Event-based numerical simulation of slightly compressible two-phase flow in heterogeneous porous media applied to CO₂ injection in saline aquifers

Julian Mindel - julian.mindel@unileoben.ac.at
Roman Manasipov

NM2PorousMedia - Dubrovnik, Croatia
September 29th - October 3rd, 2014
1. Motivation.

2. Event-based Methodology (DES)

3. Implementation for Incompressible Flow

4. Implementation for Slightly Compressible flow

5. Results. Comparison between TDS and DES simulation processes for Slightly Compressible two-phase flow.

Motivation

To develop a composite methodology that allows for improved performance in reservoir simulations containing (at least) the following three main characteristics:

1. **Material heterogeneity:** causes large discrepancy in CFL requirements across the computational domain.

2. **Multi-scale resolution:** detailed geometrical models are needed for greater accuracy and predictive capabilities.

3. **Localized phenomena:** such as evolving fronts, and other non-linear phenomena.

In summary: the targets are those simulations where "a lot is going on" in a relatively small portion of the domain.

Without the loss of general applicability, this method is intended for modelling CO\textsubscript{2} injection in saline aquifers.
Motivation

- Grid-Based Timestep-Driven Simulation (TDS) schemes:
 - Cells evolve **synchronously** (i.e. global time stepping)
 - Courant–Friedrichs–Lewy¹ (Courant et al, 1928) condition.
 - **Explicit solution methods (ETDS):**
 - Conditionally stable. Unbounded error propagation can be triggered by localized overstepping.
 - **Implicit solution methods (ITDS):**
 - Unconditionally stable. Convergence with large "oversteps" is difficult, particularly with strong influence of sources (wells) and gravity effects on the velocity field.
 - Large variations in CFL conditions (heterogeneity + multi-scale resolution + non-linearities)

Oct 2nd, 2014

Dr. Julian E. Mindel - Event-based numerical simulation of slightly compressible two-phase flow in heterogeneous porous media...
Motivation
A reservoir simulation model containing roughly 2.5 million cells contains the following distribution of sizes (volume).

It is also very likely that extremely small elements with large velocities exist near wells, thus imposing restrictions on timestepping (explicit) or time accuracy (implicit).
Event-based Methodology

- Event-based or Discrete Event Simulation (DES) Methodology has its **roots in management science**

- It is based on the **chronological** and **conditional triggering** of a sequence of events.

- First introduced into the simulation process for PDE's by Omelchenko and Karimabadi (Omelchenko and Karimabadi, 2006), with application to Plasma Physics.

- Linked to DEVS (Discrete Event System Specification) formalism invented by (Zeigler B. P., 1976)

- Similar methodologies applied to ODE's where introduced (among others) into:
 - Gas dynamics (Nutaro, 2003)
Event-based Methodology

- Key implementation aspects for continuous systems (described by PDEs discretized by, *for example, Finite Volumes*):
 - DES is an essentially **explicit scheme**.
 - In contrast to **ETDS** and **ITDS** schemes, cells evolve **asynchronously**.
 - Every change of a state variable in a grid cell is a possible “**event**” which is prioritized in a queue of events to be executed at a particular time. (**earliest always comes first**)!
 - **Conservation** is ensured through a flux synchronization process on both cells that share a face.
 - Synchronization may cause “preemptive” processing of a neighbour event (linked to the neighbour cell) to satisfy causality constraints.
Event-based Methodology

- DES queue assembly procedure. (vertical 1D problem example)

State Variable
(Representative plot)

Cells:
(Discretized Domain)

Events

Calculation of cell update rate (fluxes)

\[\frac{\partial s}{\partial t} = R(s) \]

and scheduling priority based on execution time,

\[\Delta t_e = \frac{\Delta s}{R(s)} \]

Event Priority Queue
Event-based Methodology

Cells: (Discretized Domain)

- Top event cell
- Neighbor cells to be synchronized
- Neighbor cells now check their own neighbors
- Boundary cells also become a ‘dead end’

Cells are a ‘dead end’ if there is not enough change in them after synchronization

New Top event is chosen

- Scheduled
- Processing
- Synchronizing
- Waiting to be scheduled (or synchronization to finish)
- Cell did not trigger further synchronization.

Oct 2nd, 2014

- So what happens during the DES step?
 - Events are processed beginning at the "Top" event given by the priority queue.
 - Synchronization with surrounding cells/events might trigger earlier processing of those synchronized cells/events.
 - The update that the top event started, ends once there are no more cells to synchronize and the original top event is scheduled
 - The next top event in line is chosen and the simulation clock is updated.
The DES algorithmic paradigm is a promising method because:

- **Conservation** is ensured through a flux synchronization process on both sides of the cell that share a face.

- **Adaptive synchronization** allows for a need-basis state variable updates, ensuring causality.

- **It is a robust scheme.** CFL requirements can be maintained locally, and ensured via a “self adaptive” order of execution.
Implementation for incompressible two phase flow

- **Assumptions/Simplications:** Incompressible, two-phase, immiscible flow in the absence of gravity and capillary forces. Brooks-Corey relative permeability model.
- Constant injection rate from the left boundary.
- 1rst order upwinding advection scheme.

<table>
<thead>
<tr>
<th>Min/max element size ratio*</th>
<th>Number of Cells</th>
<th>DES CPU Time [s]</th>
<th>ETDS CPU Time [s]</th>
<th>Speedup %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/10</td>
<td>59</td>
<td>0.79</td>
<td>0.89</td>
<td>11.2</td>
</tr>
<tr>
<td>1/20</td>
<td>70</td>
<td>1.18</td>
<td>1.96</td>
<td>39.8</td>
</tr>
<tr>
<td>1/30</td>
<td>78</td>
<td>1.58</td>
<td>3.14</td>
<td>49.7</td>
</tr>
<tr>
<td>1/40</td>
<td>85</td>
<td>2.01</td>
<td>4.62</td>
<td>56.5</td>
</tr>
<tr>
<td>1/50</td>
<td>91</td>
<td>2.54</td>
<td>6.17</td>
<td>58.8</td>
</tr>
</tbody>
</table>

*Reference max. element size = 0.2 m
Implementation for incompressible two-phase flow

Simulation Characteristics
- $K_m = 2.0 \times 10^{-14}$
- $K_f = 8.3 \times 10^{-8}$
- Brooks Corey Rel. Perm. model.
- **Injector** (nw) well at lower left corner.
- **Producer** well at upper right corner.
- $N_{ele} = 5779$, $h_{min}/h_{max} = 0.04$
- Injection rate $= 5.0 \times 10^{-5} \text{ m}^3\text{s}^{-1} (\text{CO}_2)$
- Dimensions: 1.88 x 1.25 m
- With gravity effects.
- $\rho_w = 1045 \text{ kg} \cdot \text{m}^{-3}$
- $\rho_{nw} = 479 \text{ kg} \cdot \text{m}^{-3}$

Mesh

Mindel & Mansipov, SIAM Annual Meeting San Diego, CA, July 2013
Implementation for Slightly Compressible two-phase flow

• Assumptions:
 – Flow is slightly compressible, isothermal.
 – Incompressible rock ($\phi = \phi(x)$ and $k = k(x)$).
 – Fluid phases are identical, of constant viscosity, and immiscible.
 – Gravitational and capillary forces are neglected.
 – Both fluids follow the same linear relative permeability model, whereby:
 $$k_{r,w} = s_w \quad \text{and} \quad k_{r,nw} = 1 - s_w$$

• The mass conservation governing equations can thus be combined to produce,
 $$\phi c_f \frac{\partial p}{\partial t} - \nabla \cdot \left(\frac{k}{\mu} \nabla p \right) = 0$$

• The saturation equation, in the absence of external sources and gravitational effects, dropping phase subscripts, may be written as:
 $$\phi \frac{\partial s}{\partial t} = -\nabla \cdot (su) - \phi s c_f \frac{\partial p}{\partial t}$$

• Darcy velocity, in the absence of gravitational and capillary effects can be written as:
 $$\mathbf{u} = -\frac{k}{\mu} \nabla p$$
Implementation for Slightly Compressible two-phase flow

- Using Finite Volume spatial discretization, the discrete form of the flux balance for finite volume cell i for the pressure equation is:

$$
\phi_i c_f \Omega_i \left(\frac{p_i^{n+1} - p_i^n}{\Delta t} \right) = \sum_{j=1}^{n_f} A_j \frac{K_j}{\mu_j} (\nabla p)_j^n \cdot \hat{n}_j \quad (Explicit)
$$

$$
\phi_i c_f \Omega_i \left(\frac{p_i^{n+1} - p_i^n}{\Delta t} \right) = \sum_{j=1}^{n_f} A_j \frac{K_j}{\mu_j} (\nabla p)_j^{n+1} \cdot \hat{n}_j \quad (Implicit)
$$

- And the second governing equation is:

$$
\phi_i \Omega_i \left(\frac{s_i^{n+1} - s_i^n}{\Delta t} \right) = - \sum_{j=1}^{n_f} A_j s_j^n u_j^n \cdot \hat{n}_j - \phi_i \Omega_i s_i^n c_f \left(\frac{p_i^{n+1} - p_i^n}{\Delta t} \right) \quad (Explicit)
$$

$$
\phi_i \Omega_i \left(\frac{s_i^{n+1} - s_i^n}{\Delta t} \right) = - \sum_{j=1}^{n_f} A_j s_j^{n+1} u_j^{n+1} \cdot \hat{n}_j - \phi_i \Omega_i s_i^{n+1} c_f \left(\frac{p_i^{n+1} - p_i^n}{\Delta t} \right) \quad (Implicit)
$$

- Where n_f is the number of faces of cell i. A_j is the area of face j. \hat{n}_j is the outward facing unit normal from cell i to cell j.
Results

Comparison, 1D Simulation Results

Note: 30 equal sized cells were used

Dr. Julian E. Mindel - Event-based numerical simulation of slightly compressible two-phase flow in heterogeneous porous media...
Results

Comparison, 2D Simulation Results

- **DES**
- **ETDS**
- **ITDS**

Pressure

Saturation
Event-based numerical simulation of slightly compressible two-phase flow in heterogeneous porous media.
Results

\[\frac{K_r}{K_m} = 10000 \quad \text{vs.} \quad \frac{K_r}{K_m} = 1000 \]

Oct 2nd, 2014

Dr. Julian E. Mindel - Event-based numerical simulation of slightly compressible two-phase flow in heterogeneous porous media...
Results

- Snapshot showing instantaneous operation activity within a DES step.
- Variable range of the frames on the right has been cropped to show how far Pressure and Saturation propagate, activating cells in their path.
Summary and work in progress

• An asynchronous, event-based methodology has been applied to slightly compressible two-phase fluid flow in heterogeneous porous media.

• Demonstrated good performance vs. ETDS and ITDS schemes for scenarios of high material heterogeneity, non-linearity, and resolution variation.

• Our work in progress includes (…but is not limited to…),
 – **Efficiency:** work on better calculation of target variable changes.
 – **Parallelism**
 – **Multiple variables** from more complex systems of PDE’s, with application to, for example, reactive transport modelling, etc..
 – **Smart algorithm:** Larger number of applied cases need to be studied to understand when the method might not be a viable option, thus automatically switch to TDS schemes or other approaches. (e.g. when large portions of the domain become active)
References

