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Introduction

Incompressible Darcy flow
Find u € H(div; Q) and p € L2(Q) such that

u=-KVp in ©
V-u=f in ©
P =Dy on 052

A mixed finite element method

@ 1 pressure per cell
@ 1 flux per face
Extension for meshes with curved faces ?
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Mixed finite elements

Weak formulation
Find uy, € Wy, and pp € My, such that

JK_luh-vh—fphV~vh=—f PoVh -1 Vv, € W),
Q Q

o0
—f qn V-uy, =—| fan Van € My,
0 Q

Define the approximation spaces W), and M,
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Mixed finite elements

RTN for tetrahedra and cubes (Raviart-Thomas-Nédélec)

Tetrahedron Cube

Constant velocity field in a cylinder with RT N, extended to hexahedra

The constant velocity is not contained in the approximation space Wy,
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Composite hexahedral mixed finite element

A first composite element with 5 tetrahedra [Sboui-Jaffré-Roberts|

@ Splitting is not unique

@ Assume the faces are planar /

@ Tetrahedron do not make necessarily
a conforming submesh

Cube split into 5 tetrahedra

v

Composite element with 24 tetrahedra

@ Works with curved faces

@ Splitting is unique

@ Symmetry

@ Conforming tetrahedral submesh Gl el e 24 el

R EESDEE—SDDDG————.
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Definition of the approximation spaces

Conditions to meet for the approximation spaces W, and M,,

uhEWh and phe./\/lh

@ pp must be constant on each hexahedron E of the mesh 7j

@ V-uj; must be constant on F

@ uy, must be in the RTIN( space of the tetrahedral submesh 7Tg

@ uy must be uniquely defined by this value on each face F' of the mesh

Definition of the approximation spaces W, and M,

| A

W, is defined locally inside each hexahedron E

My, = {qe L*(E) : ¢|g is constant on E,VE € T;,}
Wy ={we H(div;Q) : w|g € Wg,VE € T}

N
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Definition of the velocity approximation space

Definition of the local approximation space Wg
@ Fp is the set of faces of

Wpg = Vect{wg p, F € Fg : wg  solution of (Pg r)}

@ A local problem (Pg, r) is defined to meet the conditions for each wg

@ The basis function wg r will solve the local problem (Pg r) inside £

The local approximation spaces used to solve (Pg )
@ T is the tetrahedral mesh of F
@ Wpg and Mg are the mixed finite elements spaces
Mg = {qe L*(E) : q|r is constant on T,V T € Tg}
Wg = {ve H(div; E) : v|r € RTN(T),VT € Tx}
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Definition of the basis functions

The local problem (Pg r) inside the composite element

Find WEF € WE with and 5E,F € ME such that

J K_IWE’F-\N’—f 5E,FV~\~I=0 VXNIGWE,\N’-HEZO
—f qV-wg ——J
E

q Va € ME
ﬁ if F=F
WEF - =

= 4
e | Bl
0 else
j pEF =0
E

@ No explicit solution with 24 tetrahedra

Cube split into 24 tetrahedra
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Numerical experiment

Convergence error

Exact solution inside the domain © = [0;1]* with different meshes

2 2z
_ y _
p—2mz+7+z u=— Y
20+ 1
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Numerical experiment on cubes

Regular mesh Pressure errors with standard refinement
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h

—— tetraedral RTINy method
—o— composite method
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Numerical experiment on cubes

Regular mesh Velocity errors with standard refinement
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Numerical experiment on hexahedra with fixed aspect ratio

Hexahedral mesh Pressure errors with finer meshes
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Numerical experiment on hexahedra with fixed aspect ratio

Hexahedral mesh Velocity errors with finer meshes
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Conclusion for hexahedra

Definition of the composite method

@ Wg is spanned by the basis functions wg

@ The basis function wg ¢ solves a local problem (Pg ) inside E

Convergence errors
@ Convergence is optimal for planar faces
@ The composite method is similar to the 2 scale finite element method

CPU time for the composite method

@ Time required to solve the problem is 30 times faster than RTNj

@ Time required to build and solve the problem is 5 times faster than
RTN,
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The case of curved faces
Problem with curved faces
Constant velocities do not lie in the approximation space W,

Proof [Nordbotten-Haegland]

@ The curved face is approximated with F, the union of 4 subfaces F;

@ ny = ng, on the triangular subface F;

@ u is a constant velocity

u-nFi;éu-nFj

Deformed cube Constant velocity u
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Definition of the basis functions for curved faces

New Neumann conditions for wg p

For a planar face F

ﬁ if F=F'
WE F -Npr =
0 else

nr is the mean of the normal np, Deformed cube

4
Ap— i1 | Filng,
= 4
[ Zi:l |Finp,| 2

Neumann boundary condition for a curved face

np-np, .
————— if F] is a subface of F
W Dp = Spp - np

0 else
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The case of curved faces

Approximate velocity with curved face

@ wp r solves a local problem inside £
-} WEF'nF/=OifF;éFI
) 7

Constant velocity u Approximate velocity uy

@ The error is reduced when the mesh is refined
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Numerical experiment on a mesh with curved faces

Deformed mesh Pressure errors with standard refinement
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Numerical experiment on a mesh with curved faces

Deformed mesh Velocity errors with standard refinement
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Numerical experiment on a mesh with fixed aspect ratio

Random mesh Pressure errors with finer meshes
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Numerical experiment on a mesh with fixed aspect ratio

Velocity errors with finer meshes
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Conclusion

Convergence errors for planar faces

@ Convergence is optimal

Convergence errors for curved faces

@ The method converges if the mesh is refined in a standard manner

@ The velocity does not converge on meshes with fixed aspect ratio

@ The same methodology can be apply for prisms and pyramids

@ Local and conforming refinement
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A posteriori error estimation

Estimate the error of the approximate solution [Vohralik]

Bound the velocity error
e = wplll < na(pr, an, £, K) < Cflu —up|

with C' a positive constant and the energy norm

vz = fg K-lv.v V2 = jTK-lv v

n(pn, up, f, K) is defined using the estimators for the RTINy method

v

The error is evaluated locally inside each element E of T,

@ Project the solutions into the RTN spaces of the tetrahedral mesh

@ Estimate the error inside each tetrahedron

@ Bound the error in the hexahedron with the tetrahedral estimators
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A posteriori error estimation

Projection of the solution

75, is the conforming tetrahedral submesh of 7,
e i, = uy, which is already in RTN(75)

@ Dy, is formed using pj, and the pressure variations pg p's in (Pg,r)

The potential estimator

® Dy 2 is an approximation of the pressure in P2(Tp) NHI(Q)

ne,r = [0y + KV pralls,r

o Tjis uniquely determined in the case of 24 tetrahedra
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A posteriori error estimation

The residual estimator

@ hrp is the diameter of T
@ ¢ 7 is the smallest eigenvalue of K on T'

@ (, is the Poincaré inequality coefficient, 7%2 on simplices

@ 7 is the projection operator from L2(Q) into Mg
1/2

NR,T = hT%/QHf — 7fllLz2(m)
cs,T

v

The error estimators

The local error estimator The global error estimator

5 2 2 2 2
Mg = E Mp,r + MR, T M = Z NE
TeTE EeTy,
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Numerical experiment

Initial condition

Dirichlet boundary condition
onz =0 onz =1
p=1 p=0 e

S O =
O = O
=)
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No flow boundary elsewhere

. in the red corner
_ 1
@ =15
0.5
% 05 elsewhere
05 10 a=1
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Numerical experiment

Local error estimator ng
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Another refinement criteria

@ A simpler criteria is to adapt the mesh based on the variation of K

@ This does not give a good refinement level at z = %
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Numerical experiment

Global error estimators Local error estimator ng
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Conclusion

Convergence errors for planar faces

@ Convergence is optimal

Convergence errors for curved faces

@ The method converges if the mesh is refined in a standard manner

@ The velocity does not converge on meshes with fixed aspect ratio

A posteriori error
@ A local and efficient estimator

Perspective

@ Application in an industrial test case (ANDRA)
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