# On homogenization of liquid crystals

G.A.CHECHKIN & T.P.CHECHKINA

M.V.Lomonosov Moscow State University

&

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

# Liquid crystals



Figure 1: The structure of smectic (left), nematic calamitic and discotic (center) and cholesteric (right) liquid crystals.

The Ericksen-Leslie system describing the dynamics of nematic liquid crystals, has the form

$$\begin{cases} \dot{\mathbf{u}} - \mu \Delta \mathbf{u} = -\nabla p - \frac{\partial}{\partial x_j} \left( \frac{\partial \mathcal{F}}{\partial \mathbf{n}_{x_j}} \cdot \nabla \mathbf{n} \right) + \mathbf{F} + f, & \text{div } \mathbf{u} = 0, \\ J\ddot{\mathbf{n}} - 2q\mathbf{n} + \mathbf{h} = g + \mathbf{G}, & \|\mathbf{n}\| = 1, \end{cases}$$
(1)

where summation on repeated indices is understood and  $\mathbf{n}_{x_j} := \frac{\partial}{\partial x_j} \mathbf{n}$ . Here,  $\mathbf{u}$  is the spatial velocity vector field (the Eulerian),  $\mathbf{n}$  is the director field,  $\mu > 0$  is the viscosity coefficient, J > 0 is the moment of inertia of the molecule,  $\mathbf{F}(x,t)$  and  $\mathbf{G}(x,t)$  are given external forces, and  $\mathbf{i} := \frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla$  is the material derivative. The terms f and g correspond to the dissipative part of the stress tensor and intrinsic body force, respectively, and they depend on  $\mathbf{u}$ ,  $\mathbf{n}$ . The Oseen-Zöcher-Frank free energy  $\mathcal{F}(\mathbf{n}, \nabla \mathbf{n})$  is defined by

$$\mathcal{F} := K\mathbf{n} \cdot \operatorname{curl} \mathbf{n} + \frac{1}{2} \left( K_1 (\operatorname{div} \mathbf{n})^2 + K_2 (\mathbf{n} \cdot \operatorname{curl} \mathbf{n})^2 + K_3 \|\mathbf{n} \times \operatorname{curl} \mathbf{n}\|^2 \right).$$

The molecular field h is defined by

$$\mathbf{h} := \frac{\partial \mathcal{F}}{\partial \mathbf{n}} - \frac{\partial}{\partial x_j} \left( \frac{\partial \mathcal{F}}{\partial \mathbf{n}_{x_j}} \right).$$

The pressure p and the Lagrange multiplier 2q are determined, respectively, by  $\operatorname{div} \mathbf{u} = 0$  and  $\|\mathbf{n}\| = 1$ . Since the liquid crystal is nematic, we necessarily have K = 0. We assume that

$$K_1 > 0, \quad K_2 = K_3 > 0,$$
 (2)

which includes the important case of the one constant approximation. In this case, the  $i^{
m th}$  component of the molecular field has the expression

$$h_i = (K_2 - K_1)\mathbf{n}_{kx_kx_i} - K_2\mathbf{n}_{ix_kx_k} + q'\mathbf{n}_i,$$

where q' is a scalar function depending on  $\mathbf{n}$  and its derivatives. We are interested in the non-dissipative case, i.e., f = g = 0.

Define linear differential operator  $\mathcal{L}$  by

$$\mathcal{L}\mathbf{v} := (K_2 - K_1)\nabla(\operatorname{div}\mathbf{v}) - K_2\Delta\mathbf{v}. \tag{3}$$

Given the Ericksen-Leslie system (1), define the new vector field

$$\nu := \mathbf{n} \times \dot{\mathbf{n}}$$
.

With all these hypotheses and notations, system (1) becomes

$$\dot{\mathbf{u}} - \mu \Delta \mathbf{u} = -\nabla p + (\mathcal{L}\mathbf{n} \cdot \nabla \mathbf{n}) + \mathbf{F}, \quad \text{div } \mathbf{u} = 0, \tag{4}$$

$$J\dot{\boldsymbol{\nu}} = \mathcal{L}\mathbf{n} \times \mathbf{n} + \mathbf{n} \times \mathbf{G},\tag{5}$$

$$\dot{\mathbf{n}} = \boldsymbol{\nu} \times \mathbf{n},$$
 (6)

with unknowns  $\mathbf{u}$ ,  $\boldsymbol{\nu}$ ,  $\mathbf{n}$ . Thus, the Ericksen-Leslie system (1) implies the new first order system (4)–(6).

Conversely, if the initial conditions of the first order system (4)–(6) satisfy the identities

$$\|\mathbf{n}(x,0)\| = 1, \quad \mathbf{n}(x,0) \perp \boldsymbol{\nu}(x,0),$$

at time t = 0, then for any t > 0 we have

$$\|\mathbf{n}\| \equiv 1, \quad \mathbf{\nu} = \mathbf{n} \times \dot{\mathbf{n}}, \quad 2q = \mathbf{n} \cdot \mathbf{h} - J\|\mathbf{\nu}\|^2,$$

and (4)–(6) turns into (1). Thus, under these hypotheses on the initial conditions, the first order system (4), (5), (6) is equivalent to the original Ericksen-Leslie system (1)

We focus on the system (4)–(6) (with  $J \neq 0$ , which differs from the case studied in the preceding papers) and prove existence and uniqueness of solutions for 3-dimensional periodic media as well as for the problem in a bounded domain.

### Periodic media. Notation and definitions

Let  $Q_T:=(0,T)\times \mathbb{T}$ , where  $\mathbb{T}=\mathbb{R}^3/\mathbb{Z}^3$  is the 3-dimensional torus. We shall study the system (4)–(6) in  $Q_T$  with initial conditions

$$\mathbf{u}(0,x) = \mathbf{u}_0, \quad \mathbf{\nu}(0,x) = \mathbf{\nu}_0, \quad \mathbf{n}(0,x) = \mathbf{n}_0.$$
 (7)

Here  $\mathbf{u}$ ,  $\boldsymbol{\nu}$ ,  $\mathbf{n}$  are unknown vector fields, p is an unknown scalar function, and J,  $K_i$ ,  $\mu$  are fixed strictly positive numbers.

### Periodic media. Notation and definitions

- $L_2(\mathbb{T}) := \{ \mathbf{v} : \mathbb{T} \to \mathbb{R}^3 \mid ||\mathbf{v}||_2^2 := \int_{\mathbb{T}} ||\mathbf{v}||^2 d\mathbf{x} < \infty \};$
- $W_2^m(\mathbb{T})$  is the Sobolev space of functions on  $\mathbb{T}$  having m distributional derivatives in  $L_2(\mathbb{T})$ ;
- for any  $\mathbf{v} \in W_2^m(\mathbb{T})$ ,  $m \in \mathbb{N}$ , define

$$||D^m \mathbf{v}||_2^2 := \sum_{i_1 + i_2 + i_3 = m} \left\| \frac{\partial^m \mathbf{v}}{\partial x_1^{i_1} \partial x_2^{i_2} \partial x_3^{i_3}} \right\|_2^2;$$

- $Sol(\mathbb{T}) := \{ \mathbf{v} : \mathbb{T} \to \mathbb{R}^3 \mid \mathbf{v} \in C^{\infty}(\mathbb{T}), \operatorname{div} \mathbf{v} = 0 \};$
- $Sol(Q_T) := \{ \mathbf{v} \in C^{\infty}(Q_T) \mid \mathbf{v}(t, \cdot) \in Sol(\mathbb{T}), \forall t \in (0, T) \};$
- $Sol_2(\mathbb{T})$  is the closure of  $Sol(\mathbb{T})$  in the norm  $L_2(\mathbb{T})$ ;
- $Sol_2^m(\mathbb{T})$  is the closure of  $Sol(\mathbb{T})$  in the norm  $W_2^m(\mathbb{T})$ .

### Periodic media. Notation and definitions

**Definition** 1. A quadruple  $(\mathbf{u}, \boldsymbol{\nu}, \mathbf{n}, \nabla p)$  is a strong solution of problem (4)–(7) in the domain  $Q_T$  if

- (i)  ${f u}$  is a time-dependent vector field in  $L_2((0,T);Sol_2^3(\mathbb T))$  ,  ${f u}_t\in L_2(Q_T)$  ;
- (ii)  $\boldsymbol{\nu}$  is a vector field in  $L_{\infty}((0,T);W_2^2(\mathbb{T}))$ ,  $\boldsymbol{\nu}_t\in L_{\infty}((0,T);L_2(\mathbb{T}))$ ;
- (iii)  $\mathbf{n}$  is a vector field in  $L_{\infty}((0,T);W_2^3(\mathbb{T}))$ ,  $\mathbf{n}_t \in L_{\infty}((0,T);W_2^1(\mathbb{T}))$ ;
- (iv)  $\nabla p \in L_2(Q_T)$ ;
- (v)  $\mathbf{u}, \mathbf{n}, \boldsymbol{\nu}$  satisfy the initial conditions (7), i.e.,  $(\mathbf{u}, \mathbf{n}, \boldsymbol{\nu}) \rightharpoonup (\mathbf{u}_0, \mathbf{n}_0, \boldsymbol{\nu}_0)$  weakly in  $L_2(\mathbb{T})$  as  $t \to 0$ ;
- (vi) equations (4)–(6) hold almost everywhere.

### Periodic media. Main results

**Theorem 1.** Suppose  $\mathbf{u}_0 \in Sol_2^2(\mathbb{T}), \ \boldsymbol{\nu}_0 \in W_2^2(\mathbb{T}), \ \mathbf{n}_0 \in W_2^3(\mathbb{T}), \ \text{and}$   $\mathbf{F} \in L_2((0,T);W_2^1(\mathbb{T})), \ \mathbf{G} \in L_1((0,T);W_2^2(\mathbb{T})).$  Then there exists some  $0 < T_0 < T$  such that the solution (as in Definition 1) of problem (4)–(6) exists in  $Q_{T_0}$ .

**Theorem 2.** Under the hypotheses of Theorem 1, let  $(\mathbf{u}_1, \boldsymbol{\nu}_1, \mathbf{n}_1, p_1)$  and  $(\mathbf{u}_2, \boldsymbol{\nu}_2, \mathbf{n}_2, p_2)$  be solutions of the problem (4)–(7) in the domain  $Q_T$ . Then, for some  $0 < T_0 \le T$ 

$$(\mathbf{u}_2, \boldsymbol{\nu}_2, \mathbf{n}_2, \nabla p_2) = (\mathbf{u}_1, \boldsymbol{\nu}_1, \mathbf{n}_1, \nabla p_1)$$

almost everywhere in  $Q_{T_0}$  .

### Bounded domain. Notation and definitions

Let  $\Omega$  be a bounded domain in  $\mathbb{R}^3$  and consider nematic liquid crystal flow in the cylinder  $\Omega \times \mathbb{R}$ .

We study equations (4)–(6) in the domain  $(0,T)\times\Omega$  with initial conditions (7) and additional boundary conditions

$$\mathbf{u}\big|_{\partial\Omega} = 0, \quad \mathbf{n} - \mathbf{n_1}\big|_{\partial\Omega} = 0, \quad \boldsymbol{\nu}|_{\partial\Omega} = 0 \quad \text{for any} \quad t > 0,$$
 (8)

where  $n_1$  is a given vector field on  $\Omega$ .

Condition  $\mathbf{u}\big|_{\partial\Omega}=0$  means that the domain has impenetrable boundary and that the fluid moves without slipping;  $\mathbf{n}-\boldsymbol{n_1}\big|_{\partial\Omega}=0$  describes the director position at the boundary. The third condition comes from the original Ericksen-Leslie system and means that  $\dot{\mathbf{n}}=0$  at the boundary.

### Bounded domain. Notation and definitions

We let  $Q_T := (0,T) \times \Omega$  and introduce the function spaces

$$\overset{\circ}{Sol}(\Omega) := \{ \mathbf{v} : \Omega \to \mathbb{R}^3 \mid \mathbf{v} \text{ has compact support}, \ \mathrm{div} \, \mathbf{v} = 0 \},$$

$$\overset{\circ}{Sol}(Q_T) := \{ \mathbf{v} \in C^{\infty}(Q_T) \mid \mathbf{v}(t, \cdot) \in \overset{\circ}{Sol}(\Omega), \forall t \},$$

 $\stackrel{\circ}{Sol}_{2}^{m}(\Omega)$  is the closure of  $\stackrel{\circ}{Sol}(\Omega)$  in the norm  $W_{2}^{m}(\Omega)$ .

### Bounded domain. Notation and definitions

**Definition** 2. The quadruple  $(\mathbf{u}, \boldsymbol{\nu}, \mathbf{n}, \nabla p)$  is a strong solution of problem (4)–(7), (8) in the domain  $Q_T$  if

- ${f u}$  is a vector field in  $L_2((0,T);Sol_2^1(\Omega))\cap L_2((0,T);W_2^3(\Omega))$  ,  ${f u}_t\in L_2(Q_T)$  ;
- $\pmb{\nu}$  is a vector field in  $L_\infty((0,T); \overset{\circ}{W^1_2}(\Omega)) \cap L_\infty((0,T); W^2_2(\Omega))$ ,  $\pmb{\nu}_t \in L_\infty((0,T); L_2(\Omega))$ ;
- $\mathbf{n}-n_1$  is a vector field in  $L_\infty((0,T);W_2^1(\Omega))\cap L_\infty((0,T);W_2^3(\Omega))$ , where  $n_1$  is a given constant vector field, and  $\mathbf{n}_t\in L_\infty((0,T);W_2^1(\Omega))$ ;
- $\nabla p \in L_2(Q_T)$ ;
- ${f u}$ ,  ${f n}$ ,  ${m v}$  satisfy initial conditions (7), i.e.,  $({f u},{f n},{m 
  u}) 
  ightharpoonup ({f u}_0,{f n}_0,{m 
  u}_0)$  weakly in  $L_2(\Omega)$  as t o 0;
- equations (4)–(6) hold almost everywhere.

### Bounded domain. Main results

**Theorem 3.** Assume that  $\Omega$  is a Lipschitz domain and for almost all  $\mathbf{x} \in \partial \Omega$  the boundary is the graph of a  $C^2$ -function in some neighborhood of  $\mathbf{x}$ . Let  $\mathbf{n}_1 = const$ ,  $\mathbf{n}_0 \in W_2^3(\Omega)$ ,  $\mathbf{v}_0 \in W_2^2(\Omega)$ ,  $\mathbf{u}_0 \in Sol_2^1(\Omega) \cap W_2^2(\Omega)$ ,  $\Delta \mathbf{u}_0 \big|_{\partial \Omega} = 0$ , and assume that for some d > 0 we have

$$\mathbf{n}_0(x) = const$$
,  $\boldsymbol{\nu}_0(x) = 0$  if  $dist(x, \partial \Omega) < d$ .

Then problem (4)–(7), (8) has a unique solution in  $Q_T$  for some T>0.

**Theorem 4.** Suppose  $\Omega$ ,  $\mathbf{n}_0$ ,  $\boldsymbol{\nu}_0$ ,  $\mathbf{u}_0$ ,  $\boldsymbol{n}_1$  satisfy the conditions of Theorem 3. Assume also that  $\mathbf{F} \in L_2((0,T);W_2^1(\Omega))$ ,  $\mathbf{G} \in L_1((0,T);W_2^2(\Omega))$ ,  $\mathbf{G}$  equal to zero in a neighborhood of  $\partial\Omega$ . Then the solution of (4)–(7), (8) exists and is unique for some T>0.

# Mixture of liquid crystals



Figure 2: Liquid crystal with inhomogeneous microstructure.

Keeping the density in the equations and simplifying the system according to Lin and Liu, we have

$$\dot{\rho} = 0,\tag{9}$$

$$\rho \,\dot{u}_i = \sigma_{ji_{x_j}}, \quad \text{div} \mathbf{u} = 0. \tag{10}$$

$$g_i + \pi_{ji_{x_j}} = 0 \tag{11}$$

with boundary and initial conditions

$$\mathbf{u}(x,t) = 0, \quad \mathbf{n}(x,t) = \mathfrak{n}_0(x) \quad \text{as } x \in \partial\Omega,$$
 (12)

$$\mathbf{u}(x,0) = \mathfrak{u}_0(x), \quad \mathbf{n}(x,0) = \mathfrak{n}_0(x), \quad \rho(x,0) = \mathfrak{p}_0(x),$$
 (13)

where

$$\sigma_{ij} = -p\delta_{ij} - \rho \frac{\partial \mathcal{F}}{\partial \mathbf{n}_{kx_j}} + \widehat{\sigma}_{ji}, \qquad \pi_{ij} = \beta_j \mathbf{n}_i + \frac{\partial \mathcal{F}}{\partial \mathbf{n}_{ix_j}},$$

$$g_i = \gamma \mathbf{n}_i - \beta_j \mathbf{n}_{ix_j} - \rho \frac{\partial \mathcal{F}}{\partial \mathbf{n}_i} + \widehat{g}_i, \qquad \widehat{g}_i = \lambda_1 N_i + \lambda_2 \mathbf{n}_j A_{ji}, \tag{14}$$

$$\widehat{\sigma}_{ji} = \mu_1 \mathbf{n}_k \mathbf{n}_l A_{kl} \mathbf{n}_i \mathbf{n}_j + \mu_2 \mathbf{n}_j N_i + \mu_3 \mathbf{n}_i N_j + \mu_4 A_{ij} + \mu_5 \mathbf{n}_j \mathbf{n}_k A_{ki} + \mu_6 \mathbf{n}_i \mathbf{n}_k A_{kj},$$
(15)

here

$$\lambda_1 = \mu_2 - \mu_3, \quad \lambda_2 = \mu_5 - \mu_6 = -\mu_2 - \mu_3,$$

$$N_i = \mathbf{n}_i + \omega_{ki} \mathbf{n}_k,$$

$$N_{ij} = \mathbf{n}_{ix_j} + \omega_{ki} \mathbf{n}_{kx_j}$$

$$2A_{ij} = \mathbf{u}_{ix_j} + \mathbf{u}_{jx_i}, \quad 2\omega_{ij} = \mathbf{u}_{ix_j} - \mathbf{u}_{jx_i}.$$

For this system we prove the existence and the uniqueness theorems for week solutions following Lions.

Here and throughout

$$\lambda_1 < 0, \quad \mu_1 > 0, \quad \mu_4 > 0, \quad \mu_5 + \mu_6 > 0, \quad (-\lambda_1)^{\frac{1}{2}} (\mu_5 + \mu_6)^{\frac{1}{2}} > \lambda_2.$$
 (16)

**Definition** 3. The triple  $(\rho, \mathbf{u}, \mathbf{n})$  is called a weak solution to problem (9)—(11), (12), (13), where

- the vector  $\mathbf{u} \in L_2((0,T); Sol_2^1(\Omega)) \cap L_\infty((0,T); Sol_2(\Omega)),$
- the vector  $\mathbf{n} \in L_2((0,T);W_2^2(\Omega)) \cap L_\infty((0,T);W_2^1(\Omega)),$
- the vector  $\omega \in L_2(Q_T)$ ,
- $\bullet \quad \rho \in L_{\infty}(Q_T),$

if

- 1) functions  $(\rho, \mathbf{u}, \mathbf{n})$  satisfy initial and boundary conditions (12), (13),
- 2) relation (11) holds almost everywhere,
- 3) relation (9) holds as a relation for functionals on  $L_2((0,T),W_2^1(\Omega))$ ,
- 4) equation (10) reads as the integral identity

$$\int_{Q_T} (\rho \mathbf{u}_{it} \phi_i + \rho \mathbf{u}_j \mathbf{u}_i \phi_{ix_j}) \, dx dt + \int_{\Omega} \mathfrak{p}_0 \mathfrak{u}_{0i} \phi_i \, dx \big|_{t=0}^{t=T} = \int_{Q_T} \sigma_{ij} \phi_{ix_j} \, dx dt, \qquad (17)$$

for any 
$$\overrightarrow{\phi} \in Sol(Q_T)$$
.

• If  $\lambda_2=0$ , the system satisfies the maximum principle, i.e., if  $|\mathfrak{n}_0|\leq 1$  on the boundary, then  $|\mathbf{n}|\leq 1$  in the domain and all the integrals in identity (17) are finite.

- If  $\lambda_2 = 0$ , the system satisfies the maximum principle, i.e., if  $|\mathfrak{n}_0| \leq 1$  on the boundary, then  $|\mathbf{n}| \leq 1$  in the domain and all the integrals in identity (17) are finite.
- In general case  $\mathbf{n} \in L_2((0,T);W_2^2(\Omega)) \cap L_\infty((0,T);W_2^1(\Omega))$  leads to  $\mathbf{n} \in L_8(Q_T)$ , that guarantee the existence of the integrals.

- If  $\lambda_2 = 0$ , the system satisfies the maximum principle, i.e., if  $|\mathfrak{n}_0| \leq 1$  on the boundary, then  $|\mathbf{n}| \leq 1$  in the domain and all the integrals in identity (17) are finite.
- In general case  $\mathbf{n} \in L_2((0,T);W_2^2(\Omega)) \cap L_\infty((0,T);W_2^1(\Omega))$  leads to  $\mathbf{n} \in L_8(Q_T)$ , that guarantee the existence of the integrals.
- The initial conditions hold true since  $\rho_t$ ,  $\mathbf{u}_t$ ,  $\mathbf{n}_t$  are elements of the space  $L_2((0,T);H^{-1}(\Omega))$ .

- If  $\lambda_2 = 0$ , the system satisfies the maximum principle, i.e., if  $|\mathfrak{n}_0| \leq 1$  on the boundary, then  $|\mathbf{n}| \leq 1$  in the domain and all the integrals in identity (17) are finite.
- In general case  $\mathbf{n} \in L_2((0,T);W_2^2(\Omega)) \cap L_\infty((0,T);W_2^1(\Omega))$  leads to  $\mathbf{n} \in L_8(Q_T)$ , that guarantee the existence of the integrals.
- The initial conditions hold true since  $\rho_t$ ,  $\mathbf{u}_t$ ,  $\mathbf{n}_t$  are elements of the space  $L_2((0,T);H^{-1}(\Omega))$ .
- The boundary conditions are fulfilled in the sense of the traces.

# Liquid crystals with inhomogeneous microstructure

Consider the case of rapidly oscillating  $\mathfrak{p}_{\varepsilon}(x)$  and define the solutions  $(\rho^{\varepsilon}, \mathbf{u}^{\varepsilon}, \mathbf{n}^{\varepsilon})$  for each  $\mathfrak{p}_{\varepsilon}(x)$ , which satisfies

$$\mathbf{u}^{\varepsilon}(x,0) = \mathfrak{u}_0(x), \quad \mathbf{n}^{\varepsilon}(x,0) = \mathfrak{n}_0(x), \quad \rho^{\varepsilon}(x,0) = \mathfrak{p}_{\varepsilon}(x).$$
 (18)

We study the asymptotic behavior of solutions as  $\varepsilon \to 0$ .

- 1. family  $\mathfrak{p}_{\varepsilon}$  is uniformly bounded and  $\mathfrak{p}_{\varepsilon} > K_0$  for  $\varepsilon > 0$ ;
- 2. there exists the limit function  $\mathfrak{p}_0 \in L_{\infty}(\Omega)$ , such that

$$\mathfrak{p}_{\varepsilon} \stackrel{*}{\rightharpoonup} \mathfrak{p}_{0} \quad *\text{-weakly in } L_{\infty}(\Omega).$$

We construct the homogenized problem and prove the respective convergence of solutions.

# Liquid crystals with inhomogeneous microstructure

Remark 1. The simplest example is

$$\mathfrak{p}_{\varepsilon}(x) = \mathfrak{p}\left(\frac{x}{\varepsilon}\right),\,$$

where p is 1-periodic Lipschitz function. In this case

$$\mathfrak{p}_0 = \int_{[0,1]^3} \mathfrak{p}(\xi) d\xi.$$

For random case we have the mathematical expectation (or due to the regularity and the Birkhoff theorem the spacial mean).

# Liquid crystals with inhomogeneous microstructure

#### **Theorem 5.** Assume that

$$\mathfrak{u}_0 \in Sol_2(\Omega), \quad \mathfrak{n}_0 \in W_2^1(\Omega), \quad \mathfrak{n}_0 \big|_{\partial \Omega} \in H^{\frac{3}{2}}(\partial \Omega),$$

the family  $\mathfrak{p}_{\varepsilon}$  satisfies 1—3, and the constants  $\mu_i$  are such that (16) holds. Moreover let limit problem have a unique solution.

Then the family of weak solutions  $(\rho^{\varepsilon}, \mathbf{u}^{\varepsilon}, \mathbf{n}^{\varepsilon})$  to problem (9)—(11), (18) converge to solutions  $(\rho^{0}, \mathbf{u}^{0}, \mathbf{n}^{0})$  to problem (9)—(13) in the following sense:

$$\begin{array}{lll} \mathbf{u}^{\varepsilon} \rightharpoonup \mathbf{u}^{\mathbf{0}} & \text{weakly in } L_{2}((0,T);W_{2}^{1}(\Omega)), \\ \mathbf{n}^{\varepsilon} \rightharpoonup \mathbf{n}^{\mathbf{0}} & \text{weakly in } L_{2}((0,T);W_{2}^{2}(\Omega)), \\ \\ \rho^{\varepsilon} \stackrel{*}{\rightharpoonup} \rho^{0} & \text{*-weakly in } L_{\infty}(Q_{T}), \\ \mathbf{u}^{\varepsilon} \rightarrow \mathbf{u}^{\mathbf{0}} & \text{strongly in } L_{3}(Q_{T}), \\ \\ \mathbf{n}^{\varepsilon} \rightarrow \mathbf{n}^{\mathbf{0}} & \text{strongly in } L_{8-\delta}(Q_{T}), \delta > 0. \end{array} \tag{19}$$

# Dynamic of smectics



Figure 3: Smectic bifurcation.

Thank you for your attention!