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• The word dividend comes from the Latin word dividendum meaning the
thing which is to be divided and has got sense of portion of interest on a
loan, stock, etc.

• Dividends are usually defined as the distribution of earnings in real assets
among the shareholders of the firm (in proportion to their ownership).

• Dividends are paid from the firm’s after-tax income. For the recipient,
dividends are considered regular income and are therefore fully taxable.

• There are two sides of dividends policies in the modern corporate firms.
The first are managers of the firm (insiders), the second are shareholders
(outsiders). The interest of management and shareholders may not coin-
cide. This has important consequences for dividend policy. There is a sug-
gestion that former typically prefer a low payout in order to pursue growth
maximizing strategies or consume additional benefits, while letters gen-
erally wish for a high payout since this will force the management to incur
the inspection of the capital markets for each new project undertaken.

• We focus in this talk on the maximizing the cumulant dividend payments
(we look at it only from the point of view of beneficiaries).

Economic point of view
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The reserve of an insurance company can be described by a Cramér-Lundberg
process (Filip Lundberg (1903) and Harald Cramér (1933)):

Xt = x + ct−
Nt∑
k=1

Ck

where
Ck - sequence of independent, identically distributed random

variables with distribution function F

Nt - independent Poisson process with intensity λ

c - the premium income per unit time

Cramér-Lundberg model
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Xt - spectrally negative Lévy process, which is not subordinator, that is
Xt - process with stationary and independent increments having

only negative jumps

ProcessXt models the risk-process of an insurance company before dividends
are deducted.
Lévy-Khitchine formula:

EeiθXt = e−Ψ(θ)t,

where

Ψ(θ) = −icθ+
σ2

2
θ2+

∫
(−∞,−1)

(
1− eiθx

)
Π(dx)+

∫
(−1,0)

(
1− eiθx + iθx

)
Π(dx)

(1)

where we assume that
∫

(−∞,0)(1 ∧ x2) Π(dx) <∞

Spectrally negative Lévy process
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We assume thatXt →∞ a.s. that is c−
∫

(−∞,−1) |x|Π(dx) > 0.

"That is why de Finetti (1957) proposed another, economically motivated, cri-
terion to the actuarial world. Instead of focussing on the safety aspect (mea-
sured by the probability of ruin) he proposed to measure the performance of
an insurance portfolio by the maximal dividend payout that can be achieved
over the lifetime of the portfolio. In particular, he proposed to look for the ex-
pected discounted sum of dividend payments until the time of ruin, where the
discounting is with respect to some constant discount rate q > 0. Whereas de
Finetti himself solved the problem to identify the optimal such dividend strat-
egy in a very simple discrete random walk model, since then many research
groups have tried to address this optimality question under more general and
more realistic model assumptions and until nowadays this turns out to be a
rich and challenging field of research that needs the combination of tools from
analysis, probability and stochastic control."
(Albrecher and Thonhauser 2009)

De Finetti problem
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Xt - spectrally negative Lévy process

π - a dividend strategy consisting of a non-decreasing, left-continuous F-
adapted process π = {Lπt , t ≥ 0} with Lπ0 = 0, where Lπt represents the
cumulative dividends paid out by the company up till time t
The risk process controlled by a dividend policy π is then given by

Uπ
t = Xt − Lπt

Ruin time:
σπ = inf{t ≥ 0 : Uπ

t < 0}
Discounted value of paid dividend:

Iπq =

∫ σπ

0
e−qtdLπt

v∗(x) = supπ Ex

[
Iπq
]

- the value function

De Finetti problem
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’If the barrier is too high, then we will wait too long for the risk process to
hit the barrier and if we put the barrier too low then we derive the ruin too
quickly.’ We can then expect the existence of the ’optimal barrier’.

Barrier strategy πa
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For the barrier strategy with the barrier a:

Lt = a ∨X t − a, whereX t = sups≤tXs

and

σa = inf{t > 0 : Yt > a},
where

Yt = (a ∨X t)−Xt

Distributional identity
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Controlled ruin proces once again
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Discounted local time
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Laplace exponent: ψ(θ):

E[eθXt] = etψ(θ)

Φ(q) - greatest root of equation ψ(θ) = q

First scaling function: W (q) : [0,∞)→ [0,∞):

∫ ∞

0
e−θxW (q)(y)dy = (ψ(θ)− q)−1, θ > Φ(q)

W (q) is differentiable (not necessary continuously) andW (x) = W (0)(x)
Second scaling function:

Z(q)(y) = 1 + q

∫ y

0
W (q)(z) dz

Scale functions
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For the barrier strategy the upper index π will be skipped.
Under this strategy the value function

va(x) = ExIq =

{
W (q)(x)
W (q)′(a) 0 ≤ x ≤ a

x− a + W (q)(a)
W (q)′(a) x > a

Hence optimal barrier is:

a∗ = inf{c > 0 : W (q)′(c) ≤ W (q)′(x) for all x}
where inf ∅ =∞

IfW (q) ∈ C2(0,∞), then
W (q)′′(a∗) = 0

The choice of the optimal barrier
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Hamilton-Jacobi-Bellman’s (HJB) system of equations:

max{Γf (x)− qf (x), 1− f ′(x)} = 0, x > 0,

where Γ denotes the extended generator ofX

Theorem 1. (Avram, Palmowski and Pistorius AAP 17 2007) Assume that
σ > 0 or that X has bounded variation or, otherwise, suppose that va∗ ∈
C2(0,∞). In classical dividend setting a∗ <∞ and the following hold true:

(i) πa∗ is the optimal strategy in the set Π≤a∗ of all bounded by a
strategies and va∗ = supπ∈Π≤a vπ.

(ii) If (Γva∗ − qva∗)(x) ≤ 0 for x > a∗, the value function and optimal strategy
are given by v∗ = va∗ and π∗ = πa∗, respectively.

Optimality of the barrier strategy
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Xt = σBt + µt

W (q)(x) =
1

σ2δ
[e(−ω+δ)x − e−(ω+δ)x]

Z(q)(y) = y +
2q

σ2
+

q

σ2δ

[
1

ω + δ
e−(ω+δ)y − 1

δ − ωe(−ω+δ)y

]
where

δ = σ−2
√
µ2 + 2qσ2

and

ω = µ/σ2

Hence:

a∗ = log

∣∣∣∣δ + ω

δ − ω

∣∣∣∣1/δ
Jeanblanc and Shiryaev 1995, Gerber and Shiu 2004

Brownian motion with drift
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(Γva∗ − qva∗)(x) ≤ 0 for x > a∗

where

Γf (x) =
σ2

2
f ′′(x) + cf ′(x)

+

∫ 0

−∞

[
f (x + y)− f (x)− f ′(x)y1{|y|<1}

]
Π(dy)

for f ∈ C2(0,∞) and

Π is a Lévy measure of processX

σ2 is a Gaussian coefficient

Exception or rule ?
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Cramér-Lundberg model with Gamma distributed claims:

F (dx) = xe−xdx,

the discount rate q = 0.1, the intensity λ = 10 of arrival Poisson processNt,
the premium rate c = 2(1 + 0.07)λ.

Then

v∗(x) =


x+ 2.119 x ∈ [0, 1.803)

0.0944e−1.4882x − 9.431e−0.07953x + 11.257e−0.03957x x ∈ [1.803, 10.22)

x+ 2.456 x ≥ 10.22

Azcue and Muler 2005
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π = {(Jk, Tk), k ≥ 0}
where 0 ≤ T1 ≤ T2 ≤ ... is an increasing sequence of F-stopping times

representing the times at which a dividend payment is made and Ji be a se-
quence of positive FTi-measurable random variables representing the sizes
of the dividend payments

K - a fixed cost

The controlled risk process

U
π

t = Xt − Lπt −KNπ
t ,

where

Nπ
t = #{k : Tk ≤ t} Lπt =

Nπ
t∑

k=1

Jk

Impulse control
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The value function:

vπ(x) = Ex

[∫ σπ

0
e−qtdLπt −K

∫ σπ

0
e−qtdNπ

t

]
A band strategy with a− < a+:
1. Reducing the risk process U to level a− if x > a+

2. Each time when U hits the upper level a+ make a payment of size a+ − a−
a∗(d) = inf{a ≥ 0 : W (q)(a+ d)−W (q)(a) ≤ W (q)(x+ d)−W (q)(x) ∀x ≥ 0}.
d∗ = inf{d ≥ 0 : W (q)(a∗(d) + d)−W (q)(a∗(d))− (d−K)W (q)′(a∗(d) + d) = 0}

Optimal levels:

a∗− = a∗(d∗) a∗+ = a∗(d∗) + d∗

Band strategies
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vπ(x) = Bπ(x) + Hπ
w(x),

where

Bπ(x) = Ex

[∫ σπ

0
e−qtdLπt

]
andHπ

w denotes the Gerber-Shiu penalty function

Hπ
w(x) = Ex

[
e−qσ

π

w(Uσπ)
]

associated to a penalty w : R → R− ∪ {0} (w(x) = 0 for x ≥ 0). Further-
more, we assume w is an increasing function on R−, left-differentiable at 0.
We want to find

v∗(x) = sup
π

vπ(x)

Penalty function
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Definition 1. According to the band strategy πb,a a lump-sum paymentU b,a
t −ai

is made ifU b,a
t is in (ai, bi), while no dividends are paid whileU b,a

t is in [bi−1, ai)
and the “overflow” of U b,a

t over ai are paid out as dividends.
Theorem 2. (Avram, Palmowski and Pistorius 2009) For i ≥ 1, it holds that

vb,a(x) =


vb,a(bi−1−) + W (q)(x−bi−1)

W (q)′(ai−bi−1) [1−Di−1(ai − bi−1)]

+Di−1(x− bi−1) if x ∈ [bi−1, ai)

vb,a(ai−) + x− ai if x ∈ [ai, bi),

where vb,a(x) = w(x) for x < 0 andDi(y) = Hi(y) + Fi(y) (i ≥ 1) with

Hi(y) = Z(q)(y)− [ψ′(0)− qvb,a(bi−)]W (q)(y),

Fi(y) = −
∫ y

0
W (q)′(y − z)Ki(z)dz −W (q)(0)Ki(y),

Ki(y) =

∫ ∞
y

(
vb,a(bi + y − z)− [vb,a(bi−) + y − z]

)
ν(dz),

and K0(y) =
∫ ∞
y

(w(y − z)− w(0−)− w′(0)(y − z)) ν(dz), H0(y) =

w′(0−)Z(q)(y)− [w′(0−)ψ′(0)− w(0−)q]W (q)(y), Π(−∞,−x) = ν(x,∞).

Band strategies
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Level ai is determined by the smooth fit condition of singular control:

0 = lim
x↓ai

v′′a,b(x) = lim
x↑ai

v′′a,b(x), (2)

and similarly the level bi > 0 is determined by the smooth fit condition

1 = lim
x↑bi

v′a,b(x) = lim
x↓bi

v′a,b(x), (3)

if X has unbounded variation (or, equivalently, if X when starting at 0 im-
mediately enters the positive half-axis almost surely), and determined by the
continuous fit condition

va,b(bi−) = lim
x↑bi

va,b(x) = lim
x↓bi

va,b(x) (4)

ifX has bounded variation (or, equivalently, if it takes a strictly positive time
forX to enter the positive half-axis almost surely).

Band strategies
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A numerical example for Cramér-Lundberg model
Taking w(x) = 0.2x (penalty function), λ = 10 (intensity of claims arrivals),
µ = 1, c = 21.4 (premium rate), q = 0.1 (discounting rate) the optimal strat-
egy is a 2-band strategy:

v∗(x) =


0.2x for x < 0
x + 1.72277 for 0 ≤ x ≤ 1.211
11.1287e0.039567x − 9.6499e−0.079355x

+0.149139e−1.48825x for 1.211 < x ≤ 10.5051
x + 2.16631 for x > 10.5051

Erlang (2, µ) claims
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Process U solves equation:

Ut = Xt − δ
∫ t

0
1{Us>a} ds

Discounted cumulant dividends (Kyprianou and Loeffen 2010 and Gerber and
Shiu 2006):

Ex

∫ σa

0
e−qt1{Us>a} ds = −

∫ 0∧(x−a)

0
W(q)(z) dz

+
W (q)(x) + δ1{x>a}

∫ a
x
W(q)(x− y)W (q),′(y) dy

φ(q)
∫ ∞

0 e−φ(q)yW (q),′(y + a) dy

where
φ(q) = sup{ψ(θ)− δθ = q}

and W(q) and Z(q) are the scale function associated with processXt − δt.

Refraction
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U γ
t = Xt −

∫ t

0
γ(Xs) dXs

The process U γ models the surplus process of an insurance company that
pays out taxes according to a loss-carried-forward tax scheme, using a
surplus-dependent rate γ(·). In other words, tax are collected when the com-
pany has recovered from its previous losses, i.e., is in a so-called profitable
situation. Finally, note that when γ(·) = γ ∈ [0, 1], this model amounts to the
situation studied in Albrecher et al. 2008 where the tax rate is constant, and
when γ = 1, we retrieve the model where the company pays out as dividends
any capital above its initial value U γ = x as in a risk model with a horizontal
barrier strategy at level u (see e.g. Renaud and Zhou 2007).

Ex

∫ σa

0
e−qtγ(Xs) dXs =

∫ ∞

x

exp

{
−
∫ t

x

W (q),′(γ(s)) ds

W (q)(γ(s)) ds

}
γ(t) dt

where γ(y) = y −
∫ y
x
γ(s) ds.

Taxes
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Consider now a particular two-dimensional risk model in which two compa-
nies split the amount they pay out of each claim in fixed proportions (for sim-
plicity we assume that they are equal), and receive premiums at rates c1 and
c2, respectively (so-called proportional reinsurance). That is,

X t = (X1(t), X2(t)) =

(
u1 + c1t− β1

Nt∑
i=1

Ci, u2 + c2t− β2

Nt∑
i=1

Ci

)
.

Without los of generality we will assume that β1 = β2 = 1 and c1 > c2.

Two-dimensional risk process
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Controlled risk process:

U t = (U1(t), U2(t)) = X t − Lt
where

L(t) =

(
δ1

∫ t

0
1{Y (t)∈B}, δ2

∫ t

0
1{Y (t)∈B}

)
describes the two-dimensional linear drift at rate δ = (δ1, δ2) > (0, 0) which

is subtracted from the increments of the risk process whenever it enter the
fixed set:

B = {(x, y) : x, y ≥ 0 and y ≥ b− ax}, a, b > 0.

The case δ = c − a for c = (c1, c2) and a = (−1, a) corresponds to the
reflecting the risk process at the line y = b− ax. Let

vn(u1, u2) = vn(u) = Eu

[
(1, 1) ·

∫ σ

0
e−qt dL(t)

]n
where σ = inf{t ≥ 0 : U1(t)U2(t) < 0}.

Two-dimensional risk process
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Theorem 3. (Czarna and Palmowski 2009)

c · ∂vn
∂u

(u)− (λ + nq)vn(u) + λ

∫ min(u1,u2)

0
vn(u− (1, 1)v) dF (v) = 0

with the boundary conditions:

nδ0 Vn−1(u) = δ · ∂vn
∂u

∣∣∣∣
u∈B

, u ∈ B

lim
b→∞

vn(u) = 0, u ∈ Bc

vn(0, b) = 0.

Two-dimensional risk process
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Assume that we have Exp(µ) claims with µ = 2 and that c1 = 4, c2 = 3,
λ = 1, q = 0.1.
Note that always there exists optimal choice of linear barrier (choice of its
upper left end (0, b) and it slope a). This choice depends on the initial reserves
(u1, u2). For (u1, u2) = (1, 2) the optimal barrier is determined by b = 14 and
a = 0.1 and for (u1, u2) = (2, 3) the optimal barrier is determined by b = 15
and a = 0.1. This is contrast to the one-dimensional case where the choice
of the barrier is given only via the premium rate and the distribution of the
arriving claims.

b
a 6 8 14 15 20 28

0.1 19.85 27.20 34.95 34.93 32.48 25.89
0.2 16.33 24.31 33.82 34.19 33.32 28.03
0.5 11.76 17.74 28.98 30.01 32.54 31.21
1 7.22 11.40 21.35 22.59 27.17 30.07

Expected value of dividend payments depending on a and b for fixed
(u1, u2) = (1, 2).

Numerical analysis
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