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Darcy‘s law and hydraulic head
Bernouilli equation (equilibrium):
1
2(~u)2 + ρgz + p = C, C constant
Definition of hydraulic head:

h =
p

ρg
+ z +

(~u)2

2ρg
' p

ρg
+ z.

Constant in a perfect fluid (not in a porous medium). Case of
compressible fluid h = z +

∫ p
p0

dp
ρ(p)g .

Darcy law (from Poiseuille law) for a circular tube of height e filled

with a mixture of porosity ω =
Vp
V (V : total volume, Vp = V − Vs:

volume of pores, µ viscosity)

~U = −ωe
2

12µ
∇(p+ ρgz) := −K∗(ω, ρ)∇h.

General approach: homogenization.
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Moisture and mass conservation
Case of unsaturated media: all the pores are not filled with water.
Water volume Vw. Moisture θ := Vw

V ∈ (0, ω).

Darcy’s law: ~U = −K(θ)∇h. (No attempt to derive it)
Conservation of mass for the water (q flux of water):

∂t(ρθ) + div(ρ~U) + ρq = 0

Richards’ equation
∂tθ = div(K(θ)∇h).

with a retention law: θ := θ(h) such that θ(h) = θs for h ≥ hs,
(saturated medium). Define C(h) = dθ

dh . Equation

C(h)∂th = div(K(θ(h))∇h).

Degenerate (C(h) = 0, h ≥ hs) parabolic-elliptic equation.
Other models have degeneracies (Caro, Saad,Saad, Apr. 2014) but
assume θ(h) = ϕ(x)h, ϕ(x) ≥ ϕ1 and the degeneracy is in the
coupling term.
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Previous result (o.l., c.lp., 2002)

This result relies on a paper of Benilan and Wittbold. The
functions K and C are continuous.
The system ∂t(θ(h)) = div(K(h)∂xh), (x, t) ∈ [0, 1]×R+,
inhomogeneous b.c. on h(x, t), h(x, 0) = hi(x) ∈W 2,1([0, 1])
with θ(hi(.)) ∈ L1([0, 1])
has a unique solution in W 1,∞([0, 1], L1([0, 1])).

Note that, if gi(x) satisfies θ(gi(.)) = θ(hi(.)), then the solution is
the same. The solution is not one to one w. r. to the initial
condition.
Numerical scheme: θ(hn) := θ(hn+1) + ∆tdiv(K(hn+1)∇hn+1).
One gets hn+1 uniquely, and θ(hn) converges. Badly conditioned
for θ′ and ∆t small. Coercivity needed (C. LP).
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Some retention laws

Θ = θ−θres
θsat−θres , ψ = pair − pw, hydrostatic pressure:

• Brooks and Corey (1964) Θ = (ψea

ψ )λ,
• Williams (1983) ln Θ = A = B lnψ,
• Van Genutchen (1980): Θ = (1 + (αΨ)n)−m.
Analytic solution in the case θ(h) = min(h, 0) (C. Baudry, PhD),
h∞ < 0 ≤ h0:

∂t(θ(h(x, t))) = D
∂2h

∂x2
, h(x, 0) = h∞1x<0, h(0, t) = h0, t > 0,

h(x, t) =

{
h0(1− x

2a
√
t
), x < 2a

√
t

h∞(1−
erfc( x

2
√

Dt
)

erfc(a) ), x ≥ 2a
√
t

where a solves 2√
π
aexp(−a2)
erfc(a) = − h0

h∞
.



Outline of the talk Model of porous media and Richards’ equation Elliptic-parabolic non degenerate problem Conclusions

Some retention laws

Θ = θ−θres
θsat−θres , ψ = pair − pw, hydrostatic pressure:

• Brooks and Corey (1964) Θ = (ψea

ψ )λ,
• Williams (1983) ln Θ = A = B lnψ,
• Van Genutchen (1980): Θ = (1 + (αΨ)n)−m.
Analytic solution in the case θ(h) = min(h, 0) (C. Baudry, PhD),
h∞ < 0 ≤ h0:

∂t(θ(h(x, t))) = D
∂2h

∂x2
, h(x, 0) = h∞1x<0, h(0, t) = h0, t > 0,

h(x, t) =

{
h0(1− x

2a
√
t
), x < 2a

√
t

h∞(1−
erfc( x

2
√

Dt
)

erfc(a) ), x ≥ 2a
√
t

where a solves 2√
π
aexp(−a2)
erfc(a) = − h0

h∞
.



Outline of the talk Model of porous media and Richards’ equation Elliptic-parabolic non degenerate problem Conclusions

Some retention laws

Θ = θ−θres
θsat−θres , ψ = pair − pw, hydrostatic pressure:

• Brooks and Corey (1964) Θ = (ψea

ψ )λ,
• Williams (1983) ln Θ = A = B lnψ,
• Van Genutchen (1980): Θ = (1 + (αΨ)n)−m.
Analytic solution in the case θ(h) = min(h, 0) (C. Baudry, PhD),
h∞ < 0 ≤ h0:

∂t(θ(h(x, t))) = D
∂2h

∂x2
, h(x, 0) = h∞1x<0, h(0, t) = h0, t > 0,

h(x, t) =

{
h0(1− x

2a
√
t
), x < 2a

√
t

h∞(1−
erfc( x

2
√

Dt
)

erfc(a) ), x ≥ 2a
√
t

where a solves 2√
π
aexp(−a2)
erfc(a) = − h0

h∞
.



Outline of the talk Model of porous media and Richards’ equation Elliptic-parabolic non degenerate problem Conclusions

Some retention laws

Θ = θ−θres
θsat−θres , ψ = pair − pw, hydrostatic pressure:

• Brooks and Corey (1964) Θ = (ψea

ψ )λ,
• Williams (1983) ln Θ = A = B lnψ,
• Van Genutchen (1980): Θ = (1 + (αΨ)n)−m.
Analytic solution in the case θ(h) = min(h, 0) (C. Baudry, PhD),
h∞ < 0 ≤ h0:

∂t(θ(h(x, t))) = D
∂2h

∂x2
, h(x, 0) = h∞1x<0, h(0, t) = h0, t > 0,

h(x, t) =

{
h0(1− x

2a
√
t
), x < 2a

√
t

h∞(1−
erfc( x

2
√

Dt
)

erfc(a) ), x ≥ 2a
√
t

where a solves 2√
π
aexp(−a2)
erfc(a) = − h0

h∞
.



Outline of the talk Model of porous media and Richards’ equation Elliptic-parabolic non degenerate problem Conclusions

Coupling with a mechanical model
From the literature (Green,Wang, Water res. res. 26 (7), 1990):
Biot’s law (deformation tensor εij = 1

2(∂iXj + ∂jXi))

2Gεij = σij + (
2G

3
(

1

K
− 1

Ks
)p− 1

3
(1− 2G

3K
)(Tr(σ)))δij

equivalent to (note that Tr(ε) = div ~X)

σij = 2Gεij + (αp+ βTr(ε))δij .

Retention law:

θ(h) = S(h)ω = S(h)(ω0 +
Tr(ε)

3
),

Relation between p and h: p = ρwgh+ pair,
Equilibrium (mechanical constraints)

div(σ − ρwghId) = f



Outline of the talk Model of porous media and Richards’ equation Elliptic-parabolic non degenerate problem Conclusions

Coupling with a mechanical model
From the literature (Green,Wang, Water res. res. 26 (7), 1990):
Biot’s law (deformation tensor εij = 1

2(∂iXj + ∂jXi))

2Gεij = σij + (
2G

3
(

1

K
− 1

Ks
)p− 1

3
(1− 2G

3K
)(Tr(σ)))δij

equivalent to (note that Tr(ε) = div ~X)

σij = 2Gεij + (αp+ βTr(ε))δij .

Retention law:

θ(h) = S(h)ω = S(h)(ω0 +
Tr(ε)

3
),

Relation between p and h: p = ρwgh+ pair,
Equilibrium (mechanical constraints)

div(σ − ρwghId) = f



Outline of the talk Model of porous media and Richards’ equation Elliptic-parabolic non degenerate problem Conclusions

Coupling with a mechanical model
From the literature (Green,Wang, Water res. res. 26 (7), 1990):
Biot’s law (deformation tensor εij = 1

2(∂iXj + ∂jXi))

2Gεij = σij + (
2G

3
(

1

K
− 1

Ks
)p− 1

3
(1− 2G

3K
)(Tr(σ)))δij

equivalent to (note that Tr(ε) = div ~X)

σij = 2Gεij + (αp+ βTr(ε))δij .

Retention law:

θ(h) = S(h)ω = S(h)(ω0 +
Tr(ε)

3
),

Relation between p and h: p = ρwgh+ pair,
Equilibrium (mechanical constraints)

div(σ − ρwghId) = f



Outline of the talk Model of porous media and Richards’ equation Elliptic-parabolic non degenerate problem Conclusions

Coupling with a mechanical model
From the literature (Green,Wang, Water res. res. 26 (7), 1990):
Biot’s law (deformation tensor εij = 1

2(∂iXj + ∂jXi))

2Gεij = σij + (
2G

3
(

1

K
− 1

Ks
)p− 1

3
(1− 2G

3K
)(Tr(σ)))δij

equivalent to (note that Tr(ε) = div ~X)

σij = 2Gεij + (αp+ βTr(ε))δij .

Retention law:

θ(h) = S(h)ω = S(h)(ω0 +
Tr(ε)

3
),

Relation between p and h: p = ρwgh+ pair,
Equilibrium (mechanical constraints)

div(σ − ρwghId) = f



Outline of the talk Model of porous media and Richards’ equation Elliptic-parabolic non degenerate problem Conclusions

Other models

• Old model (O.L., C. LP):ε∗ij = εij + hspδij − hspaδij
σ = ¯̄D(ε∗)→ εij = ( ¯̄Tσ)ij − ν

ETr(ε)δij − h
spδij ,

• Hyperelastic model (Callari, Abati, 2011, eq. 14):

∂tσ = ¯̄C∂tε− ∂tpb

All three models have in common that ∂tε = ¯̄D∂tσ − ∂thV sId.

⇒ ∂tω =
1

3
div( ¯̄D∂tσ)− V s

1 + V s
2 + V s

3

3
∂th.



Outline of the talk Model of porous media and Richards’ equation Elliptic-parabolic non degenerate problem Conclusions

Other models

• Old model (O.L., C. LP):ε∗ij = εij + hspδij − hspaδij
σ = ¯̄D(ε∗)→ εij = ( ¯̄Tσ)ij − ν

ETr(ε)δij − h
spδij ,

• Hyperelastic model (Callari, Abati, 2011, eq. 14):

∂tσ = ¯̄C∂tε− ∂tpb

All three models have in common that ∂tε = ¯̄D∂tσ − ∂thV sId.

⇒ ∂tω =
1

3
div( ¯̄D∂tσ)− V s

1 + V s
2 + V s

3

3
∂th.



Outline of the talk Model of porous media and Richards’ equation Elliptic-parabolic non degenerate problem Conclusions

Other models

• Old model (O.L., C. LP):ε∗ij = εij + hspδij − hspaδij
σ = ¯̄D(ε∗)→ εij = ( ¯̄Tσ)ij − ν

ETr(ε)δij − h
spδij ,

• Hyperelastic model (Callari, Abati, 2011, eq. 14):

∂tσ = ¯̄C∂tε− ∂tpb

All three models have in common that ∂tε = ¯̄D∂tσ − ∂thV sId.

⇒ ∂tω =
1

3
div( ¯̄D∂tσ)− V s

1 + V s
2 + V s

3

3
∂th.



Outline of the talk Model of porous media and Richards’ equation Elliptic-parabolic non degenerate problem Conclusions

Other models

• Old model (O.L., C. LP):ε∗ij = εij + hspδij − hspaδij
σ = ¯̄D(ε∗)→ εij = ( ¯̄Tσ)ij − ν

ETr(ε)δij − h
spδij ,

• Hyperelastic model (Callari, Abati, 2011, eq. 14):

∂tσ = ¯̄C∂tε− ∂tpb

All three models have in common that ∂tε = ¯̄D∂tσ − ∂thV sId.

⇒ ∂tω =
1

3
div( ¯̄D∂tσ)− V s

1 + V s
2 + V s

3

3
∂th.



Outline of the talk Model of porous media and Richards’ equation Elliptic-parabolic non degenerate problem Conclusions

Other models

• Old model (O.L., C. LP):ε∗ij = εij + hspδij − hspaδij
σ = ¯̄D(ε∗)→ εij = ( ¯̄Tσ)ij − ν

ETr(ε)δij − h
spδij ,

• Hyperelastic model (Callari, Abati, 2011, eq. 14):

∂tσ = ¯̄C∂tε− ∂tpb

All three models have in common that ∂tε = ¯̄D∂tσ − ∂thV sId.

⇒ ∂tω =
1

3
div( ¯̄D∂tσ)− V s

1 + V s
2 + V s

3

3
∂th.



Outline of the talk Model of porous media and Richards’ equation Elliptic-parabolic non degenerate problem Conclusions

Expression of the deformation rate ω = 1
3Tr(ε)

Equation (equilibrium):

−div(2Gε+ βTr(ε)Id) = ρwg(α− 1)∇h− f + α∇pa
Solved on Ω bounded, regular with a inhomogeneous Dirichlet
boundary condition on ~X on Γ ⊂ ∂Ω: the operator KT

(X1, X2, X3)→ −2Gdivε− β∇(Tr(ε))

is self-adjoint coercive and continuous from (H1
0 (Ω))3 to

(H−1(Ω))3 = ((H1
0 (Ω))′)3,

M |∇ ~X|2(L2(Ω))3 ≥ (KT
~X, ~X) ≥ δ|∇ ~X|2(L2(Ω))3

Lifting the boundary condition (explanation of g):

(X1, X2, X3) = ρwg(α− 1)K−1
T (∇h) +K−1

T (α∇pa − f + g),

ω = ρwg
α− 1

3
div(K−1

T (∇h))+
1

3
div(K−1

T (α∇pa−f+g)) := L(h)−F.
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(X1, X2, X3)→ −2Gdivε− β∇(Tr(ε))

is self-adjoint coercive and continuous from (H1
0 (Ω))3 to

(H−1(Ω))3 = ((H1
0 (Ω))′)3,

M |∇ ~X|2(L2(Ω))3 ≥ (KT
~X, ~X) ≥ δ|∇ ~X|2(L2(Ω))3

Lifting the boundary condition (explanation of g):

(X1, X2, X3) = ρwg(α− 1)K−1
T (∇h) +K−1

T (α∇pa − f + g),

ω = ρwg
α− 1

3
div(K−1

T (∇h))+
1

3
div(K−1

T (α∇pa−f+g)) := L(h)−F.
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Resulting porous media equation: analysis

S′(h)ω(h)∂th+ S(h)L(∂th) = div(K(θ)∇h) + S(h)∂tF

Property (α < 1):

(L(H), H) ≥ ρwg

3M
(1− α)||H||2L2(Ω)

owing to (K−1
T ~ϕ, ~ϕ) ≥M−1||~ϕ||2(H−1(Ω))3 ,

||∇r||H−1(Ω) ' ||r||L2(Ω).

Introduce B(h)∂th = S′(h)ω(h)∂th+ S(h)L(∂th).
One has (B(h)∂th, ∂th) ≥ c0||∂th||2L2(Ω), c0 > 0.

Solve ∂tθ̃(x, t) = B(h)∂th(x, t) ⇒ h(x, t) = B̃−1(θ̃)(x, t).
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Elliptic-parabolic non degenerate equation,with
θ = S(h)L(h) = S.L(h)

B(h)∂th = div(K(S.L(h))∇h) + S(h)∂tF.

• If one could find θ̃

∂tθ̃ = div(K((S.L(B̃−1(θ̃)))∇(B̃−1(θ̃))) + S(h)∂th

Operator on the right hand side still coercive in H1 → regularized
problem on θ̃.
• Operator h→ B(h)∂th non degenerate and operator
−div(K(S.L(h))∇h) coercive.
• Compare with a numerical method where ω := ωn(x) is given
through the calculation of ε, and then solving the problem for hn+1

where S′(h) = 0 on a region h ≥ hs.
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Conclusions

• Mechanical behavior (hyperelastic, elastic): ε = Dσ − hV Id
• Assumption α = 1

ρwg
D−1V < 1:⇒ ~X = C0K

−1
T ∇h+ Si,

C0 > 0,KT coercive, which imply, from θ(h) = S(h)ω, S′(h) ≥ 0

and S(h) > 0 , (with suitable b.c. for ~X or ~̇X), that

∂tθ = B(h)∂th, (B(h)ψ,ψ) ≥ c0|ψ|2L2

Coupled problem no longer degenerate. Coerciveness of ~X in
terms of ∇p and of ω in terms of h.
• Already observed in some numerical resolutions coupling the
models (c.lp for example) where one includes in the system an
additional term in (S′(h)ω + c̃)∂th = div(K(h)∇h)
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