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A regularized elliptic-parabolic model for the
transport in porous media

Olivier Lafitte

LAGA — Université de Paris 13, Sorbonne Paris Cité

From previous works with C. Le Potier (CEA) and from the
PhD of C. Baudry
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Bernouilli equation (equilibrium):
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Darcy's law and hydraulic head
Bernouilli equation (equilibrium):
$(@0)* + pgz +p = C, C constant
Definition of hydraulic head:
=2
h=— + + @ L + z.
pg 2p9  py
Constant in a perfect fluid (not in a porous medium). Case of

compressible fluid h = z + f}i pdp
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Darcy's law and hydraulic head

Bernouilli equation (equilibrium):
$(@0)* + pgz +p = C, C constant
Definition of hydraulic head:
=2
h=— + + @ L + z.
pg 2p9  py
Constant in a perfect fluid (not in a porous medium). Case of
compressible fluid h = z + fp dp

po p(p
Darcy law (from Poiseuille law) fo r a circular tube of height e filled

with a mixture of porosity w = Vp (V: total volume, V, =V — V:
volume of pores, i viscosity)

we2

T = -K, .
U 12MV(p+ pgz) == (w, p)Vh

General approach: homogenization.
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Moisture and mass conservation

Case of unsaturated media: all the pores are not filled with water.
Water volume V,,. Moisture 8 := % € (0,w).
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Case of unsaturated media: all the pores are not filled with water.
Water volume V,,. Moisture 8 := % € (0,w).

Darcy's law: U = —K(6)Vh. (No attempt to derive it)
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Case of unsaturated media: all the pores are not filled with water.
Water volume V,,,. Moisture 6 := % € (0,w).
Darcy's law: U = —K(6)Vh. (No attempt to derive it)
Conservation of mass for the water (g flux of water):

04(pf) + div(pU) + pg = 0
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Case of unsaturated media: all the pores are not filled with water.
Water volume V,,,. Moisture 6 := % € (0,w).

Darcy's law: U = —K(6)Vh. (No attempt to derive it)
Conservation of mass for the water (g flux of water):

04(pf) + div(pU) + pg = 0

Richards' equation
00 = div(K(0)Vh).

with a retention law: 6 := 6(h) such that 6(h) = 65 for h > hs,
(saturated medium). Define C'(h) = 9. Equation

C(h)dh = div(K (8(h))Vh).
Degenerate (C(h) = 0,h > hy) parabolic-elliptic equation.
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Moisture and mass conservation

Case of unsaturated media: all the pores are not filled with water.
Water volume V,,,. Moisture 6 := % € (0,w).

Darcy's law: U = —K(6)Vh. (No attempt to derive it)
Conservation of mass for the water (g flux of water):

04(pf) + div(pU) + pg = 0
Richards' equation

0:0 = div(K (0)Vh).

with a retention law: 6 := 6(h) such that 6(h) = 65 for h > hs,
(saturated medium). Define C'(h) = 9. Equation

C(h)0th = div(K(6(h))Vh).

Degenerate (C(h) = 0,h > hy) parabolic-elliptic equation.

Other models have degeneracies (Caro, Saad,Saad, Apr. 2014) but
assume 0(h) = p(x)h, p(z) > p1 and the degeneracy is in the
coupling term.
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Previous result (o.l., c.Ip., 2002)

This result relies on a paper of Benilan and Wittbold. The
functions K and C' are continuous.

Conclusions
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Previous result (o.l., c.Ip., 2002)

This result relies on a paper of Benilan and Wittbold. The
functions K and C are continuous.

The system 0;(0(h)) = div(K (h)0zh), (x,t) € [0,1] x R4,
inhomogeneous b.c. on h(z,t), h(x,0) = hi(z) € W21([0,1])
with 0(h;(.)) € L*([0,1])

has a unique solution in W1°°([0, 1], L([0, 1])).
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has a unique solution in W1°°([0, 1], L([0, 1])).

Note that, if g;(z) satisfies 8(g;(.)) = 0(h;(.)), then the solution is
the same. The solution is not one to one w. r. to the initial
condition.



Model of porous media and Richards’ equation

e0

Previous result (o.l., c.Ip., 2002)

This result relies on a paper of Benilan and Wittbold. The
functions K and C are continuous.

The system 0;(0(h)) = div(K (h)0zh), (x,t) € [0,1] x R4,
inhomogeneous b.c. on h(z,t), h(x,0) = hi(z) € W21([0,1])
with 0(h;(.)) € L*([0,1])

has a unique solution in W1°°([0, 1], L([0, 1])).

Note that, if g;(z) satisfies 8(g;(.)) = 0(h;(.)), then the solution is
the same. The solution is not one to one w. r. to the initial
condition.

Numerical scheme: 0(hy,) 1= 0(hpt1) + Atdiv(EK (hpt1)Vhni).
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Previous result (o.l., c.Ip., 2002)

This result relies on a paper of Benilan and Wittbold. The
functions K and C are continuous.

The system 0;(0(h)) = div(K (h)0zh), (x,t) € [0,1] x R4,
inhomogeneous b.c. on h(z,t), h(x,0) = hi(z) € W21([0,1])
with 0(h;(.)) € L*([0,1])

has a unique solution in W1°°([0, 1], L([0, 1])).

Note that, if g;(z) satisfies 8(g;(.)) = 0(h;(.)), then the solution is
the same. The solution is not one to one w. r. to the initial
condition.

Numerical scheme: 0(hy,) 1= 0(hpt1) + Atdiv(EK (hpt1)Vhni).
One gets h,, 41 uniquely, and 0(h,,) converges. Badly conditioned
for ' and At small. Coercivity needed (C. LP).



Outline of the talk Model of porous media and Richards’ equation Elliptic-parabolic non degenerate problem

(e]e} (e}
oe 000

Some retention laws

O = %=les 4) = puir — P, hydrostatic pressure:

esat _eres

e Brooks and Corey (1964) © = (%)A
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Some retention laws

O = ﬁ%v ¥ = Dair — Pw, hydrostatic pressure:

sat _97'55

e Brooks and Corey (1964) © = (%)A
o Williams (1983) In© = A = B1n,
e Van Genutchen (1980): © = (1 + (a®)™)~™.
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Some retention laws

O = {"_Av ¥ = Dair — Pw, hydrostatic pressure:

sat _97'55

e Brooks and Corey (1964) © = (%)A
o Williams (1983) In© = A = Blnw),
e Van Genutchen (1980): © = (1 + (a¥)™)~™.
Analytic solution in the case §(h) = min(h,0) (C. Baudry, PhD),
hoo <0< ho:
0%h

O (0(h(z,t))) = Dw, h(z,0) = hoolyz<o, h(0,t) = ho,t > 0,

ho(1 23“;/) T < 2a\/t

hZL‘,t = erfc
1) {hoo(l— ZT;C(G) ))x>2a\[

2 aexp(— 2) __ ho
where a solves Trerfoa) = " he
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Coupling with a mechanical model
From the literature (Green,Wang, Water res. res. 26 (7), 1990):
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Coupling with a mechanical model

From the literature (Green,Wang, Water res. res. 26 (7), 1990):
Biot's law (deformation tensor €;; = %(&Xj +0;X;))

2G 1 1 1 2G

== = 51— 2 ) (Tr(0)

2Geij = 04 + (—
Geyg =0y + (5 (g~ g~ 30 -3¢

equivalent to (note that T'r(e) = divX)

oij = 2Gei; + (ap + BTr(€))d;j.
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Coupling with a mechanical model

From the literature (Green,Wang, Water res. res. 26 (7), 1990):
Biot's law (deformation tensor €;; = %(&Xj +0;X;))

2G 1 1 1 2G

?(E - E)p - 5(1 - 3?)(T7’(0)))5ij

2Ge;j = 045 + (
equivalent to (note that T'r(e) = divX)
Oij = 2G€ij + (Odp + BTT(G))@']‘.
Retention law:
Tr(e)
3

);
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Coupling with a mechanical model

From the literature (Green,Wang, Water res. res. 26 (7), 1990):
Biot's law (deformation tensor €;; = %(&Xj +0;X;))

2G 1 1 1 2G

?(E - E)p - 5(1 - 3?)(T7’(0)))5ij

2Ge;j = 045 + (
equivalent to (note that T'r(e) = divX)
Oij = 2G€ij + (Odp + BTT’(G))(SZ']‘.
Retention law:
Tr(e)
3

);

Relation between p and h: p = pywgh + Pair,
Equilibrium (mechanical constraints)

div(c — pyghld) = f
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Other models

e Old model (O.L., C. LP):e;‘j = €;j + hspdij — hspadij
o = D(¢)
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Other models

e Old model (O.L., C. LP):eZ‘j = €;j + hspdij — hspadij
o= D(E*)—> €5 = (TU)Z‘J' — %TT(E)@']‘ — hsp(sij,

Conclusions
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Other models

e Old model (O.L., C. LP):ez‘j = €;j + hspdij — hspadij
o = D(E*)—> €5 = (TU)Z‘]' — %TT(E)@']‘ — hsp(sij,
e Hyperelastic model (Callari, Abati, 2011, eq. 14):

8ta = C:‘Gte — atpb

Conclusions
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Other models

e Old model (O.L., C. LP):€}; = €;; + hspdij — hspadij

- ij
o= D(E*)—> €5 = (TU)Z‘j — %TT(E)@']‘ — hsp(sij,
e Hyperelastic model (Callari, Abati, 2011, eq. 14):
8ta = C:’Gte — Otpb

All three models have in common that d;e = 158250 — OhVeId.
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Other models

e Old model (O.L., C. LP):ez‘j = €;j + hspdij — hspadij
o= D(E*)—> €5 = (TU)Z‘j — %TT(E)(SZ'J‘ — hsp(sij,
e Hyperelastic model (Callari, Abati, 2011, eq. 14):
8ta = C:’Gte — Otpb
All three models have in common that d;e = 158250 — OhVeId.

WA+ o,

1, =
= 0w = gle(D@tU) - 3
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Expression of the deformation rate w = 37 (e)
Equation (equilibrium):
—div(2Ge + BTr(e)Id) = pwg(a — 1)Vh — f + aVp,

Solved on 2 bounded, regular with a inhomogeneous Dirichlet
boundary condition on X on I' C 9%2:
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Expression of the deformation rate w = 37 (e)
Equation (equilibrium):
—div(2Ge + BTr(e)Id) = pwg(a — 1)Vh — f + aVp,

Solved on 2 bounded, regular with a inhomogeneous Dirichlet
boundary condition on X on I' C 9€2: the operator K

(X1, X2, X3) = —2Gdive — SV (T'r(e))

3

is self-adjoint coercive and continuous from (H}(£2))? to

(H-H()? = ((H5()")?,



Outline of the talk Model of porous media and Richards’ equation Elliptic-parabolic non degenerate problem Conclusions

Expression of the deformation rate w = 37 (e)
Equation (equilibrium):
—div(2Ge + BTr(e)Id) = pwg(a — 1)Vh — f + aVp,

Solved on 2 bounded, regular with a inhomogeneous Dirichlet
boundary condition on X on I' C 9€2: the operator K

(X1, X2, X3) = —2Gdive — SV (T'r(e))

3

is self-adjoint coercive and continuous from (H}(£2))? to

(H1(Q)? = ((H5(2))')°,
MIVX[tr2iqys = (KrX, X) > 0 VX[E12 1))
Lifting the boundary condition (explanation of g):
(X1, X2, X3) = pug(a = VK3 (Vh) + K (aVp, = f + g),
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Expression of the deformation rate w = 37 (e)
Equation (equilibrium):
—div(2Ge + BTr(e)Id) = pwg(a — 1)Vh — f + aVp,

Solved on 2 bounded, regular with a inhomogeneous Dirichlet
boundary condition on X on I' C 9€2: the operator K

(X1, X2, X3) = —2Gdive — SV (T'r(e))
is self-adjoint coercive and continuous from (H}(£2))? to
(H™H)® = ((H (2))')°,
MIVX[tr2iqys = (KrX, X) > 0 VX[E12 1))
Lifting the boundary condition (explanation of g):
(X1, X2, X3) = pug(a — 1)K (Vh) + K3 (aVpa — f + 9),

W= pug 3 d'V( (Vh))+3d'\/( HaVpe—f+g)) == L(h)—F.
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Resulting porous media equation: analysis

S'(h)w(h)d:h + S(h)L(0:h) = div(K (0)Vh) + S(h)0: F
Property (o < 1):

Pwyg
(L(H), H) > 751 = a)[|H|[72(q

1= =

owing to (K. ¢, p) > M_IHQEH%H%(Q))?“

Conclusions
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Resulting porous media equation: analysis

S'(h)w(h)d:h + S(h)L(0:h) = div(K (0)Vh) + S(h)0: F
Property (o < 1):

Pwyg
(L(H), H) > 751 = a)[|H|[72(q

1= =

owing to (K. ¢, p) > M_IHQEH%HA(Q))?"
IVrlla-1@) = [IrllL2@)-
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Resulting porous media equation: analysis

S (h)w(h)dsh 4+ S(R)L(8:h) = div(K (0)Vh) 4+ S(h)d,F
Property (o < 1):
(L(H), H) = £52(1 = )| |H][}2(q

owing to (Kfls@ @) > M_IHQEH%HA(Q))S'
IVl -1y = |7l L2(0)-

Introduce B(h)d:h = S'(h)w(h)d¢h + S(h)L(0¢h).
One has (B(h)d;h, d:h) > c()HathH%Q(Q), co > 0.

Conclusions
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Resulting porous media equation: analysis

S'(h)w(h)d:h + S(h)L(0:h) = div(K (0)Vh) + S(h)0: F
Property (o < 1):

Pwyg
(L(H) H) > 351 = a)||H|[}2q,

owing to (Kfls@ @) > M_IHQEH%HA(Q))S'
IVl -1y = |7l L2(0)-

Introduce B(h)Oh = S’ (h)w(h)Oh + S(h)L(0.h).
One has (B(h)d;h, d:h) > coﬂathH%Q(ﬂ), co > 0.

Solve 8,0(x,t) = B(h)d;h(x,t)
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Resulting porous media equation: analysis

S (h)w(h)dsh 4+ S(R)L(8:h) = div(K (0)Vh) 4+ S(h)d,F
Property (o < 1):
(L(H), H) = £52(1 = )| |H][}2(q

owing to (Kfls@ @) > M_IHQEH%HA(Q))S'
IVl -1y = |7l L2(0)-

Introduce B(h)Oh = S’ (h)w(h)Oh + S(h)L(0.h).
One has (B(h)d;h, d:h) > coﬂathH%Q(ﬂ), co > 0.

Solve 8,0(x,t) = B(h)d:h(x,t) = h(z,t) = B~1(0)(x,1).
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Elliptic-parabolic non degenerate equation,with
0 = S(h)L(h) = S.L(h)

B(h)dyh = div(K (S.L(h))Vh) + S(h)O,F.

Conclusions
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Elliptic-parabolic non degenerate equation,with
0 = S(h)L(h) = S.L(h)

B(h)dyh = div(K (S.L(h))Vh) + S(h)O,F.

e If one could find

8,0 = div(K ((S.L(B~1(0)))V(B~(A))) + S(h)d;h

Operator on the right hand side still coercive in H! —
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Elliptic-parabolic non degenerate equation,with
0 = S(h)L(h) = S.L(h)

B(h)oth = div(K(S.L(h))Vh) + S(h)0,F.
e If one could find

8,0 = div(K ((S.L(B~1(0)))V(B~(A))) + S(h)d;h

Operator on the right hand side still coercive in H' — regularized
problem on 6.
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Elliptic-parabolic non degenerate equation,with
0 = S(h)L(h) = S.L(h)

B(h)dyh = div(K (S.L(h))Vh) + S(h)O,F.

e If one could find

8,0 = div(K ((S.L(B~1(0)))V(B~(A))) + S(h)d;h

Operator on the right hand side still coercive in H' — regularized
problem on 6.

e Operator h — B(h)0;h non degenerate and operator

—div(K (S.L(h))Vh) coercive.

e Compare with a numerical method where w := wy, () is given
through the calculation of ¢, and then solving the problem for h, 1
where S’(h) = 0 on a region h > h.
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e Mechanical behavior (hyperelastic, elastic): € = Do — hVId
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e Mechanical behavior (hyperelastic, elastic): € = Do — hV Id

e Assumption o = ﬁDilv <l=X-= COKEIVh + Si,

Cy > 0, K7 coercive, which imply, from 6(h) = S(h)w, S’(h) >0
and S(h) > 0, (with suitable b.c. for X or X), that
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Coupled problem no longer degenerate. Coerciveness of X in
terms of Vp and of w in terms of h.
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e Mechanical behavior (hyperelastic, elastic): € = Do — hV Id

e Assumption o = ﬁDilv <l=X= COKEIVh + S;,

Cy > 0, K7 coercive, which imply, from 6(h) = S(h)w, S’(h) >0
and S(h) > 0, (with suitable b.c. for X or X), that

8:0 = B(h)d:h, (B(h), ) > colt|2

Coupled problem no longer degenerate. Coerciveness of X in
terms of Vp and of w in terms of h.

e Already observed in some numerical resolutions coupling the
models (c.lp for example) where one includes in the system an
additional term in (S’ (h)w + ¢)0:h = div(K (h)Vh)
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