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Motivation

Hydrogen release in Nuclear waste management

In nuclear waste management, an important quantity of hydrogen can be produced by
corrosion of the steel engineered barriers (carbon steel overpack and stainless steel envelope)
of radioactive waste packages. Host rock safety function may be threatened by over
pressurisation leading to opening fractures of the domain, inducing groundwater flow and
transport of radionuclides.

Simulation of gas migration in deep geological repositories.
Compressible two-phase partially miscible flow
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Motivation

CO2 in liquid or gas form

CO2 capture and storage.
The aim is to prevent the release of large quantities of CO2 into the atmosphere. The
process consists of capturing waste CO2 and transporting it to a storage site.
Various forms have been conceived for storage CO2 into deep geological formations :
• CO2 is sometimes injected into declining oil fields to increase oil recovery.
This option is attractive because the geology of hydrocarbon reservoirs is generally well
understood and storage costs may be partly offset by the sale of additional oil that is
recovered.

Model 1 : Gas ≈ 90% CO2 =⇒ Oil–Gas model. two compressible flow
Model 2 : Dissolution of CO2 in water. Two compressible and partially miscible flow
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Motivation

CO2 in liquid or gas form

After the CO2 injection, several different trapping mechanisms lead to an entrapment of the
CO2.

Shortly after the injection, structural trapping through caprocks is the most important
factor.

Later solubility trapping, where CO2 is dissolved into water, and residual trapping get
more important.

After several thousand years, there could also occur mineral trapping caused by
geochemical reactions

To simulate the process of dissolution of CO2, a multiphase flow equation with equilibrium
phase exchange is used.

The CO2 storage can be modeled with two components (CO2 and water) in two phases
(liquid and gas).

R. Neumann and P. Bastian and O. Ippisch, Modeling and simulation of two-phase two-component

flow with disappearing nonwetting phase, Comput Geosci.,2013, 17, 139-149.
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Modelling of partially miscible two-phase

Two-phase two-component flow

We consider a porous medium saturated with a fluid composed of :

• two phases : liquid (α = l) and gas (α = g)

• two components in each phase : H2 (β = h) and water (β = w)

The component H2 is present in the two phases :

In liquid form : dissolved H2

In gas form : H2 in the gas phase

The component water exists only in liquid form (no vapor water).
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Modelling of partially miscible two-phase

Mathematical model

Mass conservation of water :

Φ∂t (ρwl sl ) + div (ρwl Vl ) = fw (1)

Mass conservation of H2 :

Φ∂t
(
ρhl (pg )sl + ρhg (pg )sg

)
+ div

(
ρhl (pg )Vl + ρhg (pg )Vg

)
− div

(
φρlD

h
l (sl )∇X h

l

)
= fg (2)

Φ = porosity
sα = saturation of the α phase
pα = pressure of the α phase
Vα = velocity of the α phase
ρhl : density of disolved hydrogen

ρhg : density of H2 in the gas phase

X h
l =

ρhl
ρl

: mass fraction of H2 in the

liquid
Dh

l (sl ) diffusivity coefficient of the
dissolved hydrogen
fα= source term
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Modelling of partially miscible two-phase

Mathematical model

Mass conservation of water :

Φ∂t (ρwl sl ) + div (ρwl Vl ) = fw (1)

Mass conservation of H2 :

Φ∂t
(
ρhl (pg )sl + ρhg (pg )sg

)
+ div

(
ρhl (pg )Vl + ρhg (pg )Vg

)
− div

(
φρlD

h
l (sl )∇X h

l

)
= fg (2)

Saturations :
sl + sg = 1 (3)

Capillary pressure :
pc (sl ) = pg − pl (4)

Darcy law :

Vα = −Λ(x)
krα (sα)

µα
(∇pα − ρα(pα)g) ,
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Modelling of partially miscible two-phase

Mathematical model : the densities

Ideal gas

ρhg =
Mh

RT
pg

Henri law
ρhl = MhHhpg

Mh: molar mass of hydrogen, Mh the henry constant for hydrogen.

ρhg = C1ρ
h
l where C1 =

1

HhRT
= 52, 51.

Denote m(sl ) = sl + C1sg > 0. The hydrogen equation is equivalent to

∂t
(

Φm(sl )ρ
h
l (pg )

)
+ div

(
ρhl (pg )Vl + C1ρ

h
l (pg )Vg

)
− div

(
C2X

w
l Dh

l (sl )∇pg
)

= fg (5)

Primary variables : pl , pg .
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Modelling of partially miscible two-phase

Mathematical model

MIAN ASSUMPTIONS

Degeneracy: The mobility of each phase vanishes in the region where the phase is
missing

Mα(sα = 0) = 0.
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Ml (sl ) mobility of liquid phase

Mg (sl ) mobility of gas phase
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Total mobility: M = Ml + Mg ≥ m0

The density ρhl is increasing and bounded :

0 < ρm ≤ ρhl (pg ) ≤ ρM .

The tensor of permeability is anisotropic and

〈Λ(x)ξ, ξ〉 ≥ cΛ|ξ|2,∀ξ ∈ Rd .

The diffusivity coefficient of the dissolved hydrogen Dh
l is positive.
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Modelling of partially miscible two-phase

Motivation

Is there a convergent scheme (FV, FE, dG,...) for the partially miscible two–compressible
two–component?

B. Saad, M. Saad, Numerical analysis of a non equilibrium two-component two-compressible flow in

porous media, DCDS-S, Volume 7, Number 2, April 2014, pp. 317–346.

B. Saad, M. Saad. Study of full implicit petroleum engineering finite volume scheme for

compressible two phase flow in porous media, SIAM J. Numer. Anal., 51(1), pp. 716-741, 2013.

R. Eymard and V. Schleper, Study of a numerical scheme for miscible two-phase flow in porous

media, hal-00741425, version 3, 2013.

Here, we present a combined FV–FE method of the degenerate problem, for anisotropic
diffusion tensors and for general triangular meshes
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Combined FV-FE

Combined FV–Nonconforming FE: primal mesh

•K •L

Primal mesh. Triangles K ,L ∈ Th

Primal mesh. we perform a triangulati-
on Th of the domain Ω, such that Ω =
∪K∈ThK .
We define

h := size(Th) = max
K∈Th

diam(K),

There exists a constant θT > 0

max
K∈Th

diam(K)

ρK
≤ θT , ∀h > 0 , (6)

where ρK is the diameter of the largest
ball inscribed in K .
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Combined FV-FE

Combined FV–nonconforming FE: Dual mesh

L

E
DK

Dual mesh D,D ∈ Dh , dual volumes associated
with edges

Dual mesh.
We define a dual partition Dh s.t. Ω̄ =

∪D∈Dh
D̄. There is one dual element D as-

sociated with each side σD = σK,L ∈ Eh.

We construct it by connecting the barycenters

of every K ∈ Th that contains σD through the

vertices of σD .
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Combined FV-FE

Combined FV–Nonconforming FE: Dual Mesh

L

E
D

QD

•QE

K

•

•

•

• •
•

•

•
•

•

•

•
•

•
•

•

•

σD,E

•The unknown are on edges

We use the following notations:
|D| = meas(D) and |σ| = meas(σ).

QD the barycenter of the side σD .

N (D) the set of neighbors of the
volume D.

dD,E := |QE − QD |

σD,E : interface between D and E

ηD,E : the unit normal vector to σD,E

outward to D.

Dint
h and Dext

h are respectively the set of
all interior and boundary dual volumes.
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Combined FV-FE

Combined FV–Nonconforming FE: Diffusion-Transport

We define the nonconforming finite-dimensional spaces:

Xh := {ϕh ∈ L2(Ω);ϕh|K is linear ∀K ∈ Th, ϕh is continuous at QD , D ∈ Dint
h } ,

X 0
h := {ϕh ∈ Xh;ϕh(QD) = 0, ∀D ∈ Dext

h } .
(ϕD)D∈Dh

the basis of Xh s.t. ϕD(QE ) = δDE , E ∈ Dh.
Diffusion-transport equation

−div(Λ∇u)︸ ︷︷ ︸
Finite Element

+ div(cu)︸ ︷︷ ︸
Finite Volume

= f

Combined scheme.

−
∑

E∈N (D)

ΛD,E (UE − UD) +
∑

E∈N (D)

G(UD ,UE ; δCD,E ) = 0

where the stiffness matrix is

ΛD,E = −
∑
K∈Th

∫
K

Λ(x)∇ϕE · ∇ϕD dx (nonconforming FE)

and the numerical flux G is defined by

G(UD ,UE ; δCD,E ) = UD(δCD,E )+ + UE (δCD,E )− (upwind finite volume)

where δCD,E =
∫
σD,E

c · nD,E dσ.
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Combined FV-FE

Combined FV–Nonconforming FE: Diffusion-transport

−
∑

E∈N (D)

ΛD,E (UE − UD) +
∑

E∈N (D)

G(UD ,UE ; δCD,E ) = 0

P. Angot, V. Dolejsi, M. Feistauer and J. Felcman,
Analysis of a combined barycentric finite volume-nonconforming finite element method
for nonlinear convection-diffusion problems. Appl.Math.,43(4), p. 263-310, 1998.

R. Eymard, D. Hilhorst and M. Vohralik,
A combined finite volume-nonconforming/mixed hybrid finite element scheme for
degenerate parabolic problems. Numer.Math., 105 : p. 73-131, 2006.
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FV-FE for two–compressible two–component flow

FV-FE for two–compressible two–component flow

Nonconforming FE/Implicit upwind scheme

K

 L

E

D
×QD

σD

×
QE

σE

σD

σD,E

We integrate the mass conversation law over the diamond D

∂t
(

Φm(sl )ρ
h
l (pg )

)
+ div

(
ρhl (pg )Vl + C1ρ

h
l (pg )Vg

)
− div

(
C2X

w
l Dh

l (sl )∇pg
)

= fg

and we use :
• Fully implicit Euler scheme
• The mobility of each phase is decentred according to discrete gradient of the pressure on
the interface σD,E
• Nonconforming FE for permeability tensor
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FV-FE for two–compressible two–component flow

The fully implicit combined finite combined FV–nonconforming FE scheme

|D|φD
snl,D − sn−1

l,D

δt
−

∑
E∈N (D)

Ml (s
n
l,D,E ) ΛD,E δ

n
D,E (pl ) =

f nw,D

ρwl
(water)

|D|φD
ρhl (png,D)m(snl,D)− ρhl (pn−1

g,D )m(sn−1
l,D )

δt

−
∑

E∈N (D)

(ρhl )nD,E Ml (s
n
l,D,E ) ΛD,E δ

n
D,E (pl )− C1

∑
E∈N (D)

(ρhl )nD,E Mg (snl,D,E ) ΛD,E δ
n
D,E (pg )

− C2

∑
E∈N (D)

φD(Xw
l )nD,E (Dh

l )D,E δ
n
D,E (pg ) = f ng,D (gas)

This system is completed by the capillary pressure

pc (snl,D) = png,D − pnl,D . (7)

The approximation of each term is important to handle with the energy estimates.
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FV-FE for two–compressible two–component flow

|D|φD
ρhl (png,D)m(snl,D)− ρhl (pn−1

g,D )m(sn−1
l,D )

δt

−
∑

E∈N (D)

(ρhl )nD,E Ml (s
n
l,D,E ) ΛD,E δ

n
D,E (pl )− C1

∑
E∈N (D)

(ρhl )nD,E Mg (snl,D,E ) ΛD,E δ
n
D,E (pg )

− C2

∑
E∈N (D)

φD(Xw
l )nD,E (Dh

l )D,E δ
n
D,E (pg ) = f ng,D

Discrete Gradient of pressure

δnD,E (pα) = pnα,E − pnα,D
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FV-FE for two–compressible two–component flow

|D|φD
ρhl (png,D)m(snl,D)− ρhl (pn−1

g,D )m(sn−1
l,D )

δt

−
∑

E∈N (D)

(ρhl )nD,E Ml (s
n
l,D,E ) ΛD,E δ

n
D,E (pl )− C1

∑
E∈N (D)

(ρhl )nD,E Mg (snl,D,E ) ΛD,E δ
n
D,E (pg )

− C2

∑
E∈N (D)

φD(Xw
l )nD,E (Dh

l )D,E δ
n
D,E (pg ) = f ng,D

Permeability on interfaces by FE

ΛD,E = −
∑
K∈Th

∫
K

Λ(x)∇ϕE · ∇ϕD dx

and

(Dh
l )D,E = −

∑
K∈Th

∫
K
Dh

l ∇ϕE · ∇ϕD dx
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FV-FE for two–compressible two–component flow

|D|φD
ρhl (png,D)m(snl,D)− ρhl (pn−1

g,D )m(sn−1
l,D )

δt

−
∑

E∈N (D)

(ρhl )nD,E Ml (s
n
l,D,E ) ΛD,E δ

n
D,E (pl )− C1

∑
E∈N (D)

(ρhl )nD,E Mg (snl,D,E ) ΛD,E δ
n
D,E (pg )

− C2

∑
E∈N (D)

φD(Xw
l )nD,E (Dh

l )D,E δ
n
D,E (pg ) = f ng,D

Upwind technics for the mobilities
Mα(snα,D,E ) denotes the upwind discretization of Mα(sα) on the interface σD,E as

Mα(snα,D,E ) =

{
Mα(snα,D) if ΛD,E

(
pnα,E − pnα,D

)
≤ 0,

Mα(snα,E ) otherwise
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FV-FE for two–compressible two–component flow

|D|φD
ρhl (png,D)m(snl,D)− ρhl (pn−1

g,D )m(sn−1
l,D )

δt

−
∑

E∈N (D)

(ρhl )nD,E Ml (s
n
l,D,E ) ΛD,E δ

n
D,E (pl )− C1

∑
E∈N (D)

(ρhl )nD,E Mg (snl,D,E ) ΛD,E δ
n
D,E (pg )

− C2

∑
E∈N (D)

φD(Xw
l )nD,E (Dh

l )D,E δ
n
D,E (pg ) = f ng,D

Mean value of densities on interfaces

The mean value of the density of each phase on the interfaces is not classical since it is given
as

1

(ρhl )nD,E
=


1

pn
g,E
−pn

g,D

∫ png,E

pn
g,D

1

ρhl (ζ)
dζ if png,D 6= png,E ,

1
(ρh

l
)n
D

otherwise.
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FV-FE for two–compressible two–component flow Maximum principle

Proposition (Maximum principle)

Let (s0
α,D)D∈Dh

∈ [0, 1]. Then, the saturation snl,D ≥ 0 for all D ∈ Dh, n ∈ {1, . . . ,N}.

Proof by induction on n. Suppose sn−1
l,D ≥ 0 for all D ∈ Dh. Let snl,D = min {snl,E}E∈Dh

and

we seek that snl,D ≥ 0

Multiply the scheme by −(snl,D)−, we obtain

− |D|φD
snl,D − sn−1

l,D

δt
(snl,D)− −

∑
E∈N (D)

Gl (s
n
l,D , s

n
l,E ; δnD,E (pl ))(snl,D)−︸ ︷︷ ︸

≤ 0, since Gl is monotone

= − f nl,D(snl,D)−︸ ︷︷ ︸
≤0

.

Then, we deduce that
|(snl,D)−|2 + sn−1

l,D (snl,D)− ≤ 0,

and snl,D ≥ 0 for all D ∈ Dh.
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FV-FE for two–compressible two–component flow Energy estimates

Energy estimates : continuous case

Let us recall how to obtain the energy estimates in the continuous case. For that, consider

g(pg ) :=

∫ pg

0

1

ρhl (z)
dz and H(pg ) := ρhl (pg )g(pg )− pg ≥ 0.

Define the function

E = m(sl )Hg (pg )− C1

∫ sl

0
pc (z)dz.

By multiplying the hydrogen equation by g(pg ) and water equation by C1pl − pg , after
integration and summation of equations, we deduce the estimate∫

Ω
Φ∂tEdx + cΛ

∫
Ω
Ml |∇pl |2dx +

∫
Ω
Mg |∇pg |2dx︸ ︷︷ ︸

bounded

+

∫
Ω
C2X

w
l Dh

l ∇pg · ∇gg (pg )dx ≤ C .

Estimates on the velocities∫ T

0

∫
Ω

(
Ml (sl )|∇pl |2 + Mg (sg )|∇pg |2

)
≤ C

we cannot control the gradient of pressure since the mobility of each phase vanishes in the
region where the phase is missing Mα(sα = 0) = 0. So, we use the feature of global pressure
to obtain uniform estimates on the gradient of the global pressure and on a function of the
capillary term B.

F. Caro, B. Saad, M. Saad, Study of degenerate parabolic system modeling the hydrogen

displacement in a nuclear waste repository, DCDS-S, Vol. 7, No 2, April 2014, pp. 191–205.
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FV-FE for two–compressible two–component flow Energy estimates

Energy estimates.

Continuous case.
The global pressure p can be written as

p = pl + p̃(sl ) = pg + p̄(sl ),

with the deviation pressures p̄ and p̃ :

p̃(sl ) = −
∫ sl

0

Mg (z)

M(z)
p
′
c (z)dz and p(sl ) =

∫ sl

0

Ml (z)

M(z)
p
′
c (z)dz.

Total mobility : M(sl ) = Ml (sl ) + Mg (sl ) ≥ m0 > 0.
From the definition of the global pressure we have :

Ml (sl )|∇pl |2 + Mg (sl )|∇pg |2 = M(sl )|∇p|2 +
Ml (sl )Mg (sl )

M(sl )
|∇pc (sl )|2︸ ︷︷ ︸

|∇B(sl )|2

.

The control of velocities ensures the control of the gradient of the global pressure.

Discrete case.
In the discrete case, this relationship is not obtained in a straightforward way. This equality is
replaced by four discrete inequalities.
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FV-FE for two–compressible two–component flow A priori estimates

A priori estimates : discrete case

We show the discrete version of
∫ T

0

∫
Ω Λ(x)Mα∇pα · ∇pα dtdx ≤ C .

Proposition (Discrete velocities)

N−1∑
n=0

δt
∑

D∈Dh

∑
E∈N (D)

ΛD,EMα(snα,D|E )
∣∣∣pnα,E − pnα,D

∣∣∣2 ≤ C . (8)

Proof. The proof is based on the choice of the test functions

g(pg,D) =

∫ pg,D

0

1

ρhl (z)
dz, and (C1p

n
l,D − png,D)

Term in time.

E1 =
∑
n,D

|D|φD
(

(snl,D−s
n−1
l,D ) (C1p

n
l,D − png,D)+(ρhl (png,D)m(snl,D)−ρhl (pn−1

g,D )m(sn−1
l,D )) g(png,D)

)

E1 ≥
∑

D∈Dh

φD |D|
(
H(pNg,D)m(sNl,D)−H(p0

g,D)m(s0
l,D)
)

− C1

∑
D∈Dh

φD |D| Pc (sNl,D) + C1

∑
D∈Dh

φD |D| Pc (s0
l,D). (9)
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FV-FE for two–compressible two–component flow A priori estimates

A priori estimates : discrete case

We show the discrete version of
∫ T

0

∫
Ω Λ(x)Mα∇pα · ∇pα dtdx ≤ C .

Proposition (Discrete velocities)

N−1∑
n=0

δt
∑

D∈Dh

∑
E∈N (D)

ΛD,EMα(snα,D|E )
∣∣∣pnα,E − pnα,D

∣∣∣2 ≤ C . (8)

Proof. The proof is based on the choice of the test functions

g(pg,D) =

∫ pg,D

0

1

ρhl (z)
dz, and (C1p

n
l,D − png,D)

Convective terms. After integration part by part

E2 =
∑

n,σD,E

ΛD,E Ml (s
n
l,D,E )δnD,E (pl )

(
C1δ

n
D,E (pl )− δnD,E (pg )

)
+
∑

n,σD,E

ΛD,E Ml (s
n
l,D,E )δnD,E (pl ) (ρhl )nD,E δ

n
D,E (g(pg ))︸ ︷︷ ︸

=δn
D,E

(pg )

+ C1

∑
n,σD,E

ΛD,E Mg (snl,D,E ) δnD,E (pg )(ρhl )nD,E δ
n
D,E (g(pg ))︸ ︷︷ ︸

=δn
D,E

(pg )
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FV-FE for two–compressible two–component flow A priori estimates

A priori estimates : discrete case

We show the discrete version of
∫ T

0

∫
Ω Λ(x)Mα∇pα · ∇pα dtdx ≤ C .

Proposition (Discrete velocities)

N−1∑
n=0

δt
∑

D∈Dh

∑
E∈N (D)

ΛD,EMα(snα,D|E )
∣∣∣pnα,E − pnα,D

∣∣∣2 ≤ C . (8)

Proof. The proof is based on the choice of the test functions

g(pg,D) =

∫ pg,D

0

1

ρhl (z)
dz, and (C1p

n
l,D − png,D)

Convective terms. After integration part by part

E2 = C1

∑
n,σD,E

ΛD,E Ml (s
n
l,D,E )δnD,E (pl ) δ

n
D,E (pl )

+ C1

∑
n,σD,E

ΛD,E Mg (snl,D,E )δnD,E (pg )δnD,E (pg ).
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Discrete lemma

Continuous case : M(sl )|∇p|2 ≤ Ml (sl )|∇pl |2 + Mg (sl )|∇pg |2

Lemma (Total mobility and global pressure)

Mn
l,D|E + Mn

g,D|E ≥ m0, ∀(D,E) ∈ E, ∀n ∈ [0,N],

m0

(
δnD,E (p)

)2
≤ Mn

l,D|E

(
δnD,E (pl )

)2
+ Mn

g,D|E

(
δnD,E (pg )

)2
.

Continuous case : |∇B(sl )|2 =
MlMg

M
|∇pc |2 ≤ Ml (sl )|∇pl |2 + Mg (sg )|∇pg |2.

Lemma (Capillary term)

(δnD,E (B(sl )))2 ≤ Mn+1
g,D|E

(
δnD,E (pg )

)2
+ Mn+1

l,D|E

(
δnD,E (pl )

)2
.

The proofs of these lemma depend only on the definition of the global pressure and the mesh.
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Consequences

Corollary (Discrete Gradients)

Suppose ΛD,E ≥ 0, for all D,E.
From the preliminary lemmas, we have

N−1∑
n=0

δt
∑

D∈Dh

∑
E∈N (D)

δnD,E (p)|2 ≤ C . → pDh
∈ L2(0,T ;H1(Ω))

N−1∑
n=0

δt
∑

D∈Dh

∑
E∈N (D)

(δnD,E (B(sl )))2 ≤ C . → B(sl,Dh
) ∈ L2(0,T ;H1(Ω))

Mazen Saad (ECN) FV–FE for two compressible flow Dubrovnik, 29/09/2014 23 / 29
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Compactness : translates in space and time estimates

Define the discrete functions

Ul,Dh
= sl,Dh

Ug,Dh
= m(sl,Dh

)ρhl (pg,Dh
)

constant per cylinder (tn, tn+1)× K . We derive estimates on translates in space and time of the functions

Ūα,Dh
piecewise constant in t and constant in x for all D.

Lemma (Translates in space and in time)∫∫
Ω
′×(0,T )

∣∣Ūα,Dh
(t, x + y)− Ūα,Dh

(t, x)
∣∣dxdt ≤ ω(|y |),∫∫

Ω×(0,T−τ)

∣∣Ūα,Dh
(t + τ, x)− Ūα,Dh

(t, x)
∣∣2 dx dt ≤ ω̃(τ),

where y ∈ R3, τ ∈ (0,T ), Ω′ = {x ∈ Ω, [x , x + y ] ⊂ Ω} and ω satisfies lim
|y|→0

ω(|y |) = 0 and

lim
τ→0

ω̃(τ) = 0.

Strong convergence

The sequence Ūα,Dh
is relatively compact in L1(QT ), α = l , g .

Using Kolmogorov compactness theorem.
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Theorem

The sequence (pl,Dh
, pg,Dh

) converges to (pl , pg ) satisfying

pα ∈ L2(QT )), sl ≥ 0, p, pg ∈ L2(0,T ;H1
Γl

(Ω)), B(sl ) ∈ L2(0,T ;H1
Γl

(Ω)) (9)

in the sense that for all ψ,ϕ ∈ C1(0,T ;H1
Γl

(Ω)) with ψ(T , .) = ϕ(T , .) = 0,

−
∫
QT

Φsl∂tψdxdt −
∫

Ω
Φs0

l ψ(0, x)dx+∫
QT

Λ(Ml (sl )∇p +∇B(sl )) · ∇ψdxdt =

∫
QT

rω

ρwl
ψdxdt, (10)

−
∫
QT

Φm(sl )ρ
h
l (pg )∂tϕdxdt −

∫
Ω

Φm(s0
l )ρhl (p0

g )ϕ(0, x)dx

+

∫
QT

Λρhl (pg )(Ml (sl )∇p +∇B(sl )) · ∇ϕdxdt + C1

∫
QT

Λρhl (pg )Mg (sl )∇pg · ∇ϕdxdt+∫
QT

C2X
w
l Dh

l ∇pg · ∇ϕdxdt =

∫
QT

rgϕdxdt. (11)
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Numerical results

Numerical results

Parameter values for the porous medium and fluid characteristics

Porous medium Fluid characteristics
Parameter Value Parameter Value

Φ [-] 0.15 Dh
l [m2 · s−1] 3× 10−9

Λ [m2] 5.10−20 µl [Pa · s] 1× 10−3

pr [Pa] 2× 106 µg [Pa · s] 9× 10−6

n [-] 1.54 Hh [mol.Pa−1.m−3] 7.65× 10−6

slr [-] 0.4 Mh [Kg ·mol−1] 2× 10−3

sgr [-] 0 ρwl [Kg ·mol−3] 103

Initially sl (x , 0) = 1. and pl (x , 0) = 10.bar in the whole domain.

Inject hydrogen as a gas into the lower left corner with a flux of
fg = 5.57 10−4kg .m−2.s−1,
liquid pressure is imposed at the top right corner (pl = 10 bar).
van Genuchten relative permeability,

Number of triangles = 1550,
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Numerical results

H2 injection

variables : (pl , ρ
h
g )

0 ≤ ρhg ≤ 0.0235
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Numerical results

H2 injection

0 ≤ sg ≤ 0.0128
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Numerical results

H2 injection

10. ≤ pl ≤ 11.5
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