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Introduction: Multiscale Modeling

I Full scale simulations often not feasible
I General Goal: Reducing model complexity

I Rigorous Homogenization/Effective Medium via. Asymptotics
I Model Reduction Techniques, Eg. POD/DMD.
I Local Model Reduction → Multiscale Finite Elements
I Upscaling/Upgridding Effective properties

Figure : Pore Scale, Fracture Scale, and Darcy Scale.
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Introduction: Multiscale Modeling

I Goals:
I Develop and test different solvers and techniques
I Upscaling Algorithms to coarse grid from fine grid
I POD model reduction techniques to expedite computation
I Done in an Lattice Boltzmann Method (LBM) framework.

Figure : Averaging Fine-Scale Features
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Discretization Methods

I Wide array of solution techniques
I Finite Volume and Finite elements etc.
I And of course Multiscale-FVM/FEM
I LBM based of Boltzmann equations from Kinetic Theory
I Hydrodynamic Limit yields Navier-Stokes (Golse et al)
I Various advantages (disadvantages) to each approach

Figure : Discretization Methods (Sintef, Krogstad et al. and Y. Efendiev)
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Lattice Boltzmann Method: Navier-Stokes

Discretize space and time into ∆x ,∆t , and c = ∆x/∆t, and
velocity over a discrete lattice of unit vectors {eα}8α=0, the
evolution of the distribution fα is given by

fα(x + eα∆t, t + ∆t) = fα(x , t) +
1

τ
(f (eq)
α (x , t)− fα(x , t))

Here we use the BGK approximation for the collision integral and

the dynamics of the system are governed by f
(eq)
α (x , t).
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Lattice Boltzmann Method: Navier-Stokes

We may relate the distribution function to physical quantities by
taking moments

ρ(x , t) =
8∑

α=0

fα(x , t) , (ρu)(x , t) =
8∑

α=0

fα(x , t),

and the equilibrium function is, for suitable weights ωα,

f (eq)
α (x , t) = ωαρ

(
1 +

3eαu

c2
+

9(eαu)2

2c4
− 3(u)2

2c2

)
In (certain) hydrodynamic limits, the above density and
momentum satisfy the Navier-Stokes equations.
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Lattice Boltzmann Method: Navier-Stokes

Applying the Chapman-Enskog Expansions with respect to the
Knudsen number K , then taking moments

fα = f (1)α + Kf (2)α

∂

∂t
→ K

∂

∂t1
+ K 2 ∂

∂t2

In certain hydrodynamic limits, density and momentum
approximate the (in)compressible Navier-Stokes equations.

∂u

∂t
+∇p −∆u + u∇u =f in Ω,

div(u) = 0 in Ω , u =0 on ∂Ω.

Add pore-structure ε→ Ω→ Ωε via contraint boundary conditions.

Donald L. Brown Upscaling of Brinkman Equations with the Lattice Boltzmann method



The Brinkman Model

I Want to input pore-structure via penalization
I High flow and low flow regions
I Large contrast in flow properties
I Applications: Carbonates/ Filtration Devices
I Fissures and large fractures/vuggs in rock matrices

(cf. Popov et al, 2009, Ligaarden Ingeborg et al 2010)

Figure : Carbonate Reservoir Pore Geometry (CIPR, Jakobsen et al.)
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The Brinkman model

The Brinkman equations

∇p −∆u + k−1
ε u(x) =f in Ω,

div(u) = 0 in Ω , u =0 on ∂Ω.

I Add global linear forcing term to Stokes (or NS)

I Permeability has small scales features ε

I Brinkman Coefficient related to permeability αε = k−1
ε

I If αε → 0, free-flow Stokesian regime

I If αε → ”Large”, Darcy regime as the resistive term dominates

I Want LBM method to approximate Brinkman model

Donald L. Brown Upscaling of Brinkman Equations with the Lattice Boltzmann method



LBMs for Brinkman Equation

Use a forcing model based on (Guo Z., and Zhao T. 2002),

fα(x + ∆teα, t + ∆t) = fα(x , t) +
f
(eq)
α (x , t)− fα(x , t)

τ
+ ∆tFα(x , t)

Fα = ωαρ

(
1− 1

2τ

)
eα ·

(
−φν

kε
u + φG ,

)
/c2s

f (eq)
α = ωαρ

(
1 +

eα · u(eq)

c2s

)
(Truncated Linearized)

u(eq) =

∑8
α=0 eαfα +

1

2
∆tρ

(
−φν

kε
u + φG ,

)
ρ

,

τ so that νeff = c2s (τ − 0.5)∆t, cs = c/
√

3 is the sound speed.
φ is porosity, ν physical viscosity, G external forcing.
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LBMs for Brinkman Equation

Equating u and u(eq) we have

u =

∑8
α=0~eαfα +

∆t

2
φρG

ρ(1 +
φ∆tν

2kε
)

.

In the incompressible limit |u| � cs, with the Chapman-Enskog
expansion the pressure p = c2s ρ and u converge to

∂u

∂t
= − 1

ρ0
∇p + νeff∆u − φν

kε
u + φG ,

∇ · ~u = 0.

(1)

Note with τ → 1/2(!), then νeff → 0. Steady state yields Darcy.
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LBMs Upscaling Algorithm

Idea:
I Given kε, (∆x ,∆t) discretize fine grid
I Generate (in this case) nested course grid (∆X ,∆t or ∆T
I Solve local periodic (easy BC) in each coarse grid via LBM
I Solve above problems to steady state
I Using the conservation of average fluxes compute k∗

Figure : Schematic models of the fine and coarse grids.
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LBMs Upscaling Algorithm

Conservation of average fluxes to compute k∗.
I On each coarse grid K , we suppose

〈uper (kε,G )〉K = 〈uper (k∗,G )〉K
I k∗ and G are constant on K , with periodic BC we have

fα(k∗)(x + ∆teα, t + ∆t) = fα(k∗)(x , t), as t →∞
I We obtain after some manipulation the analytic formula

fα(k∗) = ωαρ0(1 +
eα
c2s
· k

∗ · G
ν

)

and thus,

uper (k∗,G ) =
k∗ · G
ν

I Using the equivalence of average fluxes we obtain

〈uper (kε,G )〉K =
k∗ · G
ν
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LBM Upscaling: Examples

Layered Media Test Case:

I 10 Layers, k1 = 10−12m2 in odd layers and k2 = c ∗ k1 in even

I For k∗xx , G = (2, 0)ms−2, Take τ = .53→ veff = .01m2s−1

I For k∗yy , G = (0, 2)ms−2, Take τ = .5→ veff = 0m2s−1

Table : Computed κ∗xx , κ1 = 10−12 m2 and νeff = 0.01 m2 s−1

κ2
κ1

[
1

2
(

1

κ1
+

1

κ2
)]−1 κ∗xx by LBM

2 1.33333× 10−12 1.33333× 10−12

10 1.81818× 10−12 1.81818× 10−12

50 1.96078× 10−12 1.96078× 10−12
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LBM Upscaling: Examples

Checkerboard Media Test Case:

Figure : Distributions of p, ux and uy , νeff = 0 m2 s−1, Gconst = (2, 0) m

s−2, κ1 = 10−12 m2 and
κ2
κ1

= 2.
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LBM Upscaling: Examples

Checkerboard Media Test Case:

Table : Verification of computed κ∗xx , κ1 = 10−12 m2 and νeff = 0 m2 s−1

κ2
κ1

√
κ1κ2 κ∗xx by LBM

2 1.41421× 10−12 1.41418× 10−12

10 3.16227× 10−12 3.14081× 10−12

50 7.07106× 10−12 6.45938× 10−12
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LBM Upscaling: Examples

More complicated media

Figure : Distribution of the permeability κ(~x), κconst = 10−13.

Donald L. Brown Upscaling of Brinkman Equations with the Lattice Boltzmann method



LBM Upscaling: Examples

More complicated media

Figure : Comparisons of p, ux and uy between the fine-grid results (left),
fine-grid averaged results (middle) and coarse-grid results using κ∗

(right), νeff = 0 m2 s−1, ~G = (sinπx , sinπy) m s−2, κconst = 10−13 m2.
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Model Reduction

I LBMs are fast, but must be solved to steady state

I Can be computationally expensive for complex RVEs

I Can use model reduction to expedite the solves

I LBMs must be reformulated into Mat-Vec
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Proper Orthogonal Decomposition

Suppose we have large system N × N evolution operator A, for
n = 0, 1, · · · we have unknown F n+1, N × 1 satisfies the fine
resolution equation

F n+1 = AF n

Take M Snapshots of the solution in the initial stages form S
N ×M,

S = [F1,F2, . . . ,FM ]

Form matrix R = STS , M ×M (Generally M << N).
Note could form SST but would be N × N.
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Proper Orthogonal Decomposition

Solve the eigenvalue problem

Rψi = λiψi

Take the POD basis to be the first r =(Reduced dimension)
vectors of the form

φi =
1√
λi
Sψi

Form the N × r matrix Ψ = [φ1, · · · , φr ]

We can now set F (n) = ΨF
(n)
r and have the reduced system

ΨT ΨF
(n+1)
r = ΨAΨF

(n)
r

F
(n+1)
r = ArF

(n)
r

here r << N.
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LBM reformulated for POD

We may write the equilibrium function as

f eq
α (~x , t) = ωα[(1 +

3τ∆tφ

2c2cε
eα · G )

∑
β

fβ(x , t)

+
3

c2
(1 +

τ

cε
− 2τ)eα ·

∑
β

eβfβ(x , t)]

where cε =
1

2
+

∆tφν

4kε
. We assume k is scaler. Denote

Gαβ(x) = ωα[(1 +
3τ∆tφ

2c2cε
eα · G ) +

3

c2
(1 +

τ

cε
− 2τ)eα · eβ]
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LBM reformulated for POD

We may write using the Einstein summation convection

f eq
α (x , t) = Gαβ(x)fβ(x , t)

We may rewrite the scheme

fα(x + ∆teα, t + ∆t) =

((
1− 1

τ

)
δαβ +

1

τ
Gαβ(x)

)
fβ(x , t)

= Aαβ(x)fβ(x , t).

In 2-Dimensions let us denote the grid x i ,j , then we have

fα(x i ,j + ∆teα, t + ∆t) = Aαβ(x i ,j )fβ(x i ,j , t)

The evolution operator can be reformulated.
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LBM reformulated for POD

Assuming that x i ,j is not on the boundary, from the shifting rules
of the LBM model D2Q9 we may write

fα(x i ,j , t + ∆t) = Aαβ(xσ(α;i ,j))fβ(xσ(α;i ,j), t).

Here σ is the shift operator which is a function given by the
reverse shift rules

σ(α; i , j) =



(i , j) α = 0
(i − 1, j) α = 1
(i , j − 1) α = 2
(i + 1, j) α = 3
(i , j + 1) α = 4
(i − 1, j − 1) α = 5
(i + 1, j − 1) α = 6
(i + 1, j + 1) α = 7
(i − 1, j + 1) α = 8

If x i ,j is on the boundary must be adapted.
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For notational simplicity it what follows let

F i ,j
α (t) = fα(x i ,j , t) , Ai ,j

αβ = Aαβ(x i ,j )

Rewriting the evolution in this notation

F i ,j
α (t + ∆t) =

∑
β

A
σ(α;i ,j)
αβ F

σ(α;i ,j)
β (t)

=
∑

kl

∑
β

(
IαijklA

kl
αβ

)
F kl
β (t)

=
∑

kl

∑
β

BαβijklF
kl
β (t)

(2)

Here the 5-tensor Iαijkl is like a generalized Kronecher delta that
respects the shift operator σ. More specifically,

Iαijkl =

{
1 if σ(α; k , l) = σ(α; i , j)
0 otherwise
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LBM reformulated for POD

For j , i = 1, 2, · · · ,N and α = 0, 1, · · · 8 we flatten the data to a
new index as

m(α, i , j) = i + (j − 1)N + αN2,

for m = 1, 2, · · · ,M and here M = N + (N − 1)N + 8N2,.
We flatten

Fm = F
(
F ij
α

)
,

and the flattening of the 6-tensor as

Bmq = F
(
Bαβijkl

)
.

Thus, we may rewrite the evolution as

Fm(t + ∆t) = BmqFq(t)
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LBM POD Examples: Test Case

Using Fortran test code...

I Ω = [0, 1]2, Periodic Boundaries, ∆x = 1
30 ,∆t = 1

30000

I [0, 2] time interval, G = (1, 0), ρ0 = 10, τ = .95, φ = .8

I k = .001 in two inclusions, k = 1 else.

I Offline Snapshot IC: f i ,j
α = 10 + sin(x)

I Online IC: f i ,j
α = 10

I 200 Snapshots, every 10 time steps.

I Post process from fα → ux , L2 Rel Errors at t = 1.
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Figure : x-Velocity : Fine-Solve

Figure : x-Velocity :5 Modes (67%), 10 Modes (40%), 15 Modes (15%)
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Figure : Geodict Geometry

Figure : x-Velocity : Full vs Reduced
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LBM POD: Few Casual Observations

In the process of data collection and interpretation...

I Must take snapshot windows bigger than 1 time step

I Due to slow evolution ∆t small for stability explicit scheme

I Works well for u, however p ≈ ρ does not work well

I Model gives small pressure variations not picked up by POD

I POD highlights high flow regions, usually diffusive
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Future works

I Test Robustness of the Modes w.r.t perturbations in kε
I Explicit Schemes of LBM-Brinkman (for stability)

I Comparison/Utilization of DMD

I Nonlinear regimes no truncation, nonlinear forcings

I DEIM methods for nonlinear ROM

I Upscaling/POD on more complicated geometries
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Questions

Thank you for your time.
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