A regularized elliptic-parabolic model for the transport in porous media

Olivier Lafitte

LAGA - Université de Paris 13, Sorbonne Paris Cité

From previous works with C. Le Potier (CEA) and from the PhD of C. Baudry

Outline of the talk

Outline

Model of porous media and Richards' equation Basic equations Retention laws and degeneracy

Outline

Model of porous media and Richards' equation Basic equations Retention laws and degeneracy

Elliptic-parabolic non degenerate problem Mechanical models Ellipticity

Conclusions

Outline of the talk

Outline

Model of porous media and Richards' equation Basic equations Retention laws and degeneracy

Elliptic-parabolic non degenerate problem Mechanical models **Ellipticity**

Conclusions

Darcy's law and hydraulic head

Bernouilli equation (equilibrium):

$$h = \frac{p}{\rho g} + z + \frac{(\vec{u})^2}{2\rho g} \simeq \frac{p}{\rho g} + z.$$

$$\vec{U} = -\frac{\omega e^2}{12\mu} \nabla (p + \rho gz) := -K_*(\omega, \rho) \nabla h.$$

Darcy's law and hydraulic head

Bernouilli equation (equilibrium): $\frac{1}{2}(\vec{u})^2 + \rho gz + p = C$, C constant Definition of hydraulic head:

$$h = \frac{p}{\rho g} + z + \frac{(\vec{u})^2}{2\rho g} \simeq \frac{p}{\rho g} + z.$$

Constant in a perfect fluid (not in a porous medium). Case of compressible fluid $h = z + \int_{p_0}^p \frac{dp}{\rho(n)a}$.

$$\vec{U} = -\frac{\omega e^2}{12\mu} \nabla(p + \rho gz) := -K_*(\omega, \rho) \nabla h.$$

Darcy's law and hydraulic head

Bernouilli equation (equilibrium): $\frac{1}{2}(\vec{u})^2 + \rho qz + p = C$, C constant Definition of hydraulic head:

$$h = \frac{p}{\rho g} + z + \frac{(\vec{u})^2}{2\rho g} \simeq \frac{p}{\rho g} + z.$$

Constant in a perfect fluid (not in a porous medium). Case of compressible fluid $h = z + \int_{n_0}^p \frac{dp}{\rho(n)a}$.

Darcy law (from Poiseuille law) for a circular tube of height e filled with a mixture of porosity $\omega = \frac{V_p}{V}$ (V: total volume, $V_p = V - V_s$: volume of pores, μ viscosity)

$$\vec{U} = -\frac{\omega e^2}{12\mu} \nabla(p + \rho gz) := -K_*(\omega, \rho) \nabla h.$$

General approach: homogenization.

Case of unsaturated media: all the pores are not filled with water. Water volume V_w . Moisture $\theta := \frac{V_w}{V} \in (0, \omega)$.

$$\partial_t(\rho\theta) + \operatorname{div}(\rho\vec{U}) + \rho q = 0$$

$$\partial_t \theta = \operatorname{div}(K(\theta) \nabla h).$$

$$C(h)\partial_t h = \operatorname{div}(K(\theta(h))\nabla h).$$

4 D > 4 A > 4 B > 4 B > B 9 Q P

Case of unsaturated media: all the pores are not filled with water.

Water volume V_w . Moisture $\theta := \frac{V_w}{V} \in (0, \omega)$.

Darcy's law: $\vec{U} = -K(\theta)\nabla h$. (No attempt to derive it)

$$\partial_t(\rho\theta) + \operatorname{div}(\rho\vec{U}) + \rho q = 0$$

$$\partial_t \theta = \operatorname{div}(K(\theta) \nabla h).$$

$$C(h)\partial_t h = \operatorname{div}(K(\theta(h))\nabla h).$$

Case of unsaturated media: all the pores are not filled with water.

Water volume V_w . Moisture $\theta := \frac{V_w}{V} \in (0, \omega)$.

Darcy's law: $\vec{U} = -K(\theta)\nabla h$. (No attempt to derive it) Conservation of mass for the water (q flux of water):

$$\partial_t(\rho\theta) + \operatorname{div}(\rho\vec{U}) + \rho q = 0$$

Richards' equation

$$\partial_t \theta = \operatorname{div}(K(\theta) \nabla h).$$

with a retention law: $\theta:=\theta(h)$ such that $\theta(h)=\theta_s$ for $h\geq h_s$, (saturated medium). Define $C(h)=\frac{d\theta}{dh}$. Equation

$$C(h)\partial_t h = \operatorname{div}(K(\theta(h))\nabla h).$$

Degenerate $(C(h) = 0, h \ge h_s)$ parabolic-elliptic equation. Other models have degeneracies (Caro, Saad,Saad, Apr. 2014) but assume $\theta(h) = \varphi(x)h$, $\varphi(x) \ge \varphi_1$ and the degeneracy is in the coupling term.

Case of unsaturated media: all the pores are not filled with water.

Water volume V_w . Moisture $\theta := \frac{V_w}{V} \in (0, \omega)$.

Darcy's law: $\vec{U} = -K(\theta)\nabla h$. (No attempt to derive it) Conservation of mass for the water (q flux of water):

$$\partial_t(\rho\theta) + \operatorname{div}(\rho\vec{U}) + \rho q = 0$$

Richards' equation

$$\partial_t \theta = \operatorname{div}(K(\theta) \nabla h).$$

with a retention law: $\theta:=\theta(h)$ such that $\theta(h)=\theta_s$ for $h\geq h_s$, (saturated medium). Define $C(h)=\frac{d\theta}{dh}$. Equation

$$C(h)\partial_t h = \operatorname{div}(K(\theta(h))\nabla h).$$

Degenerate $(C(h) = 0, h \ge h_s)$ parabolic-elliptic equation.

Other models have degeneracies (Caro, Saad, Saad, Apr. 2014) but assume $\theta(h) = \varphi(x)h$, $\varphi(x) \geq \varphi_1$ and the degeneracy is in the coupling term.

Case of unsaturated media: all the pores are not filled with water.

Water volume V_w . Moisture $\theta := \frac{V_w}{V} \in (0, \omega)$.

Darcy's law: $\vec{U} = -K(\theta)\nabla h$. (No attempt to derive it) Conservation of mass for the water (q flux of water):

$$\partial_t(\rho\theta) + \operatorname{div}(\rho\vec{U}) + \rho q = 0$$

Richards' equation

$$\partial_t \theta = \operatorname{div}(K(\theta) \nabla h).$$

with a retention law: $\theta := \theta(h)$ such that $\theta(h) = \theta_s$ for $h \ge h_s$, (saturated medium). Define $C(h) = \frac{d\theta}{dh}$. Equation

$$C(h)\partial_t h = \operatorname{div}(K(\theta(h))\nabla h).$$

Degenerate $(C(h) = 0, h \ge h_s)$ parabolic-elliptic equation. Other models have degeneracies (Caro, Saad, Saad, Apr. 2014) but assume $\theta(h) = \varphi(x)h$, $\varphi(x) \ge \varphi_1$ and the degeneracy is in the coupling term.

This result relies on a paper of Benilan and Wittbold. The functions K and C are continuous.

```
The system \partial_t(\theta(h)) = \operatorname{div}(K(h)\partial_x h), (x,t) \in [0,1] \times R_+,
inhomogeneous b.c. on h(x,t), h(x,0) = h_i(x) \in W^{2,1}([0,1])
```

This result relies on a paper of Benilan and Wittbold. The functions K and C are continuous.

The system $\partial_t(\theta(h)) = \operatorname{div}(K(h)\partial_x h), (x,t) \in [0,1] \times R_+$, inhomogeneous b.c. on h(x,t), $h(x,0) = h_i(x) \in W^{2,1}([0,1])$ with $\theta(h_i(.)) \in L^1([0,1])$ has a unique solution in $W^{1,\infty}([0,1],L^1([0,1]))$.

This result relies on a paper of Benilan and Wittbold. The functions K and C are continuous.

The system $\partial_t(\theta(h)) = \operatorname{div}(K(h)\partial_x h), (x,t) \in [0,1] \times R_+$, inhomogeneous b.c. on h(x,t), $h(x,0) = h_i(x) \in W^{2,1}([0,1])$ with $\theta(h_i(.)) \in L^1([0,1])$ has a unique solution in $W^{1,\infty}([0,1],L^1([0,1]))$.

Note that, if $g_i(x)$ satisfies $\theta(g_i(.)) = \theta(h_i(.))$, then the solution is the same. The solution is **not** one to one w. r. to the initial condition.

This result relies on a paper of Benilan and Wittbold. The functions K and C are continuous.

The system $\partial_t(\theta(h)) = \operatorname{div}(K(h)\partial_x h), (x,t) \in [0,1] \times R_+$, inhomogeneous b.c. on h(x,t), $h(x,0) = h_i(x) \in W^{2,1}([0,1])$ with $\theta(h_i(.)) \in L^1([0,1])$ has a unique solution in $W^{1,\infty}([0,1],L^1([0,1]))$.

Note that, if $g_i(x)$ satisfies $\theta(g_i(.)) = \theta(h_i(.))$, then the solution is the same. The solution is **not** one to one w. r. to the initial condition.

Numerical scheme: $\theta(h_n) := \theta(h_{n+1}) + \Delta t \operatorname{div}(K(h_{n+1})\nabla h_{n+1}).$

This result relies on a paper of Benilan and Wittbold. The functions K and C are continuous.

The system $\partial_t(\theta(h)) = \operatorname{div}(K(h)\partial_x h), (x,t) \in [0,1] \times R_+$, inhomogeneous b.c. on h(x,t), $h(x,0) = h_i(x) \in W^{2,1}([0,1])$ with $\theta(h_i(.)) \in L^1([0,1])$ has a unique solution in $W^{1,\infty}([0,1],L^1([0,1]))$.

Note that, if $g_i(x)$ satisfies $\theta(g_i(.)) = \theta(h_i(.))$, then the solution is the same. The solution is **not** one to one w. r. to the initial condition.

Numerical scheme: $\theta(h_n) := \theta(h_{n+1}) + \Delta t \operatorname{div}(K(h_{n+1})\nabla h_{n+1}).$ One gets h_{n+1} uniquely, and $\theta(h_n)$ converges. Badly conditioned for θ' and Δt small. Coercivity needed (C. LP).

 $\Theta = \frac{\theta - \theta_{res}}{\theta_{out} - \theta_{res}}$, $\psi = p_{air} - p_w$, hydrostatic pressure:

- Brooks and Corey (1964) $\Theta = (\frac{\psi_{ea}}{ab})^{\lambda}$,
- Williams (1983) $\ln \Theta = A = B \ln \psi$,
- Van Genutchen (1980): $\Theta = (1 + (\alpha \Psi)^n)^{-m}$.

$$\partial_t(\theta(h(x,t))) = D\frac{\partial^2 h}{\partial x^2}, h(x,0) = h_\infty 1_{x<0}, h(0,t) = h_0, t > 0$$

$$h(x,t) = \begin{cases} h_0(1 - \frac{x}{2a\sqrt{t}}), x < 2a\sqrt{t} \\ h_\infty(1 - \frac{erfc(\frac{x}{2\sqrt{Dt}})}{erfc(a)}), x \ge 2a\sqrt{t} \end{cases}$$

 $\Theta = \frac{\theta - \theta_{res}}{\theta_{out} - \theta_{res}}$, $\psi = p_{air} - p_w$, hydrostatic pressure:

- ullet Brooks and Corey (1964) $\Theta = (rac{\psi_{ea}}{\sqrt{\lambda}})^{\lambda}$,
- Williams (1983) $\ln \Theta = A = B \ln \psi$,
- Van Genutchen (1980): $\Theta = (1 + (\alpha \Psi)^n)^{-m}$.

$$\partial_t(\theta(h(x,t))) = D\frac{\partial^2 h}{\partial x^2}, h(x,0) = h_\infty 1_{x<0}, h(0,t) = h_0, t > 0$$

$$h(x,t) = \begin{cases} h_0(1 - \frac{x}{2a\sqrt{t}}), x < 2a\sqrt{t} \\ h_\infty(1 - \frac{erfc(\frac{x}{2\sqrt{Dt}})}{erfc(a)}), x \ge 2a\sqrt{t} \end{cases}$$

 $\Theta = \frac{\theta - \theta_{res}}{\theta_{sat} - \theta_{res}}$, $\psi = p_{air} - p_w$, hydrostatic pressure:

- ullet Brooks and Corey (1964) $\Theta = (\frac{\psi_{ea}}{\psi})^{\lambda}$,
- Williams (1983) $\ln \Theta = A = B \ln \psi$,
- Van Genutchen (1980): $\Theta = (1 + (\alpha \Psi)^n)^{-m}$.

Analytic solution in the case $\theta(h) = min(h,0)$ (C. Baudry, PhD), $h_{\infty} < 0 \le h_0$:

$$\partial_t(\theta(h(x,t))) = D\frac{\partial^2 h}{\partial x^2}, h(x,0) = h_\infty 1_{x<0}, h(0,t) = h_0, t > 0$$

$$h(x,t) = \begin{cases} h_0(1 - \frac{x}{2a\sqrt{t}}), x < 2a\sqrt{t} \\ h_\infty(1 - \frac{erfc(\frac{x}{2\sqrt{Dt}})}{erfc(a)}), x \ge 2a\sqrt{t} \end{cases}$$

where a solves $\frac{2}{\sqrt{\pi}} \frac{aexp(-a^2)}{erfc(a)} = -\frac{h_0}{h_{\infty}}$.

 $\Theta = \frac{\theta - \theta_{res}}{\theta_{sat} - \theta_{res}}$, $\psi = p_{air} - p_w$, hydrostatic pressure:

- ullet Brooks and Corey (1964) $\Theta=(rac{\psi_{ea}}{\psi})^{\lambda}$,
- Williams (1983) $\ln \Theta = A = B \ln \psi$,
- Van Genutchen (1980): $\Theta = (1 + (\alpha \Psi)^n)^{-m}$.

Analytic solution in the case $\theta(h)=min(h,0)$ (C. Baudry, PhD), $h_{\infty}<0\leq h_0$:

$$\partial_t(\theta(h(x,t))) = D\frac{\partial^2 h}{\partial x^2}, h(x,0) = h_\infty 1_{x<0}, h(0,t) = h_0, t > 0,$$

$$h(x,t) = \begin{cases} h_0(1 - \frac{x}{2a\sqrt{t}}), x < 2a\sqrt{t} \\ h_\infty(1 - \frac{erfc(\frac{x}{2\sqrt{Dt}})}{erfc(a)}), x \ge 2a\sqrt{t} \end{cases}$$

where a solves $\frac{2}{\sqrt{\pi}}\frac{aexp(-a^2)}{erfc(a)}=-\frac{h_0}{h_\infty}.$

000

Coupling with a mechanical model

From the literature (Green, Wang, Water res. res. 26 (7), 1990):

Biot's law (deformation tensor $\epsilon_{ij} = \frac{1}{2}(\partial_i X_j + \partial_j X_i)$)

$$2G\epsilon_{ij} = \sigma_{ij} + (\frac{2G}{3}(\frac{1}{K} - \frac{1}{K_s})p - \frac{1}{3}(1 - \frac{2G}{3K})(Tr(\sigma)))\delta_{ij}$$

equivalent to (note that $Tr(\epsilon) = {\sf div} ec{X})$

$$\sigma_{ij} = 2G\epsilon_{ij} + (\alpha p + \beta Tr(\epsilon))\delta_{ij}.$$

Retention law:

$$\theta(h) = S(h)\omega = S(h)(\omega_0 + \frac{Tr(\epsilon)}{3})$$

$$div(\sigma - \rho_w ghId) = t$$

From the literature (Green, Wang, Water res. res. 26 (7), 1990): Biot's law (deformation tensor $\epsilon_{ij} = \frac{1}{2}(\partial_i X_j + \partial_j X_i)$)

$$2G\epsilon_{ij} = \sigma_{ij} + (\frac{2G}{3}(\frac{1}{K} - \frac{1}{K_s})p - \frac{1}{3}(1 - \frac{2G}{3K})(Tr(\sigma)))\delta_{ij}$$

equivalent to (note that $Tr(\epsilon) = \mathrm{div} \vec{X}$)

$$\sigma_{ij} = 2G\epsilon_{ij} + (\alpha p + \beta Tr(\epsilon))\delta_{ij}.$$

Retention law:

$$\theta(h) = S(h)\omega = S(h)(\omega_0 + \frac{Tr(\epsilon)}{3}).$$

$$div(\sigma - \rho_w ghId) = f$$

Coupling with a mechanical model

From the literature (Green, Wang, Water res. res. 26 (7), 1990): Biot's law (deformation tensor $\epsilon_{ij}=\frac{1}{2}(\partial_i X_j+\partial_j X_i)$)

$$2G\epsilon_{ij} = \sigma_{ij} + (\frac{2G}{3}(\frac{1}{K} - \frac{1}{K_s})p - \frac{1}{3}(1 - \frac{2G}{3K})(Tr(\sigma)))\delta_{ij}$$

equivalent to (note that $Tr(\epsilon) = \mathrm{div} \vec{X}$)

$$\sigma_{ij} = 2G\epsilon_{ij} + (\alpha p + \beta Tr(\epsilon))\delta_{ij}.$$

Retention law:

$$\theta(h) = S(h)\omega = S(h)(\omega_0 + \frac{Tr(\epsilon)}{3}),$$

$$div(\sigma - \rho_w ghId) = f$$

Coupling with a mechanical model

From the literature (Green, Wang, Water res. res. 26 (7), 1990): Biot's law (deformation tensor $\epsilon_{ij}=\frac{1}{2}(\partial_i X_j+\partial_j X_i)$)

$$2G\epsilon_{ij} = \sigma_{ij} + (\frac{2G}{3}(\frac{1}{K} - \frac{1}{K_s})p - \frac{1}{3}(1 - \frac{2G}{3K})(Tr(\sigma)))\delta_{ij}$$

equivalent to (note that $Tr(\epsilon) = \mathrm{div} \vec{X}$)

$$\sigma_{ij} = 2G\epsilon_{ij} + (\alpha p + \beta Tr(\epsilon))\delta_{ij}.$$

Retention law:

$$\theta(h) = S(h)\omega = S(h)(\omega_0 + \frac{Tr(\epsilon)}{3}),$$

$$\operatorname{div}(\sigma - \rho_w qhId) = f$$

Other models

• Old model (O.L., C. LP): $\epsilon_{ij}^* = \epsilon_{ij} + h_s p \delta_{ij} - h_s p_a \delta_{ij}$ $\sigma = \bar{D}(\epsilon^*) \rightarrow \epsilon_{ij} = (\bar{T}\sigma)_{ij} - \frac{\nu}{E} Tr(\epsilon) \delta_{ij} - h^s p \delta_{ij}$

$$\partial_{\mu}\sigma = \bar{\bar{C}}\partial_{\mu}\epsilon - \partial_{\mu}\eta h$$

$$\Rightarrow \partial_t \omega = \frac{1}{3} \operatorname{div}(\bar{\bar{D}} \partial_t \sigma) - \frac{V_1^s + V_2^s + V_3^s}{3} \partial_t h$$

Other models

• Old model (O.L., C. LP): $\epsilon_{ij}^* = \epsilon_{ij} + h_s p \delta_{ij} - h_s p_a \delta_{ij}$ $\sigma = \bar{D}(\epsilon^*) \rightarrow \epsilon_{ij} = (\bar{T}\sigma)_{ij} - \frac{\nu}{E} Tr(\epsilon) \delta_{ij} - h^s p \delta_{ij}$ • Hyperelastic model (Callari, Abati, 2011, eq. 14):

$$\partial_{i}\sigma = \bar{\bar{C}}\partial_{i}\epsilon - \partial_{i}nh$$

$$\Rightarrow \partial_t \omega = \frac{1}{3} \operatorname{div}(\bar{\bar{D}} \partial_t \sigma) - \frac{V_1^s + V_2^s + V_3^s}{3} \partial_t h$$

Elliptic-parabolic non degenerate problem

Other models

• Old model (O.L., C. LP): $\epsilon_{ij}^* = \epsilon_{ij} + h_s p \delta_{ij} - h_s p_a \delta_{ij}$ $\sigma = \bar{D}(\epsilon^*) \rightarrow \epsilon_{ij} = (\bar{T}\sigma)_{ij} - \frac{\nu}{E} Tr(\epsilon) \delta_{ij} - h^s p \delta_{ij}$

• Hyperelastic model (Callari, Abati, 2011, eq. 14):

$$\partial_t \sigma = \bar{C} \partial_t \epsilon - \partial_t p b$$

$$\Rightarrow \partial_t \omega = \frac{1}{3} \operatorname{div}(\bar{\bar{D}} \partial_t \sigma) - \frac{V_1^s + V_2^s + V_3^s}{3} \partial_t h$$

Other models

- Old model (O.L., C. LP): $\epsilon_{ij}^* = \epsilon_{ij} + h_s p \delta_{ij} h_s p_a \delta_{ij}$ $\sigma = \bar{D}(\epsilon^*) \rightarrow \epsilon_{ij} = (\bar{T}\sigma)_{ij} - \frac{\nu}{E} Tr(\epsilon) \delta_{ij} - h^s p \delta_{ij}$
- Hyperelastic model (Callari, Abati, 2011, eq. 14):

$$\partial_t \sigma = \bar{\bar{C}} \partial_t \epsilon - \partial_t p b$$

All three models have in common that $\partial_t \epsilon = \bar{D} \partial_t \sigma - \partial_t h V^s I d$.

$$\Rightarrow \partial_t \omega = \frac{1}{3} \operatorname{div}(\bar{\bar{D}} \partial_t \sigma) - \frac{V_1^s + V_2^s + V_3^s}{3} \partial_t h$$

Other models

- Old model (O.L., C. LP): $\epsilon_{ij}^* = \epsilon_{ij} + h_s p \delta_{ij} h_s p_a \delta_{ij}$ $\sigma = \bar{\bar{D}}(\epsilon^*) \rightarrow \epsilon_{ij} = (\bar{\bar{T}}\sigma)_{ij} \frac{\nu}{E} Tr(\epsilon) \delta_{ij} h^s p \delta_{ij},$
- Hyperelastic model (Callari, Abati, 2011, eq. 14):

$$\partial_t \sigma = \bar{\bar{C}} \partial_t \epsilon - \partial_t p b$$

All three models have in common that $\partial_t \epsilon = \bar{\bar{D}} \partial_t \sigma - \partial_t h V^s I d$.

$$\Rightarrow \partial_t \omega = \frac{1}{3} \mathrm{div}(\bar{\bar{D}} \partial_t \sigma) - \frac{V_1^s + V_2^s + V_3^s}{3} \partial_t h.$$

$$-\mathsf{div}(2G\epsilon + \beta Tr(\epsilon)Id) = \rho_w g(\alpha - 1)\nabla h - f + \alpha \nabla p_a$$

Solved on Ω bounded, regular with a inhomogeneous Dirichlet boundary condition on \vec{X} on $\Gamma \subset \partial \Omega$: the operator K_T

$$(X_1, X_2, X_3) \to -2G \operatorname{div} \epsilon - \beta \nabla (Tr(\epsilon))$$

is self-adjoint coercive and continuous from $(H^1_0(\Omega))^3$ to $(H^{-1}(\Omega))^3=((H^1_0(\Omega))')^3$,

$$M|\nabla \vec{X}|_{(L^2(\Omega))^3}^2 \ge (K_T \vec{X}, \vec{X}) \ge \delta |\nabla \vec{X}|_{(L^2(\Omega))^3}^2$$

Lifting the boundary condition (explanation of g):

$$(X_1, X_2, X_3) = \rho_w g(\alpha - 1) K_T^{-1}(\nabla h) + K_T^{-1}(\alpha \nabla p_a - f + g),$$

$$\omega = \rho_w g \frac{\alpha-1}{3} \mathrm{div}(K_T^{-1}(\nabla h)) + \frac{1}{3} \mathrm{div}(K_T^{-1}(\alpha \nabla p_a - f + g)) := L(h) - F.$$

Expression of the deformation rate $\omega = \frac{1}{3}Tr(\epsilon)$ Equation (equilibrium):

$$-\mathsf{div}(2G\epsilon + \beta Tr(\epsilon)Id) = \rho_w g(\alpha - 1)\nabla h - f + \alpha \nabla p_a$$

Solved on Ω bounded, regular with a inhomogeneous Dirichlet boundary condition on X on $\Gamma \subset \partial \Omega$: the operator K_T

$$(X_1, X_2, X_3) \to -2G \operatorname{div} \epsilon - \beta \nabla (Tr(\epsilon))$$

is self-adjoint coercive and continuous from $(H_0^1(\Omega))^3$ to $(H^{-1}(\Omega))^3 = ((H_0^1(\Omega))')^3$.

$$M|\nabla \vec{X}|_{(L^2(\Omega))^3}^2 \ge (K_T \vec{X}, \vec{X}) \ge \delta |\nabla \vec{X}|_{(L^2(\Omega))^3}^2$$

$$(X_1, X_2, X_3) = \rho_w g(\alpha - 1) K_T^{-1}(\nabla h) + K_T^{-1}(\alpha \nabla p_a - f + g),$$

$$\omega = \rho_w g \frac{\alpha-1}{3} \mathrm{div}(K_T^{-1}(\nabla h)) + \frac{1}{3} \mathrm{div}(K_T^{-1}(\alpha \nabla p_a - f + g)) := L(h) - F.$$

Expression of the deformation rate $\omega = \frac{1}{3}Tr(\epsilon)$ Equation (equilibrium):

$$-\mathsf{div}(2G\epsilon + \beta Tr(\epsilon)Id) = \rho_w g(\alpha - 1)\nabla h - f + \alpha \nabla p_a$$

Solved on Ω bounded, regular with a inhomogeneous Dirichlet boundary condition on X on $\Gamma \subset \partial \Omega$: the operator K_T

$$(X_1, X_2, X_3) \to -2G \operatorname{div} \epsilon - \beta \nabla (Tr(\epsilon))$$

is self-adjoint coercive and continuous from $(H_0^1(\Omega))^3$ to $(H^{-1}(\Omega))^3 = ((H_0^1(\Omega))')^3$.

$$M|\nabla \vec{X}|_{(L^2(\Omega))^3}^2 \ge (K_T \vec{X}, \vec{X}) \ge \delta |\nabla \vec{X}|_{(L^2(\Omega))^3}^2$$

Lifting the boundary condition (explanation of g):

$$(X_1, X_2, X_3) = \rho_w g(\alpha - 1) K_T^{-1}(\nabla h) + K_T^{-1}(\alpha \nabla p_a - f + g),$$

$$\omega = \rho_w g \frac{\alpha-1}{3} \mathrm{div}(K_T^{-1}(\nabla h)) + \frac{1}{3} \mathrm{div}(K_T^{-1}(\alpha \nabla p_a - f + g)) := L(h) - F.$$

Expression of the deformation rate $\omega = \frac{1}{3}Tr(\epsilon)$ Equation (equilibrium):

$$-\mathsf{div}(2G\epsilon + \beta Tr(\epsilon)Id) = \rho_w g(\alpha - 1)\nabla h - f + \alpha \nabla p_a$$

Solved on Ω bounded, regular with a inhomogeneous Dirichlet boundary condition on \vec{X} on $\Gamma \subset \partial \Omega$: the operator K_T

$$(X_1, X_2, X_3) \to -2G \operatorname{div} \epsilon - \beta \nabla (Tr(\epsilon))$$

is self-adjoint coercive and continuous from $(H^1_0(\Omega))^3$ to $(H^{-1}(\Omega))^3=((H^1_0(\Omega))')^3,$

$$M|\nabla \vec{X}|_{(L^2(\Omega))^3}^2 \ge (K_T \vec{X}, \vec{X}) \ge \delta |\nabla \vec{X}|_{(L^2(\Omega))^3}^2$$

Lifting the boundary condition (explanation of g):

$$(X_1, X_2, X_3) = \rho_w g(\alpha - 1) K_T^{-1}(\nabla h) + K_T^{-1}(\alpha \nabla p_a - f + g),$$

$$\omega = \rho_w g \frac{\alpha-1}{3} \mathrm{div}(K_T^{-1}(\nabla h)) + \frac{1}{3} \mathrm{div}(K_T^{-1}(\alpha \nabla p_a - f + g)) := L(h) - F.$$

$$S'(h)\omega(h)\partial_t h + S(h)L(\partial_t h) = \operatorname{div}(K(\theta)\nabla h) + S(h)\partial_t F$$
 Property (\$\alpha < 1\$):

$$(L(H), H) \ge \frac{\rho_w g}{3M} (1 - \alpha) ||H||_{L^2(\Omega)}^2$$

owing to
$$(K_T^{-1}\vec{\varphi}, \vec{\varphi}) \ge M^{-1} ||\vec{\varphi}||_{(H^{-1}(\Omega))^3}^2$$
,

Introduce
$$B(h)\partial_t h = S'(h)\omega(h)\partial_t h + S(h)L(\partial_t h)$$
. One has $(B(h)\partial_t h, \partial_t h) \geq c_0 ||\partial_t h||^2_{L^2(\Omega)}, \ c_0 > 0$.

Solve
$$\partial_t \tilde{\theta}(x,t) = B(h)\partial_t h(x,t) \Rightarrow h(x,t) = \tilde{B}^{-1}(\tilde{\theta})(x,t)$$
.

$$S'(h)\omega(h)\partial_t h + S(h)L(\partial_t h) = \operatorname{div}(K(\theta)\nabla h) + S(h)\partial_t F$$
 Property (\$\alpha < 1\$):

$$(L(H), H) \ge \frac{\rho_w g}{3M} (1 - \alpha) ||H||_{L^2(\Omega)}^2$$

owing to
$$(K_T^{-1}\vec{\varphi}, \vec{\varphi}) \ge M^{-1} ||\vec{\varphi}||_{(H^{-1}(\Omega))^3}^2$$
, $||\nabla r||_{H^{-1}(\Omega)} \simeq ||r||_{L^2(\Omega)}$.

Introduce $B(h)\partial_t h = S'(h)\omega(h)\partial_t h + S(h)L(\partial_t h)$. One has $(B(h)\partial_t h, \partial_t h) \geq c_0 ||\partial_t h||^2_{L^2(\Omega)}, \ c_0 > 0$.

Solve
$$\partial_t \tilde{\theta}(x,t) = B(h)\partial_t h(x,t) \Rightarrow h(x,t) = \tilde{B}^{-1}(\tilde{\theta})(x,t)$$
.

$$S'(h)\omega(h)\partial_t h + S(h)L(\partial_t h) = \operatorname{div}(K(\theta)\nabla h) + S(h)\partial_t F$$
 Property (\$\alpha < 1\$):

$$(L(H), H) \ge \frac{\rho_w g}{3M} (1 - \alpha) ||H||_{L^2(\Omega)}^2$$

owing to
$$(K_T^{-1} \vec{\varphi}, \vec{\varphi}) \geq M^{-1} ||\vec{\varphi}||_{(H^{-1}(\Omega))^3}^2$$
, $||\nabla r||_{H^{-1}(\Omega)} \simeq ||r||_{L^2(\Omega)}$.

Introduce
$$B(h)\partial_t h = S'(h)\omega(h)\partial_t h + S(h)L(\partial_t h)$$
. One has $(B(h)\partial_t h, \partial_t h) \geq c_0 ||\partial_t h||^2_{L^2(\Omega)}$, $c_0 > 0$.

Solve
$$\partial_t \tilde{\theta}(x,t) = B(h)\partial_t h(x,t) \Rightarrow h(x,t) = \tilde{B}^{-1}(\tilde{\theta})(x,t)$$
.

$$S'(h)\omega(h)\partial_t h + S(h)L(\partial_t h) = \operatorname{div}(K(\theta)\nabla h) + S(h)\partial_t F$$

Property ($\alpha < 1$):

$$(L(H), H) \ge \frac{\rho_w g}{3M} (1 - \alpha) ||H||_{L^2(\Omega)}^2$$

owing to
$$(K_T^{-1} \vec{\varphi}, \vec{\varphi}) \geq M^{-1} ||\vec{\varphi}||_{(H^{-1}(\Omega))^3}^2$$
, $||\nabla r||_{H^{-1}(\Omega)} \simeq ||r||_{L^2(\Omega)}$.

Introduce
$$B(h)\partial_t h = S'(h)\omega(h)\partial_t h + S(h)L(\partial_t h)$$
. One has $(B(h)\partial_t h, \partial_t h) \geq c_0 ||\partial_t h||^2_{L^2(\Omega)}$, $c_0 > 0$.

Solve
$$\partial_t \tilde{\theta}(x,t) = B(h)\partial_t h(x,t) \Rightarrow h(x,t) = \tilde{B}^{-1}(\tilde{\theta})(x,t)$$
.

$$S'(h)\omega(h)\partial_t h + S(h)L(\partial_t h) = \operatorname{div}(K(\theta)\nabla h) + S(h)\partial_t F$$
 Property (\$\alpha < 1\$):

$$(L(H), H) \ge \frac{\rho_w g}{3M} (1 - \alpha) ||H||_{L^2(\Omega)}^2$$

owing to
$$(K_T^{-1} \vec{\varphi}, \vec{\varphi}) \geq M^{-1} ||\vec{\varphi}||_{(H^{-1}(\Omega))^3}^2$$
, $||\nabla r||_{H^{-1}(\Omega)} \simeq ||r||_{L^2(\Omega)}$.

Introduce
$$B(h)\partial_t h = S'(h)\omega(h)\partial_t h + S(h)L(\partial_t h)$$
. One has $(B(h)\partial_t h, \partial_t h) \geq c_0 ||\partial_t h||^2_{L^2(\Omega)}$, $c_0 > 0$.

Solve
$$\partial_t \tilde{\theta}(x,t) = B(h)\partial_t h(x,t) \Rightarrow h(x,t) = \tilde{B}^{-1}(\tilde{\theta})(x,t)$$
.

Elliptic-parabolic non degenerate equation, with $\theta = S(h)L(h) = S.L(h)$

$$B(h)\partial_t h = \operatorname{div}(K(S.L(h))\nabla h) + S(h)\partial_t F.$$

• If one could find $\hat{\theta}$

$$\partial_t \tilde{\theta} = \operatorname{div}(K((S.L(\tilde{B}^{-1}(\tilde{\theta})))\nabla(\tilde{B}^{-1}(\tilde{\theta}))) + S(h)\partial_t h$$

- Operator $h \to B(h)\partial_t h$ non degenerate and operator
- Compare with a numerical method where $\omega := \omega_n(x)$ is given

Elliptic-parabolic non degenerate equation, with $\theta = S(h)L(h) = S.L(h)$

$$B(h)\partial_t h = \operatorname{div}(K(S.L(h))\nabla h) + S(h)\partial_t F.$$

ullet If one could find $ilde{ heta}$

$$\partial_t \tilde{\theta} = \operatorname{div}(K((S.L(\tilde{B}^{-1}(\tilde{\theta})))\nabla(\tilde{B}^{-1}(\tilde{\theta}))) + S(h)\partial_t h$$

Operator on the right hand side still coercive in $H^1 \to \text{regularized}$ problem on $\tilde{\theta}$.

- Operator $h \to B(h)\partial_t h$ non degenerate and operator $-\text{div}(K(S.L(h))\nabla h)$ coercive.
- Compare with a numerical method where $\omega := \omega_n(x)$ is given through the calculation of ϵ , and then solving the problem for h_{n+1} where S'(h) = 0 on a region $h \ge h_s$.

Elliptic-parabolic non degenerate equation, with $\theta = S(h)L(h) = S.L(h)$

$$B(h)\partial_t h = \operatorname{div}(K(S.L(h))\nabla h) + S(h)\partial_t F.$$

ullet If one could find $ilde{ heta}$

$$\partial_t \tilde{\theta} = \operatorname{div}(K((S.L(\tilde{B}^{-1}(\tilde{\theta})))\nabla(\tilde{B}^{-1}(\tilde{\theta}))) + S(h)\partial_t h$$

Operator on the right hand side still coercive in $H^1 \to {\rm regularized}$ problem on $\tilde{\theta}.$

- Operator $h \to B(h)\partial_t h$ non degenerate and operator $-\text{div}(K(S.L(h))\nabla h)$ coercive.
- Compare with a numerical method where $\omega := \omega_n(x)$ is given through the calculation of ϵ , and then solving the problem for h_{n+1} where S'(h) = 0 on a region $h \ge h_s$.

Elliptic-parabolic non degenerate equation, with $\theta = S(h)L(h) = S.L(h)$

$$B(h)\partial_t h = \operatorname{div}(K(S.L(h))\nabla h) + S(h)\partial_t F.$$

• If one could find $\hat{\theta}$

$$\partial_t \tilde{\theta} = \operatorname{div}(K((S.L(\tilde{B}^{-1}(\tilde{\theta})))\nabla(\tilde{B}^{-1}(\tilde{\theta}))) + S(h)\partial_t h$$

Operator on the right hand side still coercive in $H^1 o$ regularized problem on θ .

- Operator $h \to B(h)\partial_t h$ non degenerate and operator $-\operatorname{div}(K(S.L(h))\nabla h)$ coercive.
- Compare with a numerical method where $\omega := \omega_n(x)$ is given through the calculation of ϵ , and then solving the problem for h_{n+1} where S'(h) = 0 on a region $h > h_s$.

- Mechanical behavior (hyperelastic, elastic): $\epsilon = D\sigma hVId$
- Assumption $\alpha = \frac{1}{\alpha_{rr} a} D^{-1} V < 1 \Rightarrow \vec{X} = C_0 K_T^{-1} \nabla h + S_i$,

$$\partial_t \theta = B(h)\partial_t h, (B(h)\psi, \psi) \ge c_0 |\psi|_{L^2}^2$$

Coupled problem no longer degenerate. Coerciveness of \vec{X} in

Already observed in some numerical resolutions coupling the

- Mechanical behavior (hyperelastic, elastic): $\epsilon = D\sigma hVId$
- Assumption $\alpha = \frac{1}{\rho_w q} D^{-1} V < 1 \Rightarrow \vec{X} = C_0 K_T^{-1} \nabla h + S_i$, $C_0>0, K_T$ coercive, which imply, from $\theta(h)=S(h)\omega$, $S'(h)\geq 0$

and S(h) > 0 , (with suitable b.c. for \vec{X} or \vec{X}), that

$$\partial_t \theta = B(h)\partial_t h, (B(h)\psi, \psi) \ge c_0 |\psi|_{L^2}^2$$

Coupled problem no longer degenerate. Coerciveness of \vec{X} in

• Already observed in some numerical resolutions coupling the

- Mechanical behavior (hyperelastic, elastic): $\epsilon = D\sigma hVId$
- Assumption $\alpha = \frac{1}{\rho_w q} D^{-1} V < 1 \Rightarrow \vec{X} = C_0 K_T^{-1} \nabla h + S_i$, $C_0>0, K_T$ coercive, which imply, from $\theta(h)=S(h)\omega$, $S'(h)\geq 0$ and S(h) > 0 , (with suitable b.c. for \vec{X} or \vec{X}), that

$$\partial_t \theta = B(h)\partial_t h, (B(h)\psi, \psi) \ge c_0 |\psi|_{L^2}^2$$

Coupled problem no longer degenerate. Coerciveness of \vec{X} in terms of ∇p and of ω in terms of h.

Already observed in some numerical resolutions coupling the

- Mechanical behavior (hyperelastic, elastic): $\epsilon = D\sigma hVId$
- Assumption $\alpha=\frac{1}{\rho_{w}g}\vec{D}^{-1}V<1$: $\Rightarrow \vec{X}=C_0K_T^{-1}\nabla h+S_i,$ $C_0>0, K_T$ coercive, which imply, from $\theta(h)=S(h)\omega,\ S'(h)\geq 0$ and S(h)>0, (with suitable b.c. for \vec{X} or \vec{X}), that

$$\partial_t \theta = B(h)\partial_t h, (B(h)\psi, \psi) \ge c_0 |\psi|_{L^2}^2$$

Coupled problem no longer degenerate. Coerciveness of \vec{X} in terms of ∇p and of ω in terms of h.

• Already observed in some numerical resolutions coupling the models (c.lp for example) where one includes in the system an additional term in $(S'(h)\omega + \tilde{c})\partial_t h = \operatorname{div}(K(h)\nabla h)$