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Liquid crystals

Figure 1: The structure of smectic (left), nematic calamitic and dis-
cotic (center) and cholesteric (right) liquid crystals.
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Dynamics of nematic liquid crystals

The Ericksen-Leslie system describing the dynamics of nematic liquid crystals, has the
form 





u̇− µ∆u = −∇p− ∂
∂xj

(
∂F

∂nxj

· ∇n

)
+ F+ f, divu = 0,

Jn̈− 2qn+ h = g +G, ‖n‖ = 1,

(1)

where summation on repeated indices is understood and nxj
:= ∂

∂xj
n. Here, u is the

spatial velocity vector field (the Eulerian), n is the director field, µ > 0 is the viscosity
coefficient, J > 0 is the moment of inertia of the molecule, F(x, t) and G(x, t) are given
external forces, and ˙ := ∂

∂t
+ u · ∇ is the material derivative. The terms f and g

correspond to the dissipative part of the stress tensor and intrinsic body force,
respectively, and they depend on u, n. The Oseen-Zöcher-Frank free energy F(n,∇n)

is defined by

F := Kn · curln+
1

2

(
K1(divn)2 +K2(n · curln)2 +K3‖n× curln‖2

)
.

The molecular field h is defined by

h :=
∂F

∂n
−

∂

∂xj

(
∂F

∂nxj

)

.
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Dynamics of nematic liquid crystals

The pressure p and the Lagrange multiplier 2q are determined, respectively, by divu = 0

and ‖n‖ = 1. Since the liquid crystal is nematic, we necessarily have K = 0. We
assume that

K1 > 0, K2 = K3 > 0, (2)

which includes the important case of the one constant approximation. In this case, the
ith component of the molecular field has the expression

hi = (K2 −K1)nkxkxi
−K2nixkxk

+ q′ni,

where q′ is a scalar function depending on n and its derivatives. We are interested in the
non-dissipative case, i.e., f = g = 0.
Define linear differential operator L by

Lv := (K2 −K1)∇(div v)−K2∆v. (3)
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Dynamics of nematic liquid crystals

Given the Ericksen-Leslie system (1), define the new vector field

ν := n× ṅ.

With all these hypotheses and notations, system (1) becomes

u̇− µ∆u = −∇p+ (Ln · ∇n) + F, divu = 0, (4)

J ν̇ = Ln× n+ n×G, (5)

ṅ = ν × n, (6)

with unknowns u, ν, n. Thus, the Ericksen-Leslie system (1) implies the new first order
system (4)–(6).
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Dynamics of nematic liquid crystals

Conversely, if the initial conditions of the first order system (4)–(6) satisfy the identities

‖n(x, 0)‖ = 1, n(x, 0) ⊥ ν(x, 0),

at time t = 0, then for any t > 0 we have

‖n‖ ≡ 1, ν = n× ṅ, 2q = n · h− J‖ν‖2,

and (4)–(6) turns into (1). Thus, under these hypotheses on the initial conditions, the first
order system (4), (5), (6) is equivalent to the original Ericksen-Leslie system (1)

We focus on the system (4)–(6) (with J 6= 0, which differs from the case studied in the
preceding papers) and prove existence and uniqueness of solutions for 3-dimensional
periodic media as well as for the problem in a bounded domain.
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Periodic media. Notation and definitions

Let QT := (0, T )× T, where T = R
3/Z3 is the 3-dimensional torus. We shall study the

system (4)–(6) in QT with initial conditions

u(0, x) = u0, ν(0, x) = ν0, n(0, x) = n0. (7)

Here u, ν, n are unknown vector fields, p is an unknown scalar function, and J , Ki, µ
are fixed strictly positive numbers.
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Periodic media. Notation and definitions

• L2(T) :=
{
v : T → R

3 | ‖v‖22 :=
∫
T
‖v‖2dx < ∞

}
;

• Wm
2 (T) is the Sobolev space of functions on T having m distributional derivatives

in L2(T);

• for any v ∈ Wm
2 (T), m ∈ N, define

‖Dm
v‖22 :=

∑

i1+i2+i3=m

∥∥∥∥∥
∂mv

∂xi1
1 ∂xi2

2 ∂xi3
3

∥∥∥∥∥

2

2

;

• Sol(T) := {v : T → R
3 | v ∈ C∞(T), divv = 0};

• Sol(QT ) := {v ∈ C∞(QT ) | v(t, ·) ∈ Sol(T), ∀t ∈ (0, T )};

• Sol2(T) is the closure of Sol(T) in the norm L2(T);

• Solm2 (T) is the closure of Sol(T) in the norm Wm
2 (T).
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Periodic media. Notation and definitions

Definition 1. A quadruple (u,ν,n,∇p) is a strong solution of problem (4)–(7) in the domain QT if

(i) u is a time-dependent vector field in L2((0, T );Sol32(T)), ut ∈ L2(QT );

(ii) ν is a vector field in L∞((0, T );W 2
2 (T)), νt ∈ L∞((0, T );L2(T));

(iii) n is a vector field in L∞((0, T );W 3
2 (T)), nt ∈ L∞((0, T );W 1

2 (T));

(iv) ∇p ∈ L2(QT );

(v) u, n, ν satisfy the initial conditions (7), i.e., (u,n,ν) ⇀ (u0,n0,ν0) weakly in L2(T) as

t → 0;

(vi) equations (4)–(6) hold almost everywhere.
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Periodic media. Main results

Theorem 1. Suppose u0 ∈ Sol22(T), ν0 ∈ W 2
2 (T), n0 ∈ W 3

2 (T), and

F ∈ L2((0, T );W 1
2 (T)), G ∈ L1((0, T );W 2

2 (T)).

Then there exists some 0 < T0 < T such that the solution (as in Definition 1) of problem (4)–(6) exists in

QT0
.

Theorem 2. Under the hypotheses of Theorem 1, let (u1,ν1,n1, p1) and (u2,ν2,n2, p2) be

solutions of the problem (4)–(7) in the domain QT . Then, for some 0 < T0 ≤ T

(u2,ν2,n2,∇p2) = (u1,ν1,n1,∇p1)

almost everywhere in QT0
.
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Bounded domain. Notation and definitions

Let Ω be a bounded domain in R
3 and consider nematic liquid crystal flow in the cylinder

Ω× R.
We study equations (4)–(6) in the domain (0, T )× Ω with initial conditions (7) and
additional boundary conditions

u
∣∣
∂Ω

= 0, n− n1

∣∣
∂Ω

= 0, ν|∂Ω = 0 for any t > 0, (8)

where n1 is a given vector field on Ω.
Condition u

∣∣
∂Ω

= 0 means that the domain has impenetrable boundary and that the
fluid moves without slipping; n− n1

∣∣
∂Ω

= 0 describes the director position at the
boundary. The third condition comes from the original Ericksen-Leslie system and
means that ṅ = 0 at the boundary.
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Bounded domain. Notation and definitions

We let QT := (0, T )× Ω and introduce the function spaces

◦

Sol (Ω) := {v : Ω → R
3 | v has compact support, div v = 0},

◦

Sol (QT ) := {v ∈ C∞(QT ) | v(t, ·) ∈
◦

Sol (Ω),∀t},

◦

Solm2 (Ω) is the closure of
◦

Sol (Ω) in the norm Wm
2 (Ω).
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Bounded domain. Notation and definitions

Definition 2. The quadruple (u,ν,n,∇p) is a strong solution of problem (4)–(7), (8) in the domain QT if

• u is a vector field in L2((0, T );
◦

Sol12(Ω)) ∩ L2((0, T );W 3
2 (Ω)), ut ∈ L2(QT );

•
ν is a vector field in L∞((0, T );

◦

W 1
2 (Ω)) ∩ L∞((0, T );W 2

2 (Ω)),

νt ∈ L∞((0, T );L2(Ω));

• n− n1 is a vector field in L∞((0, T );
◦

W 1
2 (Ω)) ∩ L∞((0, T );W 3

2 (Ω)), where n1 is a

given constant vector field, and nt ∈ L∞((0, T );W 1
2 (Ω));

• ∇p ∈ L2(QT );

• u, n, ν satisfy initial conditions (7), i.e., (u,n,ν) ⇀ (u0,n0,ν0) weakly in L2(Ω) as t → 0;

• equations (4)–(6) hold almost everywhere.
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Bounded domain. Main results

Theorem 3. Assume that Ω is a Lipschitz domain and for almost all x ∈ ∂Ω the boundary is the graph

of a C2-function in some neighborhood of x. Let n1 = const, n0 ∈
◦

W 3
2 (Ω), ν0 ∈ W 2

2 (Ω),

u0 ∈
◦

Sol12 (Ω) ∩W 2
2 (Ω), ∆u0

∣∣
∂Ω

= 0, and assume that for some d > 0 we have

n0(x) = const, ν0(x) = 0 if dist(x, ∂Ω) < d.

Then problem (4)–(7), (8) has a unique solution in QT for some T > 0.

Theorem 4. Suppose Ω, n0, ν0, u0, n1 satisfy the conditions of Theorem 3. Assume also that

F ∈ L2((0, T );W 1
2 (Ω)), G ∈ L1((0, T );W 2

2 (Ω)), G equal to zero in a neighborhood of ∂Ω.

Then the solution of (4)–(7), (8) exists and is unique for some T > 0.
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Mixture of liquid crystals

Figure 2: Liquid crystal with inhomogeneous microstructure.
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Dynamics of nematic liquid crystals

Keeping the density in the equations and simplifying the system according to Lin and Liu,
we have

ρ̇ = 0, (9)

ρ u̇i = σjixj
, divu = 0. (10)

gi + πjixj
= 0 (11)

with boundary and initial conditions

u(x, t) = 0, n(x, t) = n0(x) as x ∈ ∂Ω, (12)

u(x, 0) = u0(x), n(x, 0) = n0(x), ρ(x, 0) = p0(x), (13)

where
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Dynamics of nematic liquid crystals

σij = −pδij − ρ
∂F

∂nkxj

+ σ̂ji, πij = βjni +
∂F

∂nixj

,

gi = γni − βjnixj
− ρ

∂F

∂ni

+ ĝi, ĝi = λ1Ni + λ2njAji, (14)

σ̂ji = µ1nknlAklninj + µ2njNi + µ3niNj + µ4Aij + µ5njnkAki + µ6ninkAkj ,

(15)

here

λ1 = µ2 − µ3, λ2 = µ5 − µ6 = −µ2 − µ3,

Ni = ṅi + ωkink,

Nij = ṅixj
+ ωkinkxj

2Aij = uixj
+ ujxi

, 2ωij = uixj
− ujxi

.

For this system we prove the existence and the uniqueness theorems for week solutions
following Lions.
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Dynamics of nematic liquid crystals

Here and throughout

λ1 < 0, µ1 > 0, µ4 > 0, µ5 + µ6 > 0, (−λ1)
1

2 (µ5 + µ6)
1

2 > λ2. (16)

Definition 3. The triple (ρ,u,n) is called a weak solution to problem (9)—(11), (12), (13), where

• the vector u ∈ L2((0, T );Sol12(Ω)) ∩ L∞((0, T );Sol2(Ω)),

• the vector n ∈ L2((0, T );W 2
2 (Ω)) ∩ L∞((0, T );W 1

2 (Ω)),

• the vector ω ∈ L2(QT ),

• ρ ∈ L∞(QT ),

if

1) functions (ρ,u,n) satisfy initial and boundary conditions (12), (13),

2) relation (11) holds almost everywhere,

3) relation (9) holds as a relation for functionals on L2((0, T ),W 1
2 (Ω)),

4) equation (10) reads as the integral identity

∫

QT

(ρuitφi + ρujuiφixj
) dxdt+

∫

Ω

p0u0iφi dx
∣∣t=T

t=0
=

∫

QT

σijφixj
dxdt, (17)

for any
−→
φ ∈ Sol(QT ).
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Dynamics of nematic liquid crystals

• If λ2 = 0, the system satisfies the maximum principle, i.e., if |n0| ≤ 1 on the
boundary, then |n| ≤ 1 in the domain and all the integrals in identity (17) are finite.
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Dynamics of nematic liquid crystals

• If λ2 = 0, the system satisfies the maximum principle, i.e., if |n0| ≤ 1 on the
boundary, then |n| ≤ 1 in the domain and all the integrals in identity (17) are finite.

• In general case n ∈ L2((0, T );W 2
2 (Ω)) ∩ L∞((0, T );W 1

2 (Ω)) leads to
n ∈ L8(QT ), that guarantee the existence of the integrals.
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Dynamics of nematic liquid crystals

• If λ2 = 0, the system satisfies the maximum principle, i.e., if |n0| ≤ 1 on the
boundary, then |n| ≤ 1 in the domain and all the integrals in identity (17) are finite.

• In general case n ∈ L2((0, T );W 2
2 (Ω)) ∩ L∞((0, T );W 1

2 (Ω)) leads to
n ∈ L8(QT ), that guarantee the existence of the integrals.

• The initial conditions hold true since ρt, ut, nt are elements of the space
L2((0, T );H−1(Ω)).
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Dynamics of nematic liquid crystals

• If λ2 = 0, the system satisfies the maximum principle, i.e., if |n0| ≤ 1 on the
boundary, then |n| ≤ 1 in the domain and all the integrals in identity (17) are finite.

• In general case n ∈ L2((0, T );W 2
2 (Ω)) ∩ L∞((0, T );W 1

2 (Ω)) leads to
n ∈ L8(QT ), that guarantee the existence of the integrals.

• The initial conditions hold true since ρt, ut, nt are elements of the space
L2((0, T );H−1(Ω)).

• The boundary conditions are fulfilled in the sense of the traces.
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Liquid crystals with inhomogeneous microstructure

Consider the case of rapidly oscillating pε(x) and define the solutions (ρε,uε,nε) for
each pε(x), which satisfies

u
ε(x, 0) = u0(x), n

ε(x, 0) = n0(x), ρε(x, 0) = pε(x). (18)

We study the asymptotic behavior of solutions as ε → 0.

1. family pε is uniformly bounded and pε > K0 for ε > 0;

2. there exists the limit function p0 ∈ L∞(Ω), such that

pε
∗
⇀ p0 ∗-weakly in L∞(Ω).

We construct the homogenized problem and prove the respective convergence of
solutions.
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Liquid crystals with inhomogeneous microstructure

Remark 1. The simplest example is

pε(x) = p

(x
ε

)
,

where p is 1-periodic Lipschitz function. In this case

p0 =

∫

[0,1]3

p(ξ)dξ.

For random case we have the mathematical expectation (or due to the regularity and the Birkhoff theorem

the spacial mean).
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Liquid crystals with inhomogeneous microstructure

Theorem 5. Assume that

u0 ∈ Sol2(Ω), n0 ∈ W 1
2 (Ω), n0

∣∣
∂Ω

∈ H
3

2 (∂Ω),

the family pε satisfies 1—3, and the constants µi are such that (16) holds. Moreover let limit problem have

a unique solution.

Then the family of weak solutions (ρε,uε,nε) to problem (9)—(11), (18) converge to solutions

(ρ0,u0,n0) to problem (9)—(13) in the following sense:

u
ε ⇀ u

0 weakly in L2((0, T );W 1
2 (Ω)),

n
ε ⇀n

0 weakly in L2((0, T );W 2
2 (Ω)),

ρε
∗
⇀ρ0 *-weakly in L∞(QT ),

u
ε → u

0 strongly in L3(QT ),

n
ε → n

0 strongly in L8−δ(QT ), δ > 0.

(19)
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Dynamic of smectics

Figure 3: Smectic bifurcation.
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.

Thank you for your attention!
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