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Problem statementProblem statement

�� Instability of a displacement frontInstability of a displacement front
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•The thickness of transitional 

layer between fluids where 

they are mixed is supposed to 

be small 

K. Aziz and A. Settari, Petroleum Reservoir Simulation, Applied Science, London (1979)
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Numerical simulations drop sedimentation Numerical simulations drop sedimentation 

in porous mediumin porous medium

Darcy equation:
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We use the following scales for variables:
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Governing equation in dimensionless form:
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Numerical simulations of drop sedimentation Numerical simulations of drop sedimentation 

in porous mediumin porous medium

Numerical algorithm:Numerical algorithm:

�� Level set methodLevel set method

�� Adaptive mesh refinementAdaptive mesh refinement

�� Parallel computingParallel computing

2 2
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Level set methodLevel set method
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According the approach twoAccording the approach two--phase system is phase system is 

represented as one media which parameters sharply represented as one media which parameters sharply 

changes across the interfacechanges across the interface

     Density and viscosity are calculated by distance function: 
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     Calculations were perfumed for axisymmetric drop 
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Adaptive mesh refinementAdaptive mesh refinement

Parallel computingParallel computing

It is necessary 

to perform 

calculation with 

fine mesh near 

the interface

MacNeice P., Olson K.M., Mobarry C., Fainchtein R., Packer C. Paramesh: A parallel adaptive mesh 

refinement community toolkit // Computer Physics Communications. 2000. V.126. pp.330-354.

  

 

(a) (b) (c) 

Axisymmetric drop sedimentation : (a) – initial drop shape and blocks of the mesh,  

(b) –  flow function , (c) – distribution of mesh blocks among computation nodes   



Mesh sub-grids

� The computational domain is covered
with a hierarchy of numerical sub-
grids.

� All the grid blocks have an identical
logical structure. (ie the same number
of grid points in each dimension, the
same aspect ratios, the same number
of guard cells, etc ). They are
assumed to be logically cartesian (or
structured).



Hierarchy of sub-grids

� The program builds a 
hierarchy of sub-grids to
cover the computational
domain, with spatial
resolution varying to
satisfy the demands of the
application. 

� These sub-grid blocks
form the nodes of a tree
data-structure.

� These sub-grids are
distributed amongst the
processors.



Results of computations 

Water drop sedimentation Water drop sedimentation 

in porous medium saturated by oilin porous medium saturated by oil



Numerical simulations drop sedimentation Numerical simulations drop sedimentation 

in porous mediumin porous medium
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coarse mesh fine mesh fine meshcoarse mesh

t = 0.25 t = 0.5

1.4λ = 0.67µ = 0.4r =



Emersion of oil drop in water 

Inclusion is instable. Perturbations of interface always grow at the front of 

moving inclusion

t = 0 t = 1.5

1.4λ = 0.67µ = 0.4r =

t = 1
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Governing equations in dimensionless form:

1

1

R is dissipation parameter,
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Part 2. Stability of inclusion under axial vibrationsPart 2. Stability of inclusion under axial vibrations



HighHigh--frequency vibration effect on the frequency vibration effect on the 

displacement front stability in porous mediumdisplacement front stability in porous medium
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D. V. Lyubimov and G. A. Sedel’nikov. Effect of Vibration on the Stability of a Plane Displacement 

Front in a Porous Medium. J. Fluid Dynamics, Vol. 41, No. 1, 2006, pp. 3–11.



FiniteFinite frequencyfrequency vibrationvibrations s effect on the effect on the 

displacement front stability in porous mediumdisplacement front stability in porous medium
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Sedimentation  of water drop in porous medium Sedimentation  of water drop in porous medium 

saturated by oil under axial vibrationssaturated by oil under axial vibrations
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a = 0.2 a = 1a = 0.5

♦ Angular frequency eq. 100 1/c    ♦ Chanel radius is 1 cm     ♦ Drop radius is 0.4 cm 
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Sedimentation  of water drop in porous medium Sedimentation  of water drop in porous medium 

saturated by oil under axial vibrationssaturated by oil under axial vibrations



  
t = 0.3 с. t = 0.65 с. 
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Sedimentation of water drop in porous medium Sedimentation of water drop in porous medium 

saturated by oil under axial vibrationssaturated by oil under axial vibrations
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Part 3. Influence of modulated pumping

At upper and lower boundaries vertical component of 
velocity changes according the formula:  
 

cos( )
z

u V t= Ω  

 
V  is dimensionless velocity amplitude  
Ω  is dimensionless  frequency of external modulation. 



Flow function

 

0.02V =  



Results

  

a b 

0.01V = , 15t = :  

а - 1Ω = , b - 10Ω =  



Results

  

a b 

10Ω = : 

a - 0.02V = , 23t = , b - 0.03V = , 13t =  
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Conclusions Conclusions 

Sedimentation or emersion of inclusion is instable. Perturbations of 

interface grow at the front of moving inclusion independently on

viscosities values.

Vibrations can suppress short-wave perturbations of the displacement 

front, that are known to be most unstable (having the largest growth 

rate) in the classical non-vibrating case.  

In the presence of weak vertical vibrations, similarly to the non-

vibrating case, the droplet is unstable to small-scale perturbations 

localized near the front.  Stronger vibrations can suppress the 

instability entirely.  

Further increase of the strength of vibrations leads to another 

instability, this time localized at the droplet side.


