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The objective of this work is to evaluate the role of tortuosity on
fitting simulation data to the Kozeny-Carman equation.

Outline:

I Review of Kozeny-Carman eqn.

I Review of different tortuosity definitions

I Obtaining permeability and tortuosity from pore-scale
modeling

I Example geometries: in-line array, staggered-array, overlapping
squares

I Fitting simulation data to Kozeny-Carman eqn.

I Conclusion
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Kozeny-Carman equation
I derived from theory by treating porous media as comprised of

parallel and uniform channels
I relates permeability to pore-structure properties:

k =
φ3

cS2
=

φ3

βτ2S2
(1)

Figure: Tortuosity: τ = λ/L

Carman, 1937 & 1939:

Shape of cross-section Kozeny constant, c

Circle 2
Ellipse (major/minor = 2) 2.13

Ellipse (major/minor = 10) 2.45
Rectangle (width/height = 1) 1.78
Rectangle (width/height = 2) 1.94

Rectangle (width/height = 10) 2.65
Rectangle (width/height =∞) 3

In granular beds, how can we compute tortuosity? Is it a function of porosity?
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Past work on measuring tortuosity
Many authors have theoretically or empirically derived tortuosity as
a function of porosity.

Figure: Porosity vs tortuosity trends from literature: generally, τ ≥ 1, and
τ → 1 as φ→ 1.
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Study Samples Considered
Tortuosity vs
Porosity Fit

Tortuosity Type

Maxwell, 1881∗
array of spheres (3D), dilute
suspension, non-conducting

τ = 1 + 1
2

(1− φ)
electrical

conductivity
Rayleigh, 1892∗ array of cylinders (2D) τ = 2− φ diffusion?

Mackie & Meares,
1955∗∗

diffusion of electrolytes in membrane τ = ( 2−φ
φ

)2 diffusion

Weissberg, 1963
bed of uniform spheres (applicable to

overlapping, non-uniform spheres)
τ = 1− 1

2
lnφ diffusion

Kim et al, 1987 isotropic system, 0 < φ < 0.5 τ = φ−0.4 diffusion

Koponen et al,
1996

2D random overlapping mono-sized
squares, 0.5 < φ < 1

τ = 1 + 0.8(1− φ) hydraulic

Koponen et al,
1997

2D random overlapping mono-sized
squares, 0.4 < φ < 1

τ = 1 + a 1−φ
(φ−φc )m ,

a = 0.65, m = 0.19
hydraulic

Matyka et al,
2008

2D random overlapping mono-sized
squares

τ − 1 ∝ R S
φ hydraulic

Duda et al, 2011 2D freely overlapping squares
τ − 1 ∝ (1− φ)γ ,

γ = 1/2
hydraulic

Pisani, 2011 random, partial overlapping shapes
τ = 1

1−α(1−φ)
,

α=shape factor
diffusion

Liu & Kitanidis,
2013

isotropic grain (spherical), staggered
0.25 < φ < 0.5

τ = φ1−m + 0.15,
m = 1.28

electrical
conductivity

* as referenced in Ochoa-Tapia et al 1994

** as referenced in Shen & Chen 2007, and Boudreau 1996
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However recent work states that any definition of tortuosity (i.e.,
hydraulic and diffusive) is not a function of porosity but rather a
function of the pore geometry only and is a tensorial property
(Valdes-Parada et al. 2011, Liu & Kitanidis 2013).
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Different forms of tortuosity

The tortuous nature of fluid
flow through porous media:

τh =
path traveled by fluid

domain unit length

The Kozeny-Carman equation
uses hydraulic tortuosity:

k =
φ3

cτh
2S2

=
φ3

βS2

Past Work on measuring τh and/or fitting
simulated data to KC-eqn:

I overlapping squares (Koponen et al 1996/7,
Matyka et al 2008, Duda et al 2011)

I 3D body-centered-cubic unit cells
(Ebrahimi Khabbazi et al 2013)

The tortuous nature of a solute
diffusing through porous media:

τd =
path traveled by diffusing solute

domain unit length

Effective diffusivity is the binary
diffusion scaled by diffusive tortuosity

Deff =
D

τd
= Dτ

′

d

Past Work on measuring τd or Deff :

I in cellular geometry (Ochoa et al. 1987)

I in porous wick (Beyhaghi & Pillai 2011)

I in packed beds and unconsolidated porous media (Kim et al.
1987, Quintard 1993)
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Different forms of tortuosity

The tortuous nature of fluid
flow through porous media:

τh =
path traveled by fluid

domain unit length

The Kozeny-Carman equation
uses hydraulic tortuosity:

k =
φ3

cτh
2S2

=
φ3

βS2

The tortuous nature of a solute
diffusing through porous media:

τd =
path traveled by diffusing solute

domain unit length

Effective diffusivity is the binary
diffusion scaled by diffusive tortuosity

Deff =
D

τd
= Dτ
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Work flow of this research

I represent porous media in domain, using simple geometries
I do pore-scale modeling:

I solve Stokes flow ⇒ obtain pressure and velocity fields ⇒
compute permeability tensor and hydraulic tortuosity

I solve Closure Variable problem ⇒ obtain diffusive tortuosity
tensor

I compare the hydraulic and diffusive tortuosity results

I fit simulation results (permeability, hydraulic tortuosity) to
Kozeny-Carman equation
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Solve Stokes flow → obtain velocities, permeability
Wang et al. 2013.

1. Solve Stokes flow in pore
space of media ⇒ obtain p
and v.

µ∇2v−∇p + ρg = 0 (2)

∇ · v = 0 (3)

2. Assuming Darcy’s equation
is valid (u = −K

µ (∇p + ρg)),
compute K from u = φ〈v〉
(∇p = 0 in REV).

Pressure and flow fields in 0.05mm x
0.05mm REV,

(a) Flux in X-direction (b) Flux in Y-direction

and the resulting K in m2 is»
kxx kxy

kyx kyy

–
=

»
6.03x10−12 −1.15x10−12

−1.15x10−12 2.86x10−12

–
.
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Solve Stokes flow → obtain velocities, hydraulic tortuosity

The hydraulic tortuosity can be computed from fluid velocity
fields∗,

τhx =
〈
√

v2
x + v2

y 〉

〈|vx |〉
, τhy =

〈
√

v2
x + v2

y 〉

〈|vy |〉
(4)

In other words,

τhx =

∑
i ,j

√
vx (i , j)2 + vy (i , j)2∑

i ,j
|vx (i , j)|

, τhy =

∑
i ,j

√
vx (i , j)2 + vy (i , j)2∑

i ,j
|vy (i , j)|

* Koponen et al 1997, Duda et al 2011.
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Solve closure problem∗ → obtain diffusive tortuosity
I diffusive transport at pore-scale:

∂c

∂t
= ∇ · (Dm∇c) (5)

I use theory of volume averaging to define 〈c〉f
I local spatial deviation c̃ = c − 〈c〉f
I c̃ is a linear function of 〈c〉f , so is given by

c̃ = b · ∇〈c〉f (6)

I b is a vector field that maps ∇〈c〉f onto c̃
I closed form of local volume average transport eqn.,

φ
∂〈c〉f

∂t
= ∇ ·

(
φDeff · ∇〈c〉f

)
(7)

where

Deff := Dm

(
I +

1

Vf

∫
Afs

n · bdA

)
(8)

I by convention, Deff /Dm = 1/τ

* Valdes-Parada et al. 2011, Beyhaghi & Pillai 2011, Quintard 1993, Kim et al. 1987, Ochoa et al. 1987.
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Solve closure problem∗ → obtain diffusive tortuosity

The closure problem∗ is given by:

∇2b = 0 (9)

nfs · ∇b = −nfs at Afs (10)

b(r + Ii ) = b(r) i = 1, 2 (11)

〈b〉f = 0 (12)

Figure: Closure Problem

The tortuosity (factor) tensor is

τ
′

= I +
1

Vf

∫
Afs

nfs · bdA (13)

* Valdes-Parada et al. 2011, Beyhaghi & Pillai 2011, Quintard 1993, Kim et al. 1987, Ochoa et al. 1987.
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Solve closure problem∗ → obtain diffusive tortuosity

In 2D, the tensor components are

τ ′ =

"
τ
′
xx τ

′
xy

τ
′
yx τ

′
yy

#
=

"
1 + 1

Vf

R
Afs

nx bx dA 1
Vf

R
Afs

nx by dA
1

Vf

R
Afs

ny bx dA 1 + 1
Vf

R
Afs

ny by dA

#
(14)

The Laplace equation ∇2b = 0 is used to solve the closure variable
b, where b = bx i + by j. In 2D, these spatial derivatives are

∇2bx =
∂

∂x

„
∂bx

∂x

«
+

∂

∂y

„
∂bx

∂y

«
= 0 (15)

∇2by =
∂

∂x

„
∂by

∂x

«
+

∂

∂y

„
∂by

∂y

«
= 0 (16)

In this work, we solve these PDEs using finite difference.
* Valdes-Parada et al. 2011, Beyhaghi & Pillai 2011, Quintard 1993, Kim et al. 1987, Ochoa et al. 1987.
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Example 1:
In-line array of uniform shapes

(a) φ = 0.32 (b) φ = 0.54 (c) φ = 0.71 (d) φ = 0.87 (e) φ = 0.97

Figure:
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In-line array of circles; φ = 0.71
Hydraulic tortuosity:

(a) Flow in x-dir. (b) Flow in y-dir.

Figure: Magnitude of pressure gradients
(i.e., velocities) with hydraulic flow lines

τhx = 〈
√

v2
x + v2

y 〉/〈|vx |〉 = 1.02

τhy = 〈
√

v2
x + v2

y 〉/〈|vy |〉 = 1.02

Diffusive tortuosity:

(a) bx (b) by

Figure: Closure variable fields used to
obtain surface intergrals

τd x =

(
1 +

1

Vf

∫
Afs

nxbxdA

)−1

= 1.29

τd y =

(
1 +

1

Vf

∫
Afs

nybydA

)−1

= 1.29
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In-line array of circles; φ = 0.71
Hydraulic tortuosity:

(a) Flow in x-dir. (b) Flow in y-dir.

Figure: Magnitude of pressure gradients
(i.e., velocities) with hydraulic flow lines

τhx = 〈
√

v2
x + v2

y 〉/〈|vx |〉 = 1.02

τhy = 〈
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Figure: Closure variable fields used to
obtain surface intergrals

τd x =

(
1 +

1

Vf
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Afs
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)−1

= 1.29

τd y =
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1 +

1

Vf
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Afs
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In-line array of circles; φ = 0.71
Hydraulic tortuosity:

(a) Flow in x-dir. (b) Flow in y-dir.

Figure: Magnitude of pressure gradients
(i.e., velocities) with hydraulic flow lines

τhx = 〈
√

v2
x + v2

y 〉/〈|vx |〉 = 1.02

τhy = 〈
√

v2
x + v2

y 〉/〈|vy |〉 = 1.02

Diffusive tortuosity:

(a) bx (b) by

Figure: Closure variable fields used to
obtain surface intergrals

τd x =

(
1 +

1

Vf

∫
Afs

nxbxdA

)−1

= 1.29

τd y =

(
1 +

1

Vf

∫
Afs

nybydA

)−1

= 1.29
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In-line array of circles; φ = 0.71
Hydraulic tortuosity:

(a) Flow in x-dir. (b) Flow in y-dir.

Figure: Magnitude of pressure gradients
(i.e., velocities) with hydraulic flow lines

τhx = 〈
√

v2
x + v2

y 〉/〈|vx |〉 = 1.02

τhy = 〈
√

v2
x + v2

y 〉/〈|vy |〉 = 1.02

Diffusive tortuosity:

(a) bx (b) by

Figure: Closure variable fields used to
obtain surface intergrals

τd x =

(
1 +

1

Vf

∫
Afs

nxbxdA

)−1

= 1.29

τd y =

(
1 +

1

Vf

∫
Afs

nybydA

)−1

= 1.29
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In-line array of circles; φ = 0.71
Hydraulic tortuosity:

(a) Flow in x-dir. (b) Flow in y-dir.

Figure: Magnitude of pressure gradients
(i.e., velocities) with hydraulic flow lines

τhx = 1.0185
τhy = 1.0185

Diffusive tortuosity:

(a)
q

∂cx
∂x

2
+ ∂cx

∂y

2
(b)

q
∂cy

∂x

2
+

∂cy

∂y

2

Figure: Magnitude of concentration
gradients with diffusive flow lines

τdx = 1.2866
τdy = 1.2866
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In-line array of circles and squares; 0 < φ < 1

(a) Circle (b) Square

Figure: Porosity vs. tortuosity: diffusive tortuosity trend follows
analytical solution from Rayleigh 1892 until inadequate mesh refinement,
while hydraulic tortuosity is independent of porosity for this geometry.
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Example 2:
Staggered-array of uniform shapes

(a) φ = 0.36 (b) φ = 0.64 (c) φ = 0.84 (d) φ = 0.93

Figure:
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Staggered-array of squares; φ = 0.716

Hydraulic tortuosity:

(a) Flow in x-dir. (b) Flow in y-dir.

Figure: Magnitude of pressure gradients
(i.e., velocities) with hydraulic flow lines

τhx = 1.37
τhy = 1.06

Diffusive tortuosity:

(a) X-Prob (b) Y-Prob

Figure: Magnitude of concentration
gradients with diffusive flow lines

τdxx = 1.37
τdyy = 1.32
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Staggered-array of squares; 0.35 < φ < 1

(a) τxx (b) τyy

Figure: Tortuosity vs. porosity trends for staggered-array of squares:
hydraulic flow is predominantly parallel to driving force, unless an
obstacle prevents a linear flow path.
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Example 3:
Randomly distributed,

freely overlapping squares

(a) φ = 0.53 (b) φ = 0.61 (c) φ = 0.70 (d) φ = 0.80 (e) φ = 0.90

Figure: Various pore-structure geometries. Notice isolated fluid sites are
filled in, causing larger, non-uniform shapes. Square length = 0.01 x
domain length (Koza et al 2000, Duda et al 2011).
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Overlapping Squares; φ = 0.7
Hydraulic tortuosity:

(a)
q

∂px
∂x

2
+ ∂px

∂y

2
(b) Hydr. lines

Figure: Magnitude of pressure gradients
(i.e., velocities) and hydraulic flow lines
for X-problem

τhx = 1.3228

Diffusive tortuosity:

(a)
q

∂cx
∂x

2
+ ∂cx

∂y

2
(b) Diff. lines

Figure: Magnitude of concentration
gradients and diffusive flow lines for
X-problem

τdx = 2.6596
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Overlapping Squares; 0.45 < φ < 1

(a) Plot of full simulated data (b) Close-up plot of simulated data

Figure: Porosity vs tortuosity for pore-structures of overlapping squares:
diffusive tortuosity >> than hydraulic tortuosity at low porosities
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Overlapping Squares: Anisotropy of τh and τd

Figure: Anisotropic ratio for hydraulic and
diffusive tortuosity: the degree of anisotropy
for hydraulic flow and diffusive flow ≈ 1 for
higher porosities, while the diffusive flow is
anisotropic at lower porosities.

(a) φ = 0.4525 (b) φ = 0.7005

Figure: Pore-structures of lower
porosity exhibit more isolated
fluid site that are filled it, thus
creating non-uniform distribution
of solids in overlapping squares
configuration. This impacts
degree of anisotropy.
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Computing Kozeny constant for
Ex. 3: overlapping squares
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Overlapping Squares: Kozeny constant

(a) Permeability k (b) Hydraulic tortuosity τ (c) Spec. surface S

Figure: Simulated data

The Kozeny constant c , or shape factor β, can be computed by

k =
φ3

cS2
=

φ3

βτ2S2
(17)

where S =
Af−s

Vtot
(i.e., Vtot is the fluid and solid space combined).
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Overlapping Squares: Kozeny constant

(a) Kozeny constant, c (b) Shape factor, β

Figure: Parameters that fit simulated data to Kozeny-Carman equation.
Kozeny constant and shape factor do not change within a porosity
interval of 0.65 < φ < 0.95.
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Conclusions

I Past work has proposed τ = τ(φ), however recent work has
suggested this is not true, rather τ = τ(pore geometry) only

I Hydraulic tortuosity can be computed from fluid velocity field,
while diffusive tortuosity can be computed from closure
variable problem

I Hydraulic tortuosity 6= diffusive tortuosity

I The diffusive tortuosity is able to capture the anisotropic
nature of pore geometry more readily that hydraulic tortuosity

I The Kozeny-Carman eqn. proposes a relationship between
permeability, porosity, specific surface area, and hydraulic
tortuosity
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Questions?
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Appendix
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Obtaining full permeability tensor
The compute the full permeability tensor, consider the pore
structure:

Figure: Pore structure example, φ = 0.82

We assume this pore structure is a representative elementary
volume (REV), which implies the properties measured from this
sample represents the properties of the porous media the sample
came from. The rest of the domain is made up of repeating
structures of this figure. As such, we use periodic boundary
conditions on all external sides. 41 / 52
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Slow and steady flow is modeled through the pore space by Stokes
equation,

0 = ρgi +
∂p

∂xi
+ µ

∂2vi

∂xj∂xj
(18)

where the solution for pressure p and velocity vi are obtained for a
specified flow driving force, gi . The spatial average pore-space
velocity v̂i can be computed for each flow scenario.

(a) Driving force in X-
direction: (gx , gy ) =
(1, 0). (v̂x , v̂y ) = (?, ?)

(b) Driving force in Y-
direction: (gx , gy ) =
(0, 1). (v̂x , v̂y ) = (?, ?)

Figure: Pressure and velocity solutions after solving Stokes flow through
pore space under two different driving force conditions.
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Then, we use Darcy’s equation to describe flow at the macro-scale,

ui = −
kij

µ

(
∂P

∂xi
+ ρgi

)
(19)

where ui is the Darcy’s velocity of the pore structure (ui = v̂i/φ),
and where kij and ∂P/∂xi are with respect to the whole structure
(i.e., the REV). In 2D, Darcy’s equation is[

ux

uy

]
= − 1

µ

[
kxx kxy

kyx kyy

]([∂P
∂x
∂P
∂y

]
+ ρ

[
gx

gy

])
(20)

and since we assume periodic boundaries on all external sides of
the pore structure, the pressure gradients are

∂P

∂x
|REV = 0,

∂P

∂y
|REV = 0 (21)

thus equation 20 becomes[
ux

uy

]
= −ρ

µ

[
kxx kxy

kyx kyy

] [
gx

gy

]
(22)
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When (gx , gy ) = (1, 0), equation 22 is[
v̂x/φ
v̂y/φ

]
= −

[
kxx

kyx

]
(23)

and when (gx , gy ) = (0, 1), equation 22 is[
v̂x/φ
v̂y/φ

]
= −

[
kxy

kyy

]
(24)

where ρ/µ = 1, and ui = v̂i/φ.
In our pore structure example, the resulting permeability tensor is[

kxx kxy

kyx kyy

]
=

[
0.0025612 −0.00045863
−0.00045862 0.00099666

]
(25)

To conclude, the full permeability tensor can be computed by using
the spatial average pore-space velocity v̂i obtained by solving
Stokes flow for two different driving force scenarios.
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Solve closure problem∗ → obtain diffusive tortuosity
I diffusive transport at pore-scale:

∂c

∂t
= ∇ · (Dm∇c) (26)

I use theory of volume averaging to define 〈c〉f
I local spatial deviation c̃ = c − 〈c〉f
I transport of local volume average, 〈c〉f :

φ
∂〈c〉f

∂t
= ∇ ·

(
φDm

(
∇〈c〉f +

1

Vf

∫
Afs

nc̃dA

))
(27)

I c̃ is a linear function of 〈c〉f , so is given by

c̃ = b · ∇〈c〉f (28)

I b is a vector field that maps ∇〈c〉f onto c̃

* Valdes-Parada et al. 2011, Beyhaghi & Pillai 2011, Quintard 1993, Kim et al. 1987, Ochoa et al. 1987.

45 / 52



Background Pore-Scale Modeling In-line array Staggered-array Overlapping Squares Conclusions

I take the surface integral of c̃ = b · ∇〈c〉f
I substitute it into the local volume average transport eqn. to

get its closed form,

φ
∂〈c〉f

∂t
= ∇ ·

(
φDeff · ∇〈c〉f

)
(29)

where

Deff := Dm

(
I +

1

Vf

∫
Afs

n · bdA

)
(30)

I by convention, Deff /Dm = 1/τ , thus the tortuosity (or
tortuosity factor) is computed by

1

τ
= τ

′
=

(
I +

1

Vf

∫
Afs

n · bdA

)
(31)
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In-line array of circles; φ = 0.71
Hydraulic tortuosity:

(a) Flow in x-dir. (b) Flow in y-dir.

Figure: Magnitude of pressure gradients
(i.e., velocities) with hydraulic flow lines

τhx = 〈
√

v2
x + v2

y 〉/〈|vx |〉 = 1.02

τhy = 〈
√

v2
x + v2

y 〉/〈|vy |〉 = 1.02

Diffusive tortuosity:

(a) ∂bx/∂x (b) ∂by/∂y

Figure: Closure variable gradients used
to obtain volume integrals

τd x =

(
1 +

1

Vf

∫
Vf

∂bx

∂x
dV

)−1

τd y =

(
1 +

1

Vf

∫
Vf

∂by

∂y
dV

)−1
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In-line array of circles; φ = 0.71
Hydraulic tortuosity:

(a) Flow in x-dir. (b) Flow in y-dir.

Figure: Magnitude of pressure gradients
(i.e., velocities) with hydraulic flow lines

τhx = 〈
√

v2
x + v2

y 〉/〈|vx |〉 = 1.02

τhy = 〈
√

v2
x + v2

y 〉/〈|vy |〉 = 1.02

Diffusive tortuosity:

(a) cx = bx + xs (b) cy = by + ys

Figure: Concentration fields

τd x =

(
1

Vf

∫
Vf

∂cx

∂x
dV

)−1

τd y =

(
1

Vf

∫
Vf

∂cy

∂y
dV

)−1
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Staggered-array of squares; φ = 0.716

(a) bx (b) cx = bx + xs (c)
q

∂cx
∂x

2
+ ∂cx

∂y

2
with

diffusive flow lines

Figure: Diffusive tortuosity, τxx

(a) by (b) cy = by + ys (c)
q

∂cy

∂x

2
+

∂cy

∂y

2
with

diffusive flow lines

Figure: Diffusive tortuosity, τyy
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Overlapping Squares; φ = 0.7

(a) bx (b) cx = bx + xs (c)
q

∂cx
∂x

2
+ ∂cx

∂y

2
(d) Diffu. lines

Figure: Scalar fields (closure variable bx , concentration cx ), magnitude of
concentration gradients, and diffusive flow lines for X-problem

[
τ
′

xx τ
′

xy

τ
′

yx τ
′

yy

]
= I +

1

Vf

∫
Vf

∇bdVf =
1

Vf

∫
Vf

∇cdVf

τ
′

xx =
1

τd x
= 1 +

1

Vf

∫
Vf

∂bx

∂x
dVf =

1

Vf

∫
Vf

∂cx

∂x
dVf
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Overlapping Squares; φ = 0.7

(a) bx (b) cx = bx + xs (c)
q

∂cx
∂x

2
+ ∂cx

∂y

2
(d) Diffu. lines

Figure: Scalar fields (closure variable bx , concentration cx ), magnitude of
concentration gradients, and diffusive flow lines for X-problem

1 + 1
Vf

∑
i,j

∂bx

∂x δVf
1

Vf

∑
i,j

∂by

∂x δVf

1
Vf

∑
i,j

∂bx

∂y δVf 1 + 1
Vf

∑
i,j

∂by

∂y δVf

 =


1

Vf

∑
i,j

∂cx

∂x δVf
1

Vf

∑
i,j

∂cy

∂x δVf

1
Vf

∑
i,j

∂cx

∂y δVf
1

Vf

∑
i,j

∂cy

∂y δVf


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Overlapping Squares: Anisotropy of k and τh

Figure: Comparison between the degree of anisotropy of permeability and
hydraulic tortuosity: permeability is more anisotropic than hydraulic
tortuosity at lower porosities
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