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The objective of this work is to evaluate the role of tortuosity on
fitting simulation data to the Kozeny-Carman equation.

Outline:
» Review of Kozeny-Carman eqn.
» Review of different tortuosity definitions

» Obtaining permeability and tortuosity from pore-scale
modeling

» Example geometries: in-line array, staggered-array, overlapping
squares

» Fitting simulation data to Kozeny-Carman eqn.

» Conclusion
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Kozeny-Carman equation

» derived from theory by treating porous media as comprised of
parallel and uniform channels
» relates permeability to pore-structure properties:
3 3
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Figure: Tortuosity: 7 = A/L

In granular beds, how can we compute tortuosity? Is it a function of porosity?
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Past work on measuring tortuosity

Many authors have theoretically or empirically derived tortuosity as
a function of porosity.

—— Maxwell 1881

——Rayleigh 1892

—— Weissberg 1963
% tau,, Kim etal. 1987 (La/Lb: 1, a/b: 3)
x tau, Kim et al. 1987 (La/Lb: 1, a/b: 3)

tau,_, Kim et al. 1987 (La/Lb: 1, a/b: 1)

O tau,, Kim et al. 1987 (La/Lb: 1, a/b: 1)
+ tau, Ryan etal. 1981 (La/Lb: 1, a/b: 1)

—— Mackie & Meares 1955

—=-Liu & Kitanidis 2013

——-Kim et al 1987, eqn 131 (isotropic)

—'="'Koponen et al 1996

° Koponen et al 1997
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Figure: Porosity vs tortuosity trends from literature: generally, 7 > 1, and
T—1las¢—1.
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Pore-Scale Modeling

In-line array

Staggered-array

Overlapping Squares

Tortuosity vs

Study Samples Considered Porosity Fit Tortuosity Type
* array of spheres (3D), dilute _ 19 electrical
Maswell, 1881 suspension, non-conducting T=1+ 2(1 ) conductivity
Rayleigh, 18927 array of cylinders (2D) T=2—¢ diffusion?
MacklleggfasMeares, diffusion of electrolytes in membrane T = (—2;¢ )2 diffusion
Weissberg, 1963 bed of uniform spheres (applicable to r=1— Lling diffusion
overlapping, non-uniform spheres) 2
Kim et al, 1987 isotropic system, 0 < ¢ < 0.5 r=¢ 04 diffusion
Koponen et al, 2D random overlapping mono-sized _ _ .
1996 squares, 0.5 < ¢ < 1 T=1+08(1-¢) hydraulic
- - — =5
Koponen et al, 2D random overlapping mono-sized T=14+a——5m, .
1997 squares, 0.4 < ¢ < 1 a=0.65, ,(f,:d)a?lg hydraulic
Matyka et al, 2D random overlapping mono-sized _ S .
2008 squares T—1x R¢ hydraulic
— — il
Duda et al, 2011 2D freely overlapping squares T 170(_(1/2 @) hydraulic
— T
Pisani, 2011 random, partial overlapping shapes T Ima(i=g) diffusion
a=shape factor
Liu & Kitanidis, isotropic grain (spherical), staggered T = ¢17m + 0.15, electrical
2013 0.25 < ¢ < 0.5 m=1.28 conductivity

* as referenced in Ochoa-Tapia et al 1994

** 35 referenced in Shen & Chen 2007, and Boudreau 1996
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However recent work states that any definition of tortuosity (i.e.,
hydraulic and diffusive) is not a function of porosity but rather a
function of the pore geometry only and is a tensorial property
(Valdes-Parada et al. 2011, Liu & Kitanidis 2013).
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Different forms of tortuosity

The tortuous nature of fluid The tortuous nature of a solute
flow through porous media: diffusing through porous media:
path traveled by fluid path traveled by diffusing solute
Th = T4 =

domain unit length domain unit length
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Different forms of tortuosity

The tortuous nature of fluid
flow through porous media:

path traveled by fluid
Th =

domain unit length

The Kozeny-Carman equation
uses hydraulic tortuosity:

¢* ¢*
T2 Bs?

The tortuous nature of a solute
diffusing through porous media:

_ path traveled by diffusing solute

T . -
d domain unit length

Effective diffusivity is the binary
diffusion scaled by diffusive tortuosity

D /
Der = — = D7y
Td
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Different forms of tortuosity

The tortuous nature of fluid
flow through porous media:

path traveled by fluid
Th =

domain unit length

The Kozeny-Carman equation
uses hydraulic tortuosity:

3 3
o O
cTp?S2 [3S2

Past Work on measuring 7, and/or fitting
simulated data to KC-eqn:

> overlapping squares (Koponen et al 1996/7,

Matyka et al 2008, Duda et al 2011)

> 3D body-centered-cubic unit cells
(Ebrahimi Khabbazi et al 2013)

The tortuous nature of a solute
diffusing through porous media:

path traveled by diffusing solute
Td = . .
domain unit length

Effective diffusivity is the binary
diffusion scaled by diffusive tortuosity

D

Td

Desf = — = D7,

Past Work on measuring 74 or Deg:
P in cellular geometry (Ochoa et al. 1987)
P in porous wick (Beyhaghi & Pillai 2011)

» in packed beds and unconsolidated porous media (Kim et al.
1987, Quintard 1993) 9/52
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Different forms of tortuosity

The tortuous nature of fluid The tortuous nature of a solute
flow through porous media: diffusing through porous media:
path traveled by fluid path traveled by diffusing solute
Th = Td =

domain unit length domain unit length

The Kozeny-Carman equation  Effective diffusivity is the binary

uses hydraulic tortuosity: diffusion scaled by diffusive tortuosity
3 3 D ,
- __ Dest = — = D7y
cT?S? 352 Td

Th # T4

10/52
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Work flow of this research

» represent porous media in domain, using simple geometries

» do pore-scale modeling:
» solve Stokes flow = obtain pressure and velocity fields =
compute permeability tensor and hydraulic tortuosity
» solve Closure Variable problem = obtain diffusive tortuosity
tensor

» compare the hydraulic and diffusive tortuosity results

» fit simulation results (permeability, hydraulic tortuosity) to
Kozeny-Carman equation

Conclusions

11 /52
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Solve Stokes flow — obtain velocities, permeability

Wang et al. 2013.
Pressure and flow fields in 0.05mm x

1. Solve Stokes flow in pore 0.05mm REV,

space of media = obtain p

and v.

pViv—Vp+pg=0 (2)
V.v=0 (3)

(a) Flux in X-direction (b) Flux in Y-direction
2. Assuming Darcy's equation
is valid (u = —%(VP+ rg)). and the resulting K in m? is
compute K from u = ¢(v)

. —12 —12
Vp = 0 in REV). ko k] _ [ 6.03x10 —1.15x10
(Ve ) kyx Ky —1.15x10712  2.86x10712 |-
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Solve Stokes flow — obtain velocities, hydraulic tortuosity

The hydraulic tortuosity can be computed from fluid velocity

fields™,
(W /v2+vd) (W /v2+v)

The = — 77~ > Th = (4)

(lvxl) (vl

In other words,

>V vlis )2 + vy (i) > Vvl )2 + vy (i, 5)?
Th, = s Th, =

) PN ’ 2w (7))l

* Koponen et al 1997, Duda et al 2011.
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Solve closure problem™ — obtain diffusive tortuosity

» diffusive transport at pore-scale:
dc

55 =V (DnVe) (5)

use theory of volume averaging to define (c)f
local spatial deviation ¢ = ¢ — (c)f
¢ is a linear function of (c), so is given by

¢=b-V(c)f (6)
b is a vector field that maps V{(c)f onto &
closed form of local volume average transport eqn.,
()’
ot

vwvyy

vy

¢ =V (¢Degr - V{c)") (7)

where

Deit := Dy, <| n i/ n- bdA> (8)
Vi As

» by convention, Der /Dy = 1/7

14 /52
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Solve closure problem™ — obtain diffusive tortuosity

. . solid
The closure problem™ is given by: -\ Dy
I
I
1 Ay
I

fluid

)
==7r =
/ ]
&3 '
¥ ]
Wy
+|

' lb(r 1,)

]

v2h = 0 (9) W
ng - Vb= —ng at Ag (10) : _________ :
b(r+1;) =b(r) =12 (11)

by =0 (12) Il

Figure: Closure Problem

The tortuosity (factor) tensor is

’ 1
7 =1+ — [ ng-bdA (13)
Vi Ja,

* Valdes-Parada et al. 2011, Beyhaghi & Pillai 2011, Quintard 1993, Kim et al. 1987, Ochoa et al. 1987.

15 /52
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Solve closure problem™ — obtain diffusive tortuosity

In 2D, the tensor components are
! !’
Tyx  Tyy

The Laplace equation Vb = 0 is used to solve the closure variable
b, where b = byi + byj. In 2D, these spatial derivatives are

(14)

1+ g fa, nxbxdA - [, nxbydA
v% Ja, nybxdA 1+ v% Ja, ybydA

o (90b o (0b
2bx ~ ox ( X) dy ( X) - 1o
v Ox \ Ox + Jdy \ Oy 0 (15)
o (0b o (90b
Vb, = — (=L ) + — —y) =0 16
4 8x<8x>+8y(8y (16)

In this work, we solve these PDEs using finite difference.

* Valdes-Parada et al. 2011, Beyhaghi & Pillai 2011, Quintard 1993, Kim et al. 1987, Ochoa et al. 1987.

16
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Example 1:
In-line array of uniform shapes

(a) $=10.32 (b) ¢ =054 (c) $=0.71 (d) ¢ =0.87 (e) ¢ =0.97
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In-line array of circles; ¢ = 0.71

Hydraulic tortuosity: Diffusive tortuosity:

(a) Flow in x-dir. (b) Flow in y-dir.

Figure: Magnitude of pressure gradients
(i.e., velocities) with hydraulic flow lines

Conclusions

18 /52
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In-line array of circles; ¢ = 0.71

Hydraulic tortuosity: Diffusive tortuosity:

(a) Flow in x-dir. (b) Flow in y-dir.

Figure: Magnitude of pressure gradients
(i.e., velocities) with hydraulic flow lines

T = (V2 + v2) /() = 1.02
mhy = (V2 £ v2)/ (1w l) = 1.02

19 /52
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In-line array of circles; ¢ = 0.71
Hydraulic tortuosity: Diffusive tortuosity:

(a) Flow in x-dir. (b) Flow in y-dir. (a) b« (b) by

Figure: Magnitude of pressure gradients Figu.re: Closurg variable fields used to
(i.e., velocities) with hydraulic flow lines obtain surface intergrals

T = (V2 + @)/ {lwl) = 1.02
mhy = (V2 +v2) () = 1.02

20 /52
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In-line array of circles; ¢ = 0.71
Hydraulic tortuosity: Diffusive tortuosity:

( ) 101 ﬁ :ow
(a) b« (b) by

Figure: Magnitude of pressure gradients Figu.re: Closurg variable fields used to
(i.e., velocities) with hydraulic flow lines obtain surface intergrals

(a) Flow in x-dir. (b) Flow in y-dir.

-1
Thx = <\/\§Tvy2>/<|vxl> =102 g = (1 + vi/ nXbXdA> =129
Afs

f

Thy = (V2 + 42) /(I ]) = 1.02 ; =
g v Tay = (Hv/ nybydA)
f Afs

=129

21 /52
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In-line array of circles; ¢ = 0.71
Hydraulic tortuosity: Diffusive tortuosity:

(a) Flow in x-dir.  (b) Flow in y-dir. (a) 4/ %CXX + 3 BCX %CXV +3 8Cy

Eigure: M?g_nitUd? of pressure gradignts Figure: Magnitude of concentration
(i.e., velocities) with hydraulic flow lines gradients with diffusive flow lines

ot

0005

Thx = 1.0185 Tax = 1.2866
Thy = 1.0185 T4, = 1.2866

22 /52
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In-line array of circles and squares; 0 < ¢ < 1

Tortuosity (Tau)

2
+ - -
X Simulated Hydraulic Tau, X Simulated Hydraulic Tau,
+ Simulated Ditfusive Tau, 19 + Simulated Diffusive Tau
e ot
nalytical Result (2D, cylinders) 18 —— Analytical Result (2D, cylinders)
17
216
=1
z
Z15
H
2
514
e
13
12
11
X X X X XXX XXX X XX 1
0.1 02 03 04 05 086 07 08 09 o

Porosity

(a) Circle

Porosity

(b) Square

Figure: Porosity vs. tortuosity: diffusive tortuosity trend follows
analytical solution from Rayleigh 1892 until inadequate mesh refinement,
while hydraulic tortuosity is independent of porosity for this geometry.
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Example 2:
Staggered-array of uniform shapes
® o ® o

®ef%e%e®
sz . E_ = =

(a) =036  (b) =064 (c) =084  (d) ¢ =093
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Staggered-array of squares; ¢ = 0.716

Hydraulic tortuosity: Diffusive tortuosity:

(a) Flow in x-dir. ~ (b) Flow in y-dir. (a) X-Prob (b) Y-Prob

Figure: Magnitude of concentration

Figure: Magnitude of pressure gradients ' SHIHUE Y X
gradients with diffusive flow lines

(i.e., velocities) with hydraulic flow lines

Thx = 1.37 Tdxx = 1.37
1.06 1.32

g
<
|

Thy

25 /52
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Staggered-array of squares; 0.35 < ¢ < 1

x_Simulated Hydraulic Tau_ (La/Lb: 1, /b: 1) x_Simulated Hydraulic Tau (La/Lb: 1, /b: 1)
x Simulated Diffusive Tau  (La/Lb: 1, /b 1) x Simulated Diffusive Tau  (La/Lb: 1, /b 1)
+ Ryan et al. 1981 FDM data (La/Lb: 1, a/b: 1) O Kim et al. 1987 BEM data (La/Lb: 1, a/b: 1)
O Kim et al. 1987 BEM data (La/Lb: 1, a/b: 1) 2
2r O
° « 18
18 o x x
16 x
F F o X F o ©°° %ox
£ 18 o c 14 %%
E a@x x ko)
2 o X
2 X Z ox
1 o X 8 12 [
S 14 Bx 2 S
£ ox 5 xxxxxxxxxxxx!ibx
S @X@ = 1
12
%*é;% 08
o
o o1 02 08 04 05 06 07 08 09 1 0 o1 02 08 04 05 06 07 08 09 1
Porosity Porosity
(a) T (b) 7y

Figure: Tortuosity vs. porosity trends for staggered-array of squares:
hydraulic flow is predominantly parallel to driving force, unless an
obstacle prevents a linear flow path.
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Example 3:
Randomly distributed,
freely overlapping squares

(a) =053 (b) =061 (c)p=070 (d) ¢=080 (e) ¢=0.90

Figure: Various pore-structure geometries. Notice isolated fluid sites are
filled in, causing larger, non-uniform shapes. Square length = 0.01 x
domain length (Koza et al 2000, Duda et al 2011).

N
~

]
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Overlapping Squares; ¢ = 0.7

Hydraulic tortuosity: Diffusive tortuosity:

2 2 oo 1
(a) apx + %pyx (b) Hydr. lines (a) %CXX + %c; (b) Diff. lines

Figure: Magnitude of pressure gradients Figure: Magnitude of concentration
(i.e., velocities) and hydraulic flow lines  gradients and diffusive flow lines for
for X-problem X-problem

1.3228 Tdx = 2.6596
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Overlapping Squares; 0.45 < ¢ < 1

Tortuosity (Tau)

R 5 Simulated Hydraulic Tau,.

,2‘\ —~o- Simulated Hydraulic Tau,
i — - Simulated Diffusive Tau,
AN o

G- Simulated Diffusive Tau,

Analy. Hydraulic Tau,

Koponen et al (1997)

Analy. Tau, Mackie & Meares (1955)
‘\‘ ——- Analy. Tau, Weissberg (1963)
:

o .
04 05 06 07 08 09

Porosity, phi

(a) Plot of full simulated data

Tortuosity (Tau)

s Simulated Hydraulic Tau,,
& Simulated Hycraule Tau
12| % - Simulated Diffusive Tau,

- Simulated Diffusive Tau,,

11 || —— Analy. Hydrauiic Tau,
. Koponen et al (1997).

Analy. Tau, Mackie & Meares (1955)
——- Analy. Tau, Welssberg (1963)

b 05 3 08 09

07
Porosity, phi

Conclusions

(b) Close-up plot of simulated data

Figure: Porosity vs tortuosity for pore-structures of overlapping squares:
diffusive tortuosity >> than hydraulic tortuosity at low porosities

29 /52
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Overlapping Squares: Anisotropy of 7, and 74

—se— Hydraulic Ta|uxxfTa|uW

%« 16 'E —+ - Diffusive Tauxx/T:quW
2 i
c 14 h ]
[ (RS
5 it
@ 12 1 + i
g soLted B
s 1 £
g + +=|' ¥
g os i 1 (a) ¢ = 0.4525 (b) ¢ = 0.7005
<
06 4
04 05 o 07 05 08 1 Figure: Pore-structures of lower
Porosity

porosity exhibit more isolated
Figure: Anisotropic ratio for hydraulic and fluid _site that are f'”ed_it' _th“§
diffusive tortuosity: the degree of anisotropy ~ créating non-uniform distribution
for hydraulic flow and diffusive flow ~ 1 for ~ ©f solids in overlapping squares
higher porosities, while the diffusive flow is conflguratlor?. This impacts
anisotropic at lower porosities. degree of anisotropy.
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Computing Kozeny constant for
Ex. 3: overlapping squares

Conclusions

31/52
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Overlapping Squares: Kozeny constant

—f- Simulated K., ) e Simulated Hydraulic Tau,
e - Simulated K, 8 17 -~ Simulated Hydraulic Tau,
o

3,

00

Z
=
< 5 2
w0 gs 3
Z 214 .
H
S 10° 2 g
E S13 £
& o
. 12 Kl
10 S
11 I
3
107 1
04 05 06 07 08 09 1 04 05 08 07 08 09 1
Porosity Porosity Porosity

(a) Permeability k (b) Hydraulic tortuosity 7 (c) Spec. surface S

Figure: Simulated data

The Kozeny constant ¢, or shape factor 3, can be computed by

¢? ¢?
k=52~ g (17)

where S = Vi (i.e., Viot is the fluid and solid space combined).
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Overlapping Squares: Kozeny constant

~
o

200

t ——fit for K data 1" —s—fitfor K and Tau  data
Y ! —+-fitfork,  datal| o 60 ] —-fitforK  and Tau  data
2150 | 12
= € 50
c =1
> s
E s 40
£ 100} 2
§ 530
e 4
=
=) 'S
8 sof °g’_2°
¥ =

10
04 05 06 07 08 09 1 04 05 08 0.7 08 09 1
Porosity Porosity
(a) Kozeny constant, ¢ (b) Shape factor, 8

Figure: Parameters that fit simulated data to Kozeny-Carman equation.
Kozeny constant and shape factor do not change within a porosity
interval of 0.65 < ¢ < 0.95.
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Conclusions

» Past work has proposed 7 = 7(¢), however recent work has
suggested this is not true, rather 7 = 7(pore geometry) only
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Conclusions

» Past work has proposed 7 = 7(¢), however recent work has
suggested this is not true, rather 7 = 7(pore geometry) only

» Hydraulic tortuosity can be computed from fluid velocity field,
while diffusive tortuosity can be computed from closure
variable problem

35 /52
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Conclusions

» Past work has proposed 7 = 7(¢), however recent work has
suggested this is not true, rather 7 = 7(pore geometry) only

» Hydraulic tortuosity can be computed from fluid velocity field,
while diffusive tortuosity can be computed from closure
variable problem

» Hydraulic tortuosity # diffusive tortuosity

36
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Conclusions

» Past work has proposed 7 = 7(¢), however recent work has
suggested this is not true, rather 7 = 7(pore geometry) only

» Hydraulic tortuosity can be computed from fluid velocity field,
while diffusive tortuosity can be computed from closure
variable problem

» Hydraulic tortuosity # diffusive tortuosity

» The diffusive tortuosity is able to capture the anisotropic
nature of pore geometry more readily that hydraulic tortuosity
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Conclusions

» Past work has proposed 7 = 7(¢), however recent work has
suggested this is not true, rather 7 = 7(pore geometry) only

» Hydraulic tortuosity can be computed from fluid velocity field,
while diffusive tortuosity can be computed from closure
variable problem

» Hydraulic tortuosity # diffusive tortuosity

» The diffusive tortuosity is able to capture the anisotropic
nature of pore geometry more readily that hydraulic tortuosity

» The Kozeny-Carman eqn. proposes a relationship between
permeability, porosity, specific surface area, and hydraulic
tortuosity
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Obtaining full permeability tensor

The compute the full permeability tensor, consider the pore
structure:

Figure: Pore structure example, ¢ = 0.82

We assume this pore structure is a representative elementary
volume (REV), which implies the properties measured from this
sample represents the properties of the porous media the sample
came from. The rest of the domain is made up of repeating
structures of this figure. As such, we use periodic boundary
conditions on all external sides.

Conclusions

41 /52
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Slow and steady flow is modeled through the pore space by Stokes
equation,

(9p 82v,-
0 L (18)

where the solution for pressure p and velocity v; are obtained for a
specified flow driving force, g;. The spatial average pore-space
velocity ¥; can be computed for each flow scenario.

(a) Driving force in X- (b) Driving force in Y-
direction: (gx,gy) = direction: (g, gy) =
(170) (0X7 O}’) = (77 ?) (07 1) (0X7 O,V) = (77 ?)

Figure: Pressure and velocity solutions after solving Stokes flow through 4 /s,
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Then, we use Darcy’s equation to describe flow at the macro-scale,
ki (OP

AN il - 19

uj . (ax,- +ng> (19)

where u; is the Darcy's velocity of the pore structure (u; = V;/¢),
and where kj; and OP/0x; are with respect to the whole structure
(i.e., the REV). In 2D, Darcy's equation is

-l ()

and since we assume periodic boundaries on all external sides of
the pore structure, the pressure gradients are

oP oP
~ = — =0 21
Ix RV =0, By |REV (21)

thus equation 20 becomes

Ux P | kux kxy:| |:gx:|
= —— 22
[Uy] H [kyx kyy] L&y (22)
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When (g, gy) = (1,0), equation 22 is

6] = L] @
and when (gx, g,) = (0,1), equation 22 is
o =l .

where p/p =1, and u; = V;/¢.
In our pore structure example, the resulting permeability tensor is

Ko —0.00045863
kyx

0.00099666
To conclude, the full permeability tensor can be computed by using
the spatial average pore-space velocity ¥; obtained by solving
Stokes flow for two different driving force scenarios.

0.0025612

kXy —
kyy] - [—0.00045862 (25)

Conclusions
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Solve closure problem™ — obtain diffusive tortuosity
» diffusive transport at pore-scale:

Jc

% _v.(p, 2

B V- (DnVec) (26)
» use theory of volume averaging to define (c)f
» local spatial deviation ¢ = ¢ — (c)f

» transport of local volume average, (c):

d)ag;ty ~Vv. (¢Dm (wc)f + % /A fs nc":dA)) (27)

» ¢ is a linear function of (c), so is given by

¢=b-V(c)f (28)

» b is a vector field that maps V(c) onto ¢

* Valdes-Parada et al. 2011, Beyhaghi & Pillai 2011, Quintard 1993, Kim et al. 1987, Ochoa et al. 1987.
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> take the surface integral of ¢ = b - V{c)f

» substitute it into the local volume average transport eqn. to
get its closed form,

f
2~ (6Der - V() (29)
where
1
Dei == D,y (I + v /Afs n- bdA> (30)

» by convention, Deg/Dp = 1/7, thus the tortuosity (or
tortuosity factor) is computed by

1 ’ 1
Lo ,+7/ n~bdA> 31
T < Vf Ags ( )
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In-line array of circles; ¢ = 0.71
Hydraulic tortuosity: Diffusive tortuosity:

. —
i K '1 i

(a) Flow in x-dir. (b) Flow in y-dir. (a) 9bx/0x 8by/8y

Figure: Closure variable gradients used

Figure: Magnitude of pressure gradients . i
to obtain volume integrals

(i.e., velocities) with hydraulic flow lines

1 b N\ "
T = (V2 +2) /() = 1.02 = (1+ 2 )
Thy = <\/\/3Tvy2>/<|vyl> =1.02 o (1+ 1 %de) -1
, =



Background Pore-Scale Modeling In-line array Staggered-array Overlapping Squares Conclusions

In-line array of circles; ¢ = 0.71

Hydraulic tortuosity: Diffusive tortuosity:
e 08 08
}‘ t‘ 04 04
_— 0 o
(a) Flow in x-dir. (b) Flow in y-dir. (@) cx=bc+xs (b)) ¢y =b,+ys
Figure: Magnitude of pressure gradients Figure: Concentration fields

(i.e., velocities) with hydraulic flow lines

T = (V2 + @)/ {lwl) = 1.02 T <Vf / &de)
Thy = (/2 +3) /(I )) = 1.02 =g [ 5 dv>
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Staggered-array of squares; ¢ = 0.716

ARUL N N

(a) bs (b) ce=botxs  (c) /22" + 9" with
diffusive flow lines

2N
I\

Figure: Diffusive tortuosity, Ty

S
4

- 06 \ 15
) E" l’m !

(a) b, (b)c,=b,+ys () ,/fj;; + 3@ with
diffusive flow Imes

Figure: Diffusive tortuosity, 7,,

49 /52



Background Pore-Scale Modeling In-line array Staggered-array Overlapping Squares Conclusions

Overlapping Squares; ¢ = 0.7
€ TR

0
:

(a) bx (b) ¢ = by + xs (c) e BCX (d) Diffu. lines

Figure: Scalar fields (closure variable by, concentration ¢ ), magnitude of
concentration gradients, and diffusive flow lines for X-problem

[Téx T } =1+— [ VbdV;= VedVs
Tyx 7-yy Ve % Vf Ve
, 1 1 [ b, 1 [ e

- 14— dVe = — | Z=qv,
T T T TV, ox Vi Jy, ox @7
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Overlapping Squares; ¢ = 0.7

€ N

.

(a) b« (b) cx = bx + xs

Figure: Scalar fields (closure variable by, concentration ¢, ), magnitude of
concentration gradients, and diffusive flow lines for X-problem

1+ Zabxavf %Z‘%yavf V_Zf’cxav Y50V
— isj isj

+ 6bxav 1+ & Za"yavf oV Y52V
j i i

iJ

Staggered-array Overlapping Squares Conclusions
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Overlapping Squares: Anisotropy of k and 74

22

I
——K K
—- Tzluxx/TzluW

08

Anisotropic Ratios, unitless

06

I
04 05 06 07 08 09 1
Porosity

Figure: Comparison between the degree of anisotropy of permeability and
hydraulic tortuosity: permeability is more anisotropic than hydraulic
tortuosity at lower porosities
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