Homogenization of reaction-diffusion processes in a two-component porous medium with a non-linear flux-condition on the interface

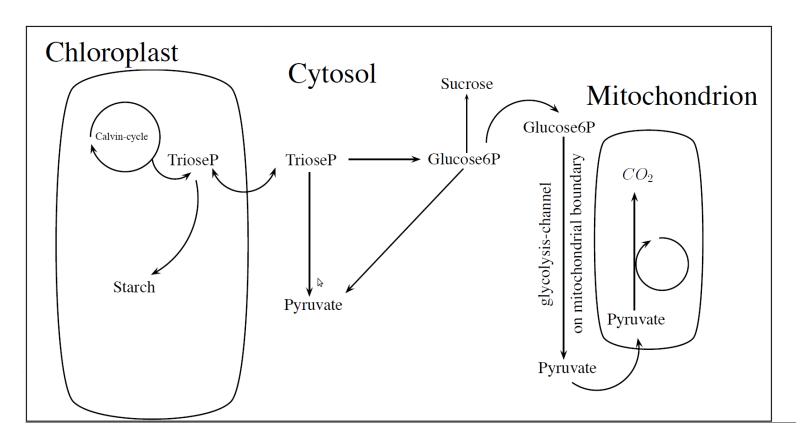
International Conference on Numerical and Mathematical Modeling of Flow and Transport in Porous Media, 09/29/2014

Joint work with P. Knabner and M. Neuss-Radu

Markus Gahn
University Erlangen-Nuremberg

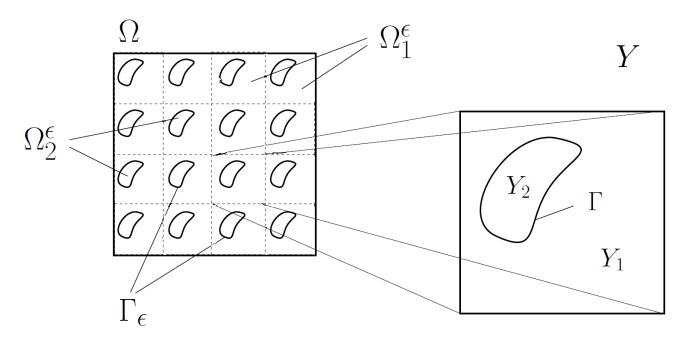
Motivation of the Model

Sketch of the carbohydrate-metabolism in a plant cell:



Microscopic domain

- A porous medium with two periodically distributed components separated by an interface is considered
- Metabolites can be transported through the interface
 - \rightarrow The flux over the interface is continuous and given by a nonlinear multi-species reaction rate



Notations

- $Y = (0,1)^n$, $\Omega = [a,b]$ with $a,b \in \mathbb{Z}^n$ and $a_i < b_i$
- $Y_2 \subset\subset Y$ open Lipschitz-domain and $Y_1 = Y \setminus \overline{Y_2}$, $\Gamma = \partial Y_2$ and Y_1 is connected
- $-\Omega_i^{\epsilon}=\left\{x\in\Omega\subset\mathbb{R}^n\left|x\in\epsilon Y_i^k \text{ for } k\in\mathbb{Z}^n\right.\right\}$ for j=1,2 and $\epsilon>0$ with $\epsilon^{-1} \in \mathbb{N}$
 - $ightarrow \Omega_1^\epsilon$ is connected
 - $ightarrow \Omega_2^\epsilon$ is disconnected
- $\Gamma_{\epsilon} = \{ x \in \Omega \mid x \in \epsilon \Gamma^k \text{ for } k \in \mathbb{Z}^n \}$
- $u_i^{j,\epsilon}$ $(j=1,2,i=1,\ldots m)$ denotes the concentration of the *i*-th species in the domain Ω_i^{ϵ}
 - $\rightarrow u_i^{1,\epsilon}$ and $u_i^{2,\epsilon}$ describe the same species in the different domains Ω_1^{ϵ} and Ω_2^{ϵ}

Microscopic equations

Find
$$u^{\epsilon} = (u^{1,\epsilon}, u^{2,\epsilon}) = (u^{1,\epsilon}_1, \dots, u^{1,\epsilon}_m, u^{2,\epsilon}_1, \dots, u^{2,\epsilon}_m)$$
, with $u^{1,\epsilon} : (0,T) \times \Omega_1^{\epsilon} \to \mathbb{R}^m$ and $u^{2,\epsilon} : (0,T) \times \Omega_2^{\epsilon} \to \mathbb{R}^m$, such that
$$\partial_t u^{j,\epsilon}_i - D^j_i \Delta u^{j,\epsilon}_i = f^{j,\epsilon}_i (t,x,u^{j,\epsilon}) \qquad \text{in } (0,T) \times \Omega_j^{\epsilon}, \\ -D^1_i \nabla u^{1,\epsilon}_i \cdot \nu_2 = -D^2_i \nabla u^{2,\epsilon}_i \cdot \nu_2 = \epsilon h_i (u^{1,\epsilon}, u^{2,\epsilon}) \qquad \text{on } (0,T) \times \Gamma_{\epsilon}, \\ -D^1_i \nabla u^{1,\epsilon}_i \cdot \nu_1 = 0 \qquad \qquad \text{on } (0,T) \times \partial \Omega, \\ u^{j,\epsilon}_i (0) = u^j_{i,0} \qquad \qquad \text{in } L^2(\Omega_j^{\epsilon}),$$

where ν_j denotes the outer unit normal on $\partial \Omega_i^{\epsilon}$.

Multi-Substrate Reactions

Multi-substrate reactions catalyzed by enzymes are of the form

$$X_1 + \ldots + X_{m_1} \rightleftharpoons Y_1 + \ldots + Y_{m_2}$$

Reaction-rate under the quasi-steady state assumption

$$v(X, Y) = \frac{a \prod_{k=1}^{m_1} X_k - b \prod_{k=1}^{m_2} Y_k}{p(X, Y)}$$

with
$$p(X, Y) = \sum_{|\alpha| \leq m_1, |\beta| \leq m_2} c_{\alpha,\beta} X^{\alpha} Y^{\beta}$$
 and $c_{\alpha,\beta} \geq 0$

Assumptions on the Data

- $f_i^{J,\epsilon}$ and h_i are Lipschitz-continuous
- There exists M, A > 0, such that for all $z_i, w_i, v_i \geq M$ holds

$$f_i^{j,\epsilon}(t,x,z) \leq Az_i$$
 , $h_i(v,w) \leq Av_i$, $-h_i(v,w) \leq Aw_i$

- For $(t, x, z) \in (0, T) \times \Omega \times \mathbb{R}^n$ holds

$$\sum_{i=1}^m f_i^{j,\epsilon}(t,x,z)(z_i)_- \leq C \sum_{i=1}^m |(z_i)_-|^2$$

- For $(v, w) \in \mathbb{R}^n \times \mathbb{R}^n$ holds

$$h_i(v, w)[(v_i)_- - (w_i)_-] \leq C \sum_{i=1}^m (|(v_i)_-|^2 + |(w_i)_-|^2)$$

- The initial values satisfy $0 \le u_{i,0}^{j} \le M$

Microscopic Equations - Variational Formulation

Find

$$(u^{1,\epsilon},u^{2,\epsilon})\in L^2((0,T),H^1(\Omega_1^\epsilon,\mathbb{R}^m))\times L^2((0,T),H^1(\Omega_2^\epsilon,\mathbb{R}^m))$$

with

$$(\partial_t u^{1,\epsilon}, \partial_t u^{2,\epsilon}) \in L^2((0,T), H^1(\Omega_1^{\epsilon}, \mathbb{R}^m)') \times L^2((0,T), H^1(\Omega_2^{\epsilon}, \mathbb{R}^m)'),$$

such that for all $\phi_j \in H^1(\Omega_j^{\epsilon})$ and a.e. $t \in (0, T)$ holds

$$\langle \partial_t u_i^{j,\epsilon}, \phi_j \rangle_{\Omega_j^{\epsilon}} + D_i^j (\nabla u_i^{j,\epsilon}, \nabla \phi_j)_{\Omega_j^{\epsilon}} = (f_i^{j,\epsilon}(u^{j,\epsilon}), \phi_j)_{\Omega_j^{\epsilon}} \\ - (-1)^j \epsilon (h(u^{1,\epsilon}, u^{2,\epsilon}), \phi_j)_{\Gamma_{\epsilon}},$$

with

- $(\cdot,\cdot)_{\Omega_j^\epsilon}$ is the inner-product in $L^2(\Omega_j^\epsilon)$ or $L^2(\Omega_j^\epsilon)^n$, respectively
- $\langle \cdot, \cdot \rangle_{\Omega_i^{\epsilon}}$ is the duality pairing on $H^1(\Omega_i^{\epsilon})' \times H^1(\Omega_i^{\epsilon})$.

Existence and Uniqueness

Theorem

- There exists a unique weak solution $u^{\epsilon} = (u^{1,\epsilon}, u^{2,\epsilon})$ with $u^{j,\epsilon} \in L^2((0,T),H^1(\Omega_i^{\epsilon}))^m$ and $\partial_t u^{j,\epsilon} \in L^2((0,T),H^1(\Omega_i^{\epsilon})')^m$
- The solution is non-negative
- The following a-priori estimates are fulfilled

$$\begin{aligned} \|u_{i}^{j,\epsilon}\|_{L^{\infty}((0,T)\times\Omega_{j}^{\epsilon})} + \|u_{i}^{j,\epsilon}\|_{L^{2}((0,T),H^{1}(\Omega_{j}^{\epsilon}))} \\ + \|\partial_{t}u_{i}^{j,\epsilon}\|_{L^{2}((0,T),H^{1}(\Omega_{i}^{\epsilon})')} + \sqrt{\epsilon}\|u_{i}^{j,\epsilon}\|_{L^{2}((0,T),L^{2}(\Gamma_{\epsilon}))} & \leq C \end{aligned}$$

Proof:

Solve the Problem for a linear flux-condition on the boundary and use Schaefer's fixed point theorem

Two-scale Convergence ([92Allaire]¹, [89Nguetseng]²)

- A sequence $u_{\epsilon} \subset L^2((0,T) \times \Omega)$ converges in the two-scale sense to $u_0 \in L^2((0,T) \times \Omega \times Y)$, if for every $\phi \in C([0,T] \times \overline{\Omega}, C_{per}(\overline{Y}))$ holds

$$\lim_{\epsilon \to 0} \int_0^T \int_{\Omega} u_{\epsilon}(t, x) \phi\left(t, x, \frac{x}{\epsilon}\right) dx dt = \int_0^T \int_{\Omega} \int_Y u_0(t, x, y) \phi(t, x, y) dy dx dt$$

- A two-scale convergent sequence u_{ϵ} convergences strongly in the two-scale sense to u_0 , if additionally

$$\lim_{\epsilon \to 0} \|u_{\epsilon}\|_{L^2((0,T)\times\Omega)} = \|u_0\|_{L^2((0,T)\times\Omega\times Y)}$$

¹G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal.,23 (1992), pp. 1482–1518.

²G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), pp. 608–623.

Two-scale Convergence on Γ_{ϵ} ([96Allaire et al.]³, [96Neuss-Radu]⁴)

- A sequence $u_{\epsilon} \subset L^2((0,T) \times \Gamma_{\epsilon})$ converges in the two-scale sense on the surface Γ_{ϵ} to a limit $u_0 \in L^2((0, T) \times \Omega \times \Gamma)$, if for every $\phi \in C([0,T] \times \overline{\Omega}, C_{per}(\Gamma))$ holds

$$\lim_{\epsilon \to 0} \epsilon \int_0^T \int_{\Gamma_{\epsilon}} u_{\epsilon}(t, x) \phi\left(t, x, \frac{x}{\epsilon}\right) d\sigma dt = \int_0^T \int_{\Omega} \int_{\Gamma} u_0(t, x, y) \phi(t, x, y) d\sigma_y dx dt$$

- A two-scale convergent sequence u_{ϵ} on Γ_{ϵ} converges strongly in the two-scale sense on Γ_{ϵ} , if additionally holds

$$\lim_{\epsilon \to 0} \sqrt{\epsilon} \|u_{\epsilon}\|_{L^{2}((0,T) \times \Gamma_{\epsilon})} = \|u_{0}\|_{L^{2}((0,T) \times \Omega \times \Gamma)}$$

³G. Allaire, A. Damlamian, U. Hornung, *Two-scale convergence on periodic surfaces and applications*, Proceedings of the international conference on mathematical modelling of flow through porous media, A. Bourgeat et al., eds., World Scientific, Singapore (1996), pp. 15–25.

⁴M. Neuss-Radu, Some Extensions of Two-Scale Convergence, C. R. Acad. Sci. Paris Sér. I Math., 322 (1996), pp. 899–904.

The Unfolding Operator

([02,06,08Cioranescu et al.]⁵⁶⁷)

Consider the unfolding operator L_{ϵ} on three different domains:

$$L_{\epsilon}: L^{2}((0,T)\times\Omega)\to L^{2}((0,T)\times\Omega\times Y)$$

$$L_{\epsilon}: L^{2}((0,T) \times \Omega_{i}^{\epsilon}) \rightarrow L^{2}((0,T) \times \Omega \times Y_{j})$$

$$L_{\epsilon}: L^2((0,T) \times \Gamma_{\epsilon}) \to L^2((0,T) \times \Omega \times \Gamma)$$

defined by

$$L_{\epsilon}u_{\epsilon}(t,x,y):=u_{\epsilon}\left(t,\epsilon\left(\left[\frac{x}{\epsilon}\right]+y\right)\right)$$

⁵D. Cioranescu, A. Damlamian, G. Griso, *Periodic unfolding and homogenization*, C. R. Acad. Sci. Paris Sér. 1, 335 (2002), pp. 99–104.

⁶D. Cioranescu, P. Donato, R. Zaki, The periodic unfolding method in perforated domains, Port. Math. (N.S.), 63 (2006), pp. 467–496.

⁷D.Cioranescu, A. Damlamian, G. Griso, *The periodic unfolding method in homogenization*, SIAM J. Math. Anal., 40 (2008), pp. 1585–1620.

Unfolding and Two-Scale-Convergence

([96Bourgeat et al.]⁸)

Lemma

- (i) Let $\{u_{\epsilon}\}_{\epsilon>0} \subset L^2((0,T)\times\Omega)$ be bounded. Then are equivalent
 - a) $u_{\epsilon} \rightarrow u_0$ weakly/strongly in the two-scale sense
 - b) $L_{\epsilon}u_{\epsilon} \rightarrow u_0$ weakly/strongly in $L^2((0,T) \times \Omega \times Y)$
- (ii) Let $\{u_{\epsilon}\}_{\epsilon>0} \subset L^2((0,T)\times\Gamma_{\epsilon})$ with $\sqrt{\epsilon}\|u_{\epsilon}\|_{L^2((0,T)\times\Gamma_{\epsilon})}\leq C$. Then are equivalent
 - a) $u_{\epsilon} \rightarrow u_0$ weakly/strongly in the two-scale sense on Γ_{ϵ}
 - b) $L_{\epsilon}u_{\epsilon} \rightarrow u_0$ weakly/strongly in $L^2((0,T) \times \Omega \times \Gamma)$

⁸A. Bourgeat, S. Luckhaus, A. Mikelić, Convergence of the homogenization process for a double-porosity model of immiscible two-phase flow, SIAM J. Math. Anal., 27 (1996), pp. 1520-1543.

Extensions to the domain Ω

- It exists
$$F_{\epsilon}: L^2((0,T),H^1(\Omega_1^{\epsilon})) \to L^2((0,T),H^1(\Omega))$$
 with
$$\|F_{\epsilon}u_{\epsilon}\|_{L^2((0,T),H^1(\Omega))} \le C\|u_{\epsilon}\|_{L^2((0,T),H^1(\Omega_1^{\epsilon}))}$$

Write $\tilde{u}_{\epsilon} = F_{\epsilon}u_{\epsilon}$

- For $u_{\epsilon} \in L^2((0,T) \times \Omega_2^{\epsilon})$ denote by $\overline{u_{\epsilon}}$ the zero extension to Ω
- For $u_{\epsilon} \in L^2((0,T),H^1(\Omega_i^{\epsilon}))$ with $\partial_t u_{\epsilon} \in L^2((0,T),H^1(\Omega_i^{\epsilon})')$ define

$$\widetilde{\partial_t u_\epsilon} := \partial_t \left(\chi_{\Omega_j^\epsilon} u_\epsilon \right) \in L^2((0,T),H^1(\Omega)')$$

with the characteristic function $\chi_{\Omega_i^{\epsilon}}$ on Ω_i^{ϵ}

Theorem

There exists a subsequence of $u_i^{1,\epsilon}$ and functions $u_i^{1,0} \in L^2((0,T),H^1(\Omega))$ with $\partial_t u_i^{1,0} \in L^2((0,T), H^1(\Omega)')$ and $u_i^{1,1} \in L^2((0,T) \times \Omega, H^1_{per}(Y)/\mathbb{R})$ for $i = 1, \ldots, m$, such that

$$\widetilde{u}_{i}^{1,\epsilon} \to u_{i}^{1,0}$$

$$\nabla \widetilde{u}_{i}^{1,\epsilon} \to \nabla_{x} u_{i}^{1,0} + \nabla_{y} u_{i}^{1,1}$$

$$u_{i}^{1,\epsilon}|_{\Gamma_{\epsilon}} \to u_{i}^{1,0}$$

$$\widetilde{\partial_{t}} u_{i}^{1,\epsilon} \to |Y_{1}| \partial_{t} u_{i}^{1,0}$$

strongly in $L^2((0,T),L^2(\Omega))$ in the two-scale sense strongly in the two-scale sense on Γ_{ϵ} weakly in $L^2((0,T),H^1(\Omega)')$

Theorem

There exists a function $u_i^{2,0} \in L^2((0,T) \times \Omega)$ with $\partial_t u_i^{2,0} \in L^2((0,T), H^1(\Omega)')$, such that up to a subsequence

$$\frac{\overline{u_{i}^{2,\epsilon}} \rightarrow \chi_{Y_{2}} u_{i}^{2,0}}{\nabla u_{i}^{2,\epsilon}} \rightarrow \mathbf{0}$$

$$\mathbf{u_{i}^{2,\epsilon}}|_{\Gamma_{\epsilon}} \rightarrow \mathbf{u_{i}^{2,0}}$$

$$\widetilde{\partial_{t} u_{i}^{2,\epsilon}} \rightarrow |Y_{2}| \partial_{t} u_{i}^{2,0}$$

strongly in the two-scale sense in the two-scale sense strongly in the two-scale sense on Γ_ε weakly in $L^2((0,T),H^1(\Omega)')$

Theorem

There exists a function $u_i^{2,0} \in L^2((0,T) \times \Omega)$ with $\partial_t u_i^{2,0} \in L^2((0,T), H^1(\Omega)')$, such that up to a subsequence

$$\overline{u_{i}^{2,\epsilon}} \to \chi_{Y_{2}} u_{i}^{2,0} \qquad \text{strongly in the two-scale sense} \\
\overline{\nabla u_{i}^{2,\epsilon}} \to \mathbf{0} \qquad \text{in the two-scale sense} \\
\underline{u_{i}^{2,\epsilon}}|_{\Gamma_{\epsilon}} \to u_{i}^{2,0} \qquad \text{strongly in the two-scale sense on } \Gamma_{\epsilon} \\
\widetilde{\partial_{t}} u_{i}^{2,\epsilon} \to |Y_{2}| \partial_{t} u_{i}^{2,0} \qquad \text{weakly in } L^{2}((0,T), H^{1}(\Omega)')$$

Problems:

- No good extension operator from $L^2((0,T),H^1(\Omega_2^{\epsilon}))$ into $L^2((0,T),H^1(\Omega))$

Theorem

There exists a function $u_i^{2,0} \in L^2((0,T) \times \Omega)$ with $\partial_t u_i^{2,0} \in L^2((0,T),H^1(\Omega)')$, such that up to a subsequence

$$\overline{u_{i}^{2,\epsilon}} \to \chi_{Y_{2}} u_{i}^{2,0} \qquad strongly in the two-scale sense \\
\overline{\nabla u_{i}^{2,\epsilon}} \to \mathbf{0} \qquad in the two-scale sense \\
\underline{u_{i}^{2,\epsilon}}|_{\Gamma_{\epsilon}} \to \underline{u_{i}^{2,0}} \qquad strongly in the two-scale sense on \Gamma_{\epsilon} \\
\widetilde{\partial_{t} u_{i}^{2,\epsilon}} \to |Y_{2}| \partial_{t} u_{i}^{2,0} \qquad weakly in L^{2}((0,T), H^{1}(\Omega)')$$

Problems:

- No good extension operator from $L^2((0,T),H^1(\Omega_2^{\epsilon}))$ into $L^2((0,T),H^1(\Omega))$
- The "unfolded" equation has an ϵ -scaling in the diffusion term

Theorem

There exists a function $u_i^{2,0} \in L^2((0,T) \times \Omega)$ with $\partial_t u_i^{2,0} \in L^2((0,T), H^1(\Omega)')$, such that up to a subsequence

$$\frac{\overline{u_{i}^{2,\epsilon}} \rightarrow \chi_{Y_{2}} u_{i}^{2,0}}{\nabla u_{i}^{2,\epsilon}} \rightarrow \mathbf{0}$$

$$\mathbf{u_{i}^{2,\epsilon}}|_{\Gamma_{\epsilon}} \rightarrow \mathbf{u_{i}^{2,0}}$$

$$\widetilde{\partial_{t} u_{i}^{2,\epsilon}} \rightarrow |Y_{2}| \partial_{t} u_{i}^{2,0}$$

strongly in the two-scale sense

in the two-scale sense

strongly in the two-scale sense on Γ_ϵ

weakly in $L^2((0,T),H^1(\Omega)')$

Problems:

- No good extension operator from $L^2((0,T),H^1(\Omega_2^{\epsilon}))$ into $L^2((0,T),H^1(\Omega))$
- The "unfolded" equation has an ϵ -scaling in the diffusion term
- We can't use shifts on the boundary Γ_{ϵ} resp. Γ (i.e. a standard Kolmogorov-argument is not possible)

a) Proof: $\overline{\nabla u_i^{2,\epsilon}} \to 0$ in the two-scale sense

- Standard compactness results imply the existence of $\xi_i \in L^2((0,T) \times \Omega \times Y)^n$, such that (subsequence) $\overline{\nabla u_i^{2,\epsilon}} \to \chi_{Y_2} \xi_i$ weakly in the two-scale sense

a) Proof: $\nabla u_i^{2,\epsilon} \to 0$ in the two-scale sense

 Standard compactness results imply the existence of $\xi_i \in L^2((0,T) \times \Omega \times Y)^n$, such that (subsequence) $\overline{\nabla u_i^{2,\epsilon}} \to \chi_{Y_2} \xi_i$ weakly in the two-scale sense

- ξ_i can be represented by a gradient in Y_2 :

$$\xi_i=
abla_y p_i \quad ext{in } L^2((0,T) imes\Omega,L^2(Y_2))$$
 with $p_i\in L^2((0,T) imes\Omega,H^1(Y_2)/\mathbb{R}).$

a) Proof: $\nabla u_i^{2,\epsilon} \to 0$ in the two-scale sense

- Standard compactness results imply the existence of $\xi_i \in L^2((0,T) \times \Omega \times Y)^n$, such that (subsequence) $\nabla u_i^{2,\epsilon} \to \chi_{Y_2} \xi_i$ weakly in the two-scale sense

- ξ_i can be represented by a gradient in Y_2 :

$$\xi_i=
abla_y p_i \quad ext{in } L^2((0,T) imes\Omega,L^2(Y_2))$$
 with $p_i\in L^2((0,T) imes\Omega,H^1(Y_2)/\mathbb{R}).$

- It holds

$$\int_{Y_2}
abla_y
ho_i
abla_y \phi dy = 0$$

for all
$$\phi \in H^1(Y_2)$$

 $\Rightarrow \xi_i = 0 \text{ in } Y_2$

- The function δu of u for $I \in \mathbb{Z}^n$ is given by

$$\delta u(t,x) = u(t,x+I\epsilon) - u(t,x)$$

- For $U \subset \mathbb{R}^n$ bounded and h > 0 set

$$U_h = \{x \in U : \operatorname{dist}(x, \partial U) > h\}$$

Lemma

For almost every $t \in (0, T)$ and all $I \in \mathbb{Z}^n$ with $|I\epsilon| < h$ and $0 < h < \frac{1}{2}$ it holds that

$$\|\delta u_i^{2,\epsilon}(t)\|_{L^2(\Omega_{2,h}^{\epsilon})}^2 \leq C\left(\epsilon^2 + \sum_{k=1}^m \left(\|\delta u_{k,0}^2\|_{L^2(\Omega_{2,h}^{\epsilon})}^2 + \|\delta u_k^{1,\epsilon}\|_{L^2((0,T),L^2(\Omega_{1,h}^{\epsilon}))}^2\right)\right)$$

- For $L_{\epsilon}u_{i}^{2,\epsilon}\in L^{2}((0,T)\times\Omega,H^{1/2}(\Gamma))$ holds with $\xi\in\mathbb{R}^{n}$

$$\|L_{\epsilon}u_{i}^{2,\epsilon}(\cdot,\cdot+\xi)-L_{\epsilon}u_{i}^{2,\epsilon}(\cdot,\cdot)\|_{L^{2}((0,T)\times\Omega,L^{2}(\Gamma))}$$

$$\leq C \left(h^2 + \epsilon^2 + \sum_{m \in \{0,1\}^n} \left\| u_i^{2,\epsilon} \left(\cdot, \cdot + \epsilon \left(m + \left[\frac{\xi}{\epsilon} \right] \right) \right) - u_i^{2,\epsilon} (\cdot, \cdot) \right\|_{L^2((0,T) \times \Omega_{2,h}^{\epsilon})}^2 \right)$$

- For $L_{\epsilon}u_{i}^{2,\epsilon}\in L^{2}((0,T)\times\Omega,H^{1/2}(\Gamma))$ holds with $\xi\in\mathbb{R}^{n}$

$$\|L_{\epsilon}u_{i}^{2,\epsilon}(\cdot,\cdot+\xi)-L_{\epsilon}u_{i}^{2,\epsilon}(\cdot,\cdot)\|_{L^{2}((0,T)\times\Omega,L^{2}(\Gamma))}$$

$$\leq C \left(h^2 + \epsilon^2 + \sum_{m \in \{0,1\}^n} \left\| u_i^{2,\epsilon} \left(\cdot, \cdot + \epsilon \left(m + \left[\frac{\xi}{\epsilon} \right] \right) \right) - u_i^{2,\epsilon} (\cdot, \cdot) \right\|_{L^2((0,T) \times \Omega_{2,h}^{\epsilon})}^2 \right)$$

- This implies for $\delta > 0$, $\vec{\delta} = (\delta, \dots, \delta) \in \mathbb{R}^n$

$$\left\| L_{\epsilon} u_{i}^{2,\epsilon} (\cdot + \delta, \cdot + \vec{\delta}) - L_{\epsilon} u_{i}^{2,\epsilon} (\cdot, \cdot) \right\|_{L^{2}(W^{\delta}, L^{2}(\Gamma))} \xrightarrow{\delta \to 0} 0$$

uniformly in ϵ with $W^{\delta} = (0, T - \delta) \times (\Omega \cap (\Omega - \vec{\delta}))$

- For $L_{\epsilon}u_{i}^{2,\epsilon}\in L^{2}((0,T)\times\Omega,H^{1/2}(\Gamma))$ holds with $\xi\in\mathbb{R}^{n}$

$$\|L_{\epsilon}u_{i}^{2,\epsilon}(\cdot,\cdot+\xi)-L_{\epsilon}u_{i}^{2,\epsilon}(\cdot,\cdot)\|_{L^{2}((0,T)\times\Omega,L^{2}(\Gamma))}$$

$$\leq C \left(h^2 + \epsilon^2 + \sum_{m \in \{0,1\}^n} \left\| u_i^{2,\epsilon} \left(\cdot, \cdot + \epsilon \left(m + \left[\frac{\xi}{\epsilon} \right] \right) \right) - u_i^{2,\epsilon} (\cdot, \cdot) \right\|_{L^2((0,T) \times \Omega_{2,h}^{\epsilon})}^2 \right)$$

- This implies for $\delta > \mathsf{0},\, \vec{\delta} = (\delta,\ldots,\delta) \in \mathbb{R}^n$

$$\left\| L_{\epsilon} u_{i}^{2,\epsilon} (\cdot + \delta, \cdot + \vec{\delta}) - L_{\epsilon} u_{i}^{2,\epsilon} (\cdot, \cdot) \right\|_{L^{2}(W^{\delta}, L^{2}(\Gamma))} \xrightarrow{\delta \to 0} 0$$

uniformly in ϵ with $W^{\delta}=(0,T-\delta) imes(\Omega\cap(\Omega-\vec{\delta}))$

- For every measurable subset $A \subset (0, T) \times \Omega$ the set

$$\left\{\int_A L_\epsilon u_i^{2,\epsilon}(t,x,\cdot) dx dt\right\}_{\epsilon>0} \subset H^{1/2}(\Gamma)$$

is relatively compact in $L^2(\Gamma)$

Now conclude with the following Theorem

Theorem

Let $F \subset L^2(W, B)$ with a Banach-space B and a $W \subset \mathbb{R}^n$ a cuboid. Then F is relatively compact in $L^2(W, B)$ if and only if for $\delta > 0$ and $\vec{\delta} = (\delta, \dots, \delta) \in \mathbb{R}^n$ holds

- (i) For every measurable set $A \subset W$ the set $\{\int_A u dx \mid u \in F\}$ is relatively compact in B.
- (ii) $\left\| u(\cdot + \vec{\delta}) u(\cdot) \right\|_{L^2(W \cap (W \vec{\delta}), B)} \xrightarrow{\delta \to 0} 0$ uniformly in F.

Proof: Same arguments for the 1-dimensional case as in [Simon]⁹.

 $\Longrightarrow \{L_{\epsilon}u_{i}^{2,\epsilon}\}_{\epsilon>0}$ is relatively compact in $L^{2}((0,T)\times\Omega,L^{2}(\Gamma))$

⁹J. Simon, *Compact Sets in the Space L^p*(0, *T*; *B*), Ann. Mat. Pura Appl., 146 (1987), pp. 65–96.

The Macroscopic Equations

Theorem

The function $u_i^{1,0}$ is a weak solution of

$$|Y_{1}|\partial_{t}u_{i}^{1,0} - \nabla \cdot \left(D_{i}^{*}\nabla u_{i}^{1,0}\right) = |Y_{1}|f_{i}^{1}\left(u^{1,0}\right) + |\Gamma|h\left(u^{1,0}, u^{2,0}\right) \quad in\left(0, T\right) \times \Omega$$

$$-D_{i}^{*}\nabla u_{i}^{1,0} \cdot \nu = 0 \quad on\left(0, T\right) \times \partial\Omega$$

$$u_{i}^{1,0}(0) = u_{i,0}^{1} \quad in L^{2}(\Omega)$$

and for $u_i^{2,0}$ holds the ordinary differential equation

$$|Y_2|\partial_t u_i^{2,0} = |Y_2|f_i^2(u^{2,0}) - |\Gamma|h(u^{1,0}, u^{2,0})$$
 in $(0, T) \times \Omega$
 $u_i^{2,0} = u_{i,0}^2$ in $L^2(\Omega)$

→ The diffusion-term vanishes in the upscaled equations

The Macroscopic Equations

Theorem

The homogenized matrix $D_i^* \in \mathbb{R}^{n \times n}$ is given by

$$(D_i^*)_{k,l} = \int_{Y_1} D_i^1 (\nabla w_k + e_k) \cdot (\nabla w_l + e_l) dy,$$

where the w_k , k = 1, ..., n, are the unique solutions of the cell problem

$$-\Delta w_i = 0$$
 in Y_1 $-\nabla w_i \cdot
u =
u_i$ on Γ w_i is Y -periodic and $\int_{Y_1} w_i dy = 0$

The Macroscopic Equations

Theorem

The homogenized matrix $D_i^* \in \mathbb{R}^{n \times n}$ is given by

$$(D_i^*)_{k,l} = \int_{Y_1} D_i^1 (\nabla w_k + e_k) \cdot (\nabla w_l + e_l) dy,$$

where the w_k , k = 1, ..., n, are the unique solutions of the cell problem

$$-\Delta w_i = 0$$
 in Y_1 $-\nabla w_i \cdot
u =
u_i$ on Γ w_i is Y-periodic and $\int_{Y_1} w_i dy = 0$

Theorem

The solution $(u^{1,0}, u^{2,0})$ is unique.

Conclusion and Outlook

- We derived a homogenized model for a two component medium for which one component is disconnected
- We considered nonlinear transmission conditions at the interface between the two media
- The rigorous derivation of the macroscopic model involved the strong two-scale convergence for functions defined on periodic surfaces. To obtain this, we used a compactness criterion of Simon, which we generalized to functions defined on a rectancle in \mathbb{R}^n with values in a Banach-space
- The presented model describes only a part of the carbohydrate metabolism in the plant cell. In an upcoming paper the full carbohydrate metabolism is modelled and analysed.

Thank you for your attention!

