sensitive to modest increases in background seawater temper-
ature (Cantin et al., 2010). Studies have shown that persistent high sea temperatures can result
in substantial coral bleaching and some cases coral mortality; see, e.g., McClanahan et al. (2007).

In this data mining competition, the goal is to analyse and predict the joint tail behavior of
extreme sea surface temperature (SST) anomalies for the whole Red Sea, a warm semi-enclosed
sea which hosts one of the largest reef systems in the world (Chaidez et al., 2017).

2 Data

2.1 Original Data and Preprocessing

Daily gridded data at a spatial resolution of 1/20◦ (i.e., the internodal grid length is approx-
imately 5.5km) are produced for the period 1985–2015 by the Operational Sea Surface Tem-
perature and Sea Ice Analysis (OSTIA) system. This data product is based on satellite data
provided by international agencies, as well as in situ data from ships and buoys, in order to
produce accurate SST estimates; see Donlon et al. (2012) for more details.

Figure 1 shows temperature time series for three locations, while Figure 2 displays the spatial
variability of the data for August 5, 2000. As expected, the data show a clear seasonal pattern
and a North–South temperature gradient. There are many ways to deal with this non-stationary
behavior. Let Y (s, t) denote the Red Sea surface temperature observed at location s ∈ S ⊂ R2

and time t ∈ T = {1, . . . , T}. The Red Sea S is discretized into S = 16703 grid cells, and there
are T = 11315 days in total, giving about 188 million data points. Here, we decompose Y (s, t)
into a mean effect µ(s, t) and the anomaly (or residual component) A(s, t), i.e.,

Y (s, t) = µ(s, t) + A(s, t).

As the data appear to be roughly stationary year-by-year during the period 1985–2015, we simply
estimate µ(s, t) by computing the temperature average for each specific grid cell and each day of
the year (by pooling together the 31 years). We then smooth the estimated mean by computing,
for each grid cell separately, a moving average over windows of size one week. This yields the
estimated mean effect µ̂(s, t), and the estimated anomalies Â(s, t) are obtained as

Â(s, t) = Y (s, t)− µ̂(s, t).

⇒ The different teams participating to this competition are directly working with (a subset of)

the anomalies Â(s, t), and do not have access to the original data Y (s, t).
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Figure 1: Sea surface temperature time series during the entire period 1985–2015 (black) for
three locations in the Red Sea (top to bottom panels correspond to North to South locations);
see Figure 2 for the exact locations. The estimated temperature mean is shown in red.
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Red Sea surface temperature data (Aug 5, 2010)
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Temperature mean (Aug 5, 2010)
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Temperature anomalies (Aug 5, 2010)

Figure 2: Sea surface temperature data Y (s, t) for the whole Red Sea (left), its estimated mean
µ(s, t) (middle), and the resulting temperature anomaly A(s, t) (right) for August 5, 2000. Com-
plete time series at three highlighted locations (black dots) are shown in Figure 1.

2.2 Training and Validation Datasets

For this competition, about 31.6% of the original anomaly data are artificially masked (at various
places in space and time) by introducing missing values (NAs in R). As illustrated in Figure 3,
data may be missing over fairly large spatial areas for a whole month or more. The missing data
mechanism is independent of the observable variables.
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Training data (Feb 10, 2007)
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Training data (Aug 5, 2010)
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Figure 3: Training data, consisting of sea surface temperature anomalies, here shown for three
specific days: February 10, 2007 (left), August 5, 2010 (middle), and October 15, 2013 (right).
Grey areas correspond to missing values, and (overlaid) black dots are validation locations.

⇒ The training dataset (available to the teams) consists of all non-missing temperature
anomaly values. It is indexed by the subset XT ⊂ X = S × T .

⇒ The validation dataset (not available to the teams) consists of a subset of the missing values.
It is indexed by the subset XV ⊂ X \ XT ⊂ X = S × T , which comprises 500 randomly
selected spatial locations for the 5th, 15th and 25th of each month from 2007 to 2015. Its
size is |XV | = 500 (locations)× 3 (days per month)× 12 (months)× 9 (years) = 162000.
The full index set XV (of spatio-temporal locations) is provided to the teams as an R vector.

The intersection between the training and validation sets is empty. That is, XT ∩ XV = ∅.

3 Goal, Evaluation Criterion and Benchmark

3.1 Setting and General Objective

The most devastating ecological and environmental degradations are often caused by large-scale
extreme temperature events, which are persistently hotter than their usual level and can simul-
taneously affect an entire region over a period of time.

For each space-time location (s, t) ∈ X = S ×T , consider a local neighborhood N (s, t) ⊂ X .
Here we take N (s, t) to be a ‘vertical space-time cylinder’, i.e.,

N (s, t) = {B(s, r)× {t− 3, t− 2, t− 1, t, t+ 1, t+ 2, t+ 3}} ∩ X ,

where B(s, r) is a ball centered at location s of radius r = 50km. Note that data are missing three
days before and after each point (s, t) ∈ XV in the validation set. We define spatio-temporal
extremes as events such that

X(s, t) = min
(s̃,t̃)∈N (s,t)

Â(s̃, t̃) > u, (1)

for some large threshold u, where Â(s, t) denotes the estimated temperature anomalies.
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⇒ In other words, an event is extreme if the sea surface temperature is simultaneously larger
than its mean by u◦C for at least one week over a (circular) area of radius 50km.

The general objective of this competition is to accurately predict the distribution of X(s, t)
defined in (1) for all space-time locations in the validation set, i.e., for all (s, t) ∈ XV ⊂ X = S×T .

3.2 Evaluation Criterion

Let F̂s,t(x) denote the predicted distribution (or ‘probabilistic forecast’) for X(s, t), assumed to
have a finite first moment. In order to verify the calibration and sharpness of the predicted
distribution F̂s,t(x), while focusing on the upper tail, we use the threshold-weighted continuous
ranked probability score (twCRPS) defined as

twCRPS(F̂s,t, xs,t) =

∫ ∞
−∞
{F̂s,t(x)− I(xs,t ≤ x)}2w(x)dx, (2)

where I(·) is the indicator function, xs,t is the observed (realized) value of X(s, t), w(x) =
Φ{(x−1.5)/0.4} and Φ(·) denotes the standard normal distribution. The chosen weight function
w(x) is depicted in Figure 4.
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Figure 4: Weight function w(x) = Φ{(x− 1.5)/0.4} used for computing the twCRPS.

Although the twCRPS requires the full distribution F̂s,t(x), it puts the emphasis on tempera-
ture anomaly values greater than u ≈ 1◦C. The twCRPS is a proper scoring rule with our choice
of weight function w(x); see Gneiting and Raftery (2007), Gneiting and Ranjan (2011), Lerch
and Thorarinsdottir (2013), and Lerch et al. (2017).

To compute the twCRPS in practice, we restrict the integral in (2) to the interval [−1, 3] and
make the following approximation:

twCRPS(F̂s,t, xs,t) ≈ ̂twCRPS(F̂s,t, xs,t) =
1

100

400∑
k=1

{F̂s,t(x
k)− I(xs,t ≤ xk)}2w(xk),

where the ‘design points’ are set to xk = −1 + k/100, k = 1, . . . , 400.

The overall prediction accuracy is then assessed by averaging the ̂twCRPS values over the
validation set XV ⊂ X = S × T , i.e.,

twCRPS =
1

|XV |
∑

(s,t)∈XV

̂twCRPS(F̂s,t, xs,t).

The final ranking of the different teams will be based on twCRPS. Lower values are better.
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3.3 Benchmark

We construct a benchmark prediction by following two basis steps:

(i) Spatio-temporal minimum: From the training dataset of anomalies Â(s, t), we compute the

spatio-temporal minimum xs,t = min(s̃,t̃)∈N (s,t) Â(s̃, t̃) for all points (s, t) ∈ X that have
complete neighborhoods N (s, t) (i.e., with no missing values).

(ii) Benchmark prediction: Then, assuming spatio-temporal stationarity, the benchmark pre-

diction F̂ ben
s,t is defined for each location (s, t) ∈ XV as the empirical distribution function

obtained by pooling together all available data xs,t over space and time.

4 Deliverables

Each team has to provide a matrix (of class “matrix” in R) with the following properties:

1. The matrix should be called prediction, and saved into an R object called
prediction_name-of-team.RData (using the R function save(...));

2. The matrix should be of dimension |XV | × 400 = 162000× 400;

3. The (j, k)th entry of the matrix should contain

F̂sj ,tj(x
k), (sj, tj) ∈ XV .

As mentioned above, we use xk = −1 + k/100, k = 1, . . . , 400; In other words, each row of
the matrix should contain the predicted distribution, evaluated at each of the 400 design
points xk, for the j-th space-time location (sj, tj) in the validation set XV .

In addition, each team has to provide a clean and commented R code to be able to reproduce the
results if needed.

Each team will be provided with a dropbox folder to submit the results and the code.

5 Timeline and Final Deadline

1. Preliminary prediction 1 (optional): March 31, 2019 (Sunday)

2. Preliminary prediction 2 (optional): May 12, 2019 (Sunday)

3. Final prediction: June 9, 2019 (Sunday) at 23:59 UTC

4. EVA 2019 Conference: July 1–5, 2019.

Each team can submit up to two preliminary predictions to verify their approach and improve
their model. The final ranking, however, will be based on the final prediction only. Preliminary
and final rankings (along with twCRPS values) will be posted on the conference webpage.
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6 Rules

1. There is no limit to the number of teams or team members.

2. Only the final submission will be taken into account to rank the teams.

3. Submission of preliminary predictions is not mandatory, but highly encouraged.

4. Results must be submitted as specified above in §4, and the submitted R code must be
clean and properly commented to be able to reproduce the results if needed.

5. Reverse engineering, or the use of other data sources (such as extra covariates, etc.), is
strictly prohibited.

6. Late submissions will not be considered.

7. Failure to comply with the above rules may result in disqualification.

7 Rewards

1. The best-ranked teams will be invited to present their work in an invited session at the
EVA 2019 conference organized in Zagreb, Croatia, during the week of July 1–5, 2019.

2. After the EVA 2019 conference, all the teams will be invited to submit a paper describing
their approach for publication in the journal Extremes. The submitted papers will undergo
a usual peer-reviewed process (with the same quality standards and acceptance criteria).

8 Getting Started

1. Register your team (and specify a team name) by sending an email to Raphaël Huser at
raphael.huser@kaust.edu.sa. You will then be sent the data, the main R script to load the
data, as well as the dropbox folder to submit your predictions.

2. Open an R terminal, open the script Competition.R, and read the instructions.

References

Cantin, N. E., Cohen, A. L., Karnauskas, K. B., Tarrant, A. M. and McCorkle, D. C. (2010)
Ocean warming slows coral growth in the central Red Sea. Science 329(5989), 322–325.

Chaidez, V., Dreano, D., Agusti, S., Duarte, C. M. and Hoteit, I. (2017) Decadal trends in Red
Sea maximum surface temperature. Scientific Reports 7(8144), 1–8.

Donlon, C. J., Martin, M., Stark, J., Roberts-Jones, J., Fiedler, E. and Wimmer, W. (2012) The
Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sensing
of Environment 116, 140–158.
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