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Purification

Electro-sorption of counter ions
on porous electrodes

Regeneration

Voltage reversal for desorption of 
ions from electrodes

NM2PorousMedia 2014, Dubrovnik
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Optimization challenges

• Improving desal rate

• Selective removal of components from complex streams

Advantages 
Low energy usage
High recovery
No regeneration chemicals
Reversible (long lifetime)/ Low fouling

Disadvantages 
Only for low salt concentration streams?
CAPEX (20-30% > RO)
Scaling, oxidation of electrode surface

Current sweet spot

• Low TDS applications (cooling tower water, water softening, groundwater decontamination,…)

• Complex streams, for which (vs eg RO) 

• a relatively low desal rate is acceptable, but

• a high recovery is desired

NM2PorousMedia 2014, Dubrovnik
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Current sweet spot

• Low TDS applications

• Complex streams 

Optimization challenges

• Improving desal rate

• Selective removal of components from complex streams

Established models

• Low concentrations, equilibrium

• Mostly binary electrolytes 

Modeling challenges

• Dynamic models 

• Multi-ionic models
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Porada et al. 
Prog Mater Sci 2013;58
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        Operational & design optimization

» operational modes
» operational parameters
» electrode and membrane materials 
» stack and cell geometries

           FEM model

» momentum and mass transport  in 
spacer channel

» mass transport through membrane
» mass transport in porous medium

» ion storage in EDL
» chemical equilibria
» faradaic  reactions

Stack level (cm) Cell level (µm) Pore level (nm)
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Porada et al. 
Prog Mater Sci 2013;58
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» Momentum transport in spacer channel 

» Mass transport (diffusion and electro-migration) in 

» Spacer channel

» Charged porous medium
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Porada et al. 
Prog Mater Sci 2013;58
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» Multi-scale 

» Activated carbon powder electrodes

 

Porada et al. 
Prog Mater Sci 2013;58

Interparticle scale

Intraparticle scale

‘Macro’ scale
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» Non-linearity 

» Electric double layer capacitance (steric effects): 

Linear regime

»                Weakly non-linear regime

»                Highly non-linear regime

Kilic et al. 
Phys Rev E 2007;75

Capacitance of 
diffuse layer vs 
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» Time-dependent
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Desalination capacity (equilibrium)

Desalination rate (dynamic)
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» Electrode-electrolyte interface level models

» Yang et al: 1-D Poisson Boltzmann eq. with cut-off pore width   

» Jeon & Cheon: 2-D Poisson-Nernst-Planck eq. with Stern layer

Based on dilute solutions theory.
Not coupled to macroscale mass transport through porous electrode

NM2PorousMedia 2014, Dubrovnik

Jeon & Cheon 
Des. and water tr. 2013;51

Yang et al. 
Langmuir 2001;17(6)
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Quasi-thermal equilibrium: Equilibration time of double layer is assumed fast compared the 
time scales of transport in the bulk electrolyte. 
Thin double layer limit.
Empirical fitting of 4 parameters: inter- and intraparticle pore resistances and capacitances.

Suss et al. 
J Power Sources 2013; 241

NM2PorousMedia 2014, Dubrovnik

Interparticle pore Intraparticle pore

Andelmann 
Sep Pur Tech 2011; 80

Jande & Kim 
Sep Pur Tech 2013; 115
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» Linear circuit models

» Andelman et al, Jande & Kim: Lumped

» Suss et al : 

Non-linearity
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» Highly overlapping double layer model

» Biesheuvel et al: Modified Donnan model

Biesheuvel et al. J Solid St 
Electrochem 2014;18:1365–76  

Doesn’t account for contributions from non-overlapping EDLs.
Equilibrium model.

NM2PorousMedia 2014, Dubrovnik
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Boltzmann equilibrium between 
inter- and intraparticle pores 

Excess chemical potential

Time-dependance 
(non-equilibrium)
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» Bimodal pore distribution:

o Macro-scale mass transport through interparticle pores

 Electroneutrality in macropores

o Ion storage in EDL in interparticle and (mainly) in intraparticle 

pores

 EDL in quasi-equilibrium with bulk electrolyte

 Non-overlapping EDLs

» No advective transport in porous electrodes

» One-way coupling between fluid flow and mass transport

» 2D

Intro Objectives Lit. models Assumptions Model Results Conclusions Upcoming
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» Cell level: FEM geometry

» Interparticle: effective medium approximation

» Intraparticle: capacitance source term

Intro Objectives Lit. models Assumptions Model Results Conclusions Upcoming

Stack level (cm) Cell level (µm) Pore level (nm)
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» Dependent variables:

» Solvent flow

o Open feed channel

 Incompressible NS:

NM2PorousMedia 2014, Dubrovnik
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(Electroneutrality in interparticle pores)
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» Mass transport

o Feed channel

 Nernst-Planck & Einstein:

 Poisson: Electroneutrality:

 Inward flux: Danckwert BC

o Porous electrodes 
 Simple mass transport model: Bruggeman equations

 Bimodal pore hierarchy: electroneutrality in interparticle pores

NM2PorousMedia 2014, Dubrovnik
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» Electron transport
o Current conduction through porous electrode

o BC: time-dependent current or voltage

NM2PorousMedia 2014, Dubrovnik
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» Current source term:

» C   :  Electrical double layer differential capacitance: 

» Thin double layer approximation: quasi-thermal equilibrium.

Poisson-Boltzmann

surface area

NM2PorousMedia 2014, Dubrovnik
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» Solved using COMSOL Multiphysics  4.4

» Solver: MUMPS

» Time-stepping method: BDF  (max order 2)

» Mesh: 

» quadrilateral

» refined near spacer-electrode interface and electrode-current 

collector interface
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Constant voltage, reverse voltage desorption, PB

Vmax= 0.1 V
vavg= 1 cm/s

c = 5 mM
εma = 0.5

Convergence limited to low voltages.

PB approach not valid at CDI voltages.

NM2PorousMedia 2014, Dubrovnik
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Kilic et al. Phys Rev E 2007;75
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» Current source term:

» C   :  Electrical double layer differential capacitance: 

» Thin double layer approximation: quasi-thermal equilibrium.

Poisson-Boltzmann

surface area

NM2PorousMedia 2014, Dubrovnik
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Modified Poisson-Boltzmann

: Effective ion size

Kilic et al. 
Phys Rev E 2007;75
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Constant voltage, reverse voltage desorption, MPB

NM2PorousMedia 2014, Dubrovnik
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Vmax= 0.1 V
vavg= 1 cm/s
c = 5 mM
l = 4.5 nm
εma = 0.5
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Constant voltage, reverse voltage desorption, MPB
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Vmax= 0.1 V
vavg= 1 cm/s
c = 5 mM
l = 0.45 nm
εma = 0.5
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Constant voltage, reverse voltage desorption, MPB
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Vmax= 0.1 V
vavg= 1 cm/s
c = 5 mM
l = 0.45 nm
εma = 0.25
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Constant voltage, reverse voltage desorption, MPB

At CDI conditions, hypothesis: 
Mismatch in time scales of relaxation of C-element (too slow) and 
macroscale mass transport. Macrotransport too fast close to voltage 
switching points (strong driving force). 
Quasi thermal equilibrium description of C unsatisfactory.

• Speed up mass 
transport

• Increase sterical 
hindrance effects

• Increase driving force
• Increase 

concentration

NM2PorousMedia 2014, Dubrovnik
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εma

 
l

Vcell

c
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» CDI Optimization potential: 
» Narrowing and deepening the peak (faster desalination rate): material 

optimization
» Switching voltages at the optimal moment: operational optimization
» Importance for selective removal from complex streams

Warning: strong transients

NM2PorousMedia 2014, Dubrovnik
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Time-dependent ion selectivity for capacitive deionization of complex streams

NM2PorousMedia 2014, Dubrovnik
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Cation storage vs cell voltage Cation storage vs time

» Equilibrium modified Donnan model not useful (extremely long equilibration).

» Non-equilibrium effects stronger for complex streams.
Zhao et al.  

J Colloid & Interf. Sc. 2012;384  
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Upcoming
» Multiscale model, non-equilibrium description of EDL

» Solve (M)PNP equations at microscale level
» Boundary coupling between macro-scale and micro-scale: 

» Boltzmann equilibrium: 
» Non-equilibrium: overpotential formulation 

+

(macro)
interparticle

(micro)
intraparticle

NM2PorousMedia 2014, Dubrovnik
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Intraparticle pore ½ width
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Thank you for your attention

dennis.cardoen@vito.be

Thanks to: 
Bruno Bastos Sales
Joost Helsen
Arne Verliefde
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