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Find ”the best” of all possible structural designs within a
prescribed objective function J(u,α) and a set of constraints:

I behavioral (w.r.t. the physical model, typically nonlinear)

I geometrical (manufacturing limitations, typically inequalities)

u – state variables; α – design variables.

The objective function J(u,α) can be chosen according to:

I loading (tension, bending, twisting)

I thermal properties (shock resistance)

I technological constraints (minimal weight)

I economical constraints (cheapness)



Three types of structural optimization

I Sizing optimization: Find the optimal thickness distribution.
The domain is fixed during the optimization.

I Shape optimization: Find the optimal shape. The geometry
of the domain is a design parameter. The connectivity of the
domain is not changed. New boundaries are not formed.

I Topology optimization: Find the number and location of
holes and the optimal placement of material in space.



Scheme of optimization process

Objective function: according to specific applications

Input data −→ Modeling and Simulation −→ Output data

↖ ↙

Modify the state and design variables

Input/Output data: Physical model; state and design parameters

Modeling and Simulation: e.g., FDM, FEM, FVM
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A general nonlinear optimization problem

min
x∈Rn

f (x)

subject to
h(x) = 0, g(x) ≥ 0

with twice Lipschitz continuously differentiable functions

f : Rn → R, h : Rn → Rm, m < n, g : Rn → R`.

f is referred to the objective (cost) function. The set

F = {x ∈ Rn : h(x) = 0, g(x) ≥ 0}

is called feasible set. Such problem is called constrained
optimization problem. Find a local minimum x∗ ∈ F , s.t.

∃U (neighborhood) of x∗ : ∀x ∈ U ⊂ F , f (x∗) ≤ f (x).



The Lagrangian function L : Rn ×Rm ×R` → R is defined by

L(x, y, z) = f (x) + yT h(x)− zT g(x)

with y ∈ Rm, z ∈ R`, Karush–Kuhn–Tucker (KKT) multipliers.

The first–order KKT conditions

1) ∇xL(x, y, z) = 0 (stationarity)

2) h(x) = 0, g(x) ≥ 0 (primal feasibility)

3) z ≥ 0, Zg(x) = 0 (complementarity slackness)

∇xL(x, y, z) = ∇f (x) +
m∑

i=1

yi∇hi (x)−
∑̀
i=1

zi∇gi (x).

A point x∗ which satisfies 1)-3) is called a KKT (stationary) point.



Optimization problems with inequality constraints

I Logarithmic barrier functions (a sequence of (BP), ρ→ 0)

β(ρ)(x) = f (x)− ρ
∑̀
i=1

log gi (x), gi (x) > 0.

(BP): min
x∈Rn

β(ρ)(x), s.t. h(x) = 0.

β(ρ) is the barrier function and ρ > 0 is the barrier parameter.
The solution points x(ρ) → x∗ define the central path.

I Interior–point methods (Karmarkar, 1984)

I Active set strategy

A(x) = {i , gi (x) = 0, i = 1, . . . , `}.



Primal–dual interior–point method

L(ρ)(x, y) = f (x)− ρ
∑̀
i=1

log gi (x) + yT h(x)

Consider the following nonlinear equation

F(ρ)(x, y, z) = 0 with F(ρ) := ∇L(ρ).

3 sets of unknowns: primal variables x, dual variables y, and
perturbed complementarity z with Zg(x) = ρ ē, g(x) > 0.

Based on the Newton method we get the primal–dual system

K∆Φ = −F(ρ)(Φ)

Here, Φ = (x, y, z)T is the unknown solution, ∆Φ is the search
direction, K = (F(ρ))′(Φ) is the primal–dual matrix.



Path–following predictor–corrector scheme

Predictor step
µ = ρ−1, µ→∞

Ψ∗
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If the solution is out of the contraction tube:

Corrector step: Newton’s method
µ = ρ−1, µ→∞

Ψ∗
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Biomorphic microstructural ceramic materials

Basic principles of biotemplating: Conversion of bioorganic carbon
structures into ceramic composites by high-temperature processing

SiC-CeramicC-Preform

Drying

 Pyrolysis

(800-1800 C, N ,4h)

Si-Infiltration

(1600 C, vac., 4h)(70 C, 15h)

gaseous SiC
liquid SiSiC

2

o

oo

Wood

Biopolymers: cellulose, lignin, hemicellulose, pectin, protein

I Pyrolysis: the biopolymers are decomposed to carbon.
Weight loss: 70-80%, Shrinkage in all directions

I Infiltration: liquid (SiSiC ceramics) or gaseous (SiC ceramics)



Silicon Carbide (SiC) ceramic derived from pine

a) radial direction; b) axial direction

a) C and SiC; b) growing state of wood



Properties and applications

Properties of the SiC–ceramics

I microstructure pseudomorphous to wood

I high strength at low density

I light-weight

I high stiffness and elasticity on micro– and macro–scale

I excellent high temperature stability

Applications of the SiC–ceramics

I acoustic and heat insulation structures

I medical implantation (bone substitution)

I car industry



Macroscopic homogenized material model

Let x – macroscopic, y – microscopic variable, and ε := x/y � 1 –
scale parameter. When ε→ 0?

Main assumptions:
I Periodic distribution of microcells

I Scale separation: Large gap between micro- and macro-scales!

ΓT

ΓD
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Unit microstructure

Homogenized cell

Periodic structure

Homogenized material model

Ω



2-D case: Microstructure Y = [0, 1]× [0, 1]

Carbon
SiC

Pore

SiC

Pore

a) Unit cell Y = P ∪ SiC ∪ C ; b) Pure SiC ceramics: Y = P ∪ SiC

Density µ = 84%, a) SiC ceramics; b) pure SiC ceramics



Asymptotic homogenization technique

Consider a family of elasticity equations:

−∇ · σε(u) = b(x) in Ω ⊂ Rd , d = 2, 3

σε(u) := Eε(x) e(uε) (Hooke’s law)

uε(x) := u(x/ε), Eε(x) := E(x/ε) = E(y).

Double scale asymptotic expansion:

uε(x) = u(0)(x , y) + εu(1)(x , y) + ε2 u(2)(x , y) + · · ·

The homogenized problem: −∇ · σ(u) = b(x) in Ω,

where σ(u) = EH e(u(0)), u(0)(x) = lim
ε→0
{uε(x)}.



The homogenized elasticity coefficients

EH
ijkl =

1

|Y |

∫
Y

(
Eijkl(y)− Eijpq(y)

∂ξklp

∂yq

)
dY .

The Y -periodic function ξkl ∈ [H1(Y )]d is the solution of

∫
Y

(
Eijpq(y)

∂ξklp

∂yq

)
∂φi

∂yj
dY =

∫
Y

Eijkl(y)
∂φi

∂yj
dY ,

where φ ∈ {ψ ∈ [H1(Y )]d , ψ is Y−periodic}.

d = 2 - Solve 3 problems in Y to find ξ11, ξ22, ξ12.

d = 3 - Solve 6 problems in Y to find ξ11, ξ22, ξ33, ξ12, ξ23, ξ13.



The shape optimization problem

min
u,α

J(u,α)

subject to

d∑
i ,j ,k,l=1

∫
Ω

EH
ijkl(α)

∂uk

∂xl

∂vi

∂xj
dΩ =

∫
Ω

b · v dΩ +

∫
ΓT

t · v dΓ

ν∑
i=1

αi = C , α
(min)
i ≤ αi ≤ α

(max)
i

u = (ui )
N
i=1 are the state parameters, α = (αi )

ν
i=1 the design

parameters (widths/lengths of layers), and ν the number of layers.
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Homogenized coefficients w.r.t. the widths of C/SiC

α
(0)
1 α

(0)
2 C ITER α1 α2 ρ M ‖F(ρ)‖2

0.1 0.1 0.3 11 5.5e-14 0.3 3.0e-14 1.24 1.03e-6

0.2 0.2 0.1 16 5.5e-17 0.1 2.2e-15 7.73 2.23e-8

0.2 0.2 0.2 13 1.0e-16 0.2 5.3e-14 2.34 1.54e-8

0.3 0.1 0.4 11 1.3e-12 0.4 8.5e-13 0.85 5.07e-6

0.4 0.05 0.1 17 9.8e-15 0.1 6.9e-14 7.73 9.49e-7



3–D experiments: Microstructure Y = [0, 1]3

density level 5 6 7 8 9 10 11

µ = 84% NDOF 510 1047 2103 3843 6537 10485 18459

IC ITER 44 78 117 171 226 273 301
CPU 0.1 0.6 2.4 8.4 24.3 63.7 187.1

AMG ITER 18 31 43 73 69 74 75
CPU 0.4 1.1 3 7.5 15.5 25.6 33.8



Microfluidic biochips

Biochips of microarray type are controllable biochemical labs
(lab-on-a-chip) that are used for chemical and biological analysis in
pharmacology, molecular biology, and clinical diagnostics.

Transport of a droplet containing probe to marker molecules placed
on prespecified location. The chip is equipped with paths on which
samples and reagents (in amounts of nanoliters) propagate.



Working principles of a SAWs-driven fluidic device

Design of active biochips based on piezoelectrically actuated
Surface Acoustic Waves (SAWs) propagating like a miniaturized
earthquake. The SAWs are generated by electric pulses of high
frequency. The elastic waves interact with the fluid and produce a
streaming pattern.

Substrate layer - a piezoelectric material, e.g. lithium niobate.
Interdigital Transducer - fine electrodes with a comb structure.



Optimal design of microfluidic biochips

The efficiency of the labs-on-a-chip essentially depends on their
design and production processing

Advalytix Mixer Chip

Our objective function relates:

I geometry of the microchannels

I positioning of the interdigital transducers

I geometry of the capillary barriers and reservoirs.



Modeling of microfluidic flows on biochips

Solve the compressible Navier-Stokes equation in Ω(t), t > 0.
Find the velocity v, pressure p, and density ρ such that

ρ

(
∂v

∂t
+ [∇v]v

)
= −∇p + η∆v +

(
ζ +

η

3

)
∇(∇ · v),

∂ρ

∂t
+∇ · (ρv) = 0 continuity eq.

p = p(ρ) = aργ constitutive eq.

Here, η and ζ are the standard and bulk viscosity and a, γ > 0.

The Navier-Stokes system is not solved directly due to the
extremely different time scales. The acoustic damping is a process
with a time parameter in nanoseconds /10−8s/ and the acoustic
streaming is in milliseconds /10−3 − 100s/.



Multiscale modeling based on the approximation theory:

v = v0 + v1 + v2 + · · · = 0 + εv′ + ε2v′′ +O(ε3)

p = p0 + p1 + p2 + · · · = p0 + εp′ + ε2p′′ +O(ε3)

ρ = ρ0 + ρ1 + ρ2 + · · · = ρ0 + ερ′ + ε2ρ′′ +O(ε3)

where ε, 0 < ε ≤ 1, is proportional to the maximal SAW
displacement of the domain boundary. We assume that p0 and ρ0

are given constants.

FEM–Simulation by time averaging:

1) acoustic damping equation - collecting all terms of order O(ε).

2) acoustic streaming equation - collecting terms of order O(ε2).



PDE constrained optimization problem

Maximize the pumping rate

subject to the PDE constraints on the state variables v, p

−ν1∆v − ν2∇(∇ · v) +∇p − f1 = 0,

∇ · v − f2 = 0 in Ω(α)

and the inequality constraints on the design variables α.

αmin
i < αi < αmax

i , 1 ≤ i ≤ k.

Here, k is the number of Bézier control points.



Ω includes a capillary barrier, reservoir, and outlet valves. The
valves are passive when the capillary barrier is opened and activate
when it is in stopping mode.

Design–Variables: Bézier control points



N - d.o.f., l - Newton’s iterations, tol = 10−4 - tolerance in the
continuation method, toln = 10−3 - tolerance of the inexact
Newton solver, µ - inverse barrier parameter (µ0 = 200), ∆µ - its
increment (∆µ0 = 500), θ - contraction factor in the monotonicity

N k l µ ∆µ θ

14240 0 - 2.0 e+2 5.0 e+2 -
1 2 2.0 e+2 4.8 e+2 0.35
2 1 1.38 e+3 2.1 e+3 0.07
3 1 4.23 e+4 3.5 e+3 0.48

N k l µ ∆µ θ

28524 0 - 2.0 e+2 5.0 e+2 -
1 3 2.0 e+2 4.6 e+2 0.23
2 2 4.35 e+3 3.2 e+3 0.18
3 1 5.27 e+4 7.3 e+3 0.56

Table: Convergence results of the path-following method
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Conclusions

I Discrete models for the specific applications

I Homogenization techniques in 2D and 3D

I Adaptive grid refinement, a posteriori error estimators

I Optimization problem with PDE constraints

I Multiscale algorithms

I Primal–dual interior–point methods

I Path–following predictor–corrector scheme
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