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Disclaimer

The opinions expressed in this talk are those of the speaker and do
not necessarily reflect the views of UniCredit Group.

Presented risk control and measurement concepts are not
necessarily used by UniCredit Group or any affiliates.
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Klaus Böcker, April 9, 2010



Outline

1 Model Uncertainty

2 The Dahlem Report

3 The Aim And Object of Modeling

4 Example: The Basel II Model for Operational Risk

5 The Behavioral Component

6 Statistical Inference

7 The Bayesian Approach

5
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“How fast can we go?”

“Not faster than 68.483 km/h ?”

“Not faster than roughly about 50-60 km/h ?”

How accurate is risk measurement?
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How accurate is risk measurement?

Example:

Pillar 3 report for EC (illustrative)

The suggested absolute uncertainty of total EC is ±1EUR.

This corresponds to a relative uncertainty of 0.0056 %.
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How accurate is risk measurement? (cont’d)

Questions:

What is the total total aggregated EC?

What is the price of an ABS CDO?

What is operational risk at a confidence level of 99.9%?

What is the bank’s loss given ∆GDP = −1%?
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Models

Claudia Schiffer

“A model is a model;
the reality is sometimes less perfect.”
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Modelers

John M. Keynes

“It is better to be roughly right than precisely wrong.”
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Model uncertainty

Positive examples . . .
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Klaus Böcker, April 9, 2010



Model uncertainty: climatology
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Model uncertainty: particle physics

Properties of the electron as reported by the Particle Data Group:
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Model uncertainty: Economy

Inflation Report, Bank of England (August 2009)
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Model uncertainty

Negative examples . . .
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Model uncertainty: Risk measurement
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Model uncertainty: Consequences

Some situations require a careful and cautious assessment of a
situation. This means:

Do not blindly rely on formalized mathematical models often
based on strong and unrealistic assumptions.

Account for model uncertainty by applying more than a single
model.

Account for parameter uncertainty within a given model.
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The Dahlem Report
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The Dahlem Report (cont’d)

Researchers, quants, economists “have an ethical responsibility to
communicate the limitations of their models and the potential
misuses of their research.” [Colander et al. (2008)]
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Why we have used models

Models have been used for creating numbers and numbers and
numbers . . .

Risk controlling

Risk measurement

Capital ratios

Risk appetite
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Why we have used models (cont’d)

Models have been used to construct financial products (Financial
Engineering) for

hedging risk,

pricing risk,

and for

increasing leverage

Ever more complex products have been developed with the main
intension to place refined bets on the market, thereby significantly
increasing systematic risk.
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Why we also should use models

Models are essential for gaining a deeper understanding of a subject
matter.

Models provide insight into underlying relationships of a
system.

Models are ”intelligence amplifiers”.

Models can lead to conclusions that sheer intuition cannot
perceive.

Provided they are used the right way, models are still a sine qua
non for successful risk management.
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The loss distribution approach

Definition (Operational risk)

The risk of losses resulting from inadequate or failed processes,
people and systems, or external events.

Definition (Standard LDA model)

The loss severities (Xk)k∈N are positive iid random variables
with distribution function F describing the magnitude of each
loss event.

The number N(t) of loss events in the time interval [0, t] for
t ≥ 0 is random and is described by the frequency process
(N(t))t≥0.

The severity process and the frequency process are assumed to
be independent.

The aggregate loss process is given by S(t) =
∑N(t)

k=1 Xk .
38
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Operational Value-at-Risk

Let Gt(x) = P(S(t) ≤ x) be the aggregate loss distribution
function at time t ≥ 0.

Definition (Operational Value-at-Risk)

Operational VAR (OpVAR) up to time t at confidence level κ is
defined as

VARt(κ) = G←t (κ) , κ ∈ (0, 1) ,

with G←t (κ) = inf{x ∈ R : Gt(x) ≥ κ}, 0 < κ < 1.

Typically: κ = 0.999, 0.9995, 0.9998.

Questions:

Time scaling of OpVAR?

Interpretation of OpVAR?

Accuracy???
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Simulating operational risk
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Heavy tails and subexponential distributions

Operational lossesnare heavyly tailed.
What does this mean mathematically?

Definition (Subexponential distributions)

Let (Xk)k∈N be iid random variables with distribution function F .
Then F is said to be a subexponential distribution (F ∈ S) if

lim
x→∞

P(X1 + · · ·+ Xn > x)

P(max(X1, . . . ,Xn) > x)
= 1 for some (all) n ≥ 2.

This means:

As far as you are concerned with OpVAR at a high confidence level,
forget about the small losses because only the severe losses matter
(single loss approximation).
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Approximating univariate OpVAR

In a Standard LDA model with fixed t > 0 (e.g. t = 1 year) and
subexponential distribution severity F , we have that (Böcker and
Klüppelberg (2005))

VARt(κ) = G←t (κ) = F←
(

1− 1− κ
EN(t)

(1 + o(1))

)
, κ ↑ 1 ,

where EN(t) is the expected number of losses in [0, t].

Example:

Now assume that EN(t) = 100 and κ = 0.9997. Then,

VARt(0.9997) ≈ F←(0.999997)

corresponding to a 1 in 333,333 years event!

43
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Risk compensation

Definition (Risk compensation)

Individuals have an innate propensity to take risks.

people endeavor to keep this level constant and, therefore,
permanently balance their behavior in response to the
perceived risk.

Example: anti-lock brakes on automobiles, car safety belts, cycle
helmets for children and sky diving.

The feeling of greater security tempts people to be more
reckless.

Pseudo accuracy (caused by neglecting uncertainty) leads to
the wrong subjective risk perception and may create a
dangerous overconfidence in the decision maker.
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Overconfidence

Definition (Overconfidence)

Overestimation of ones actual performance.

Overplacement of ones performance relative to others.

Excessive precision in ones beliefs.

Example: (Ben-David, I. et al. 2007)

Realized market returns are within the executives’ 80 %
confidence intervals only 38 % of the time.

Companies with overconfident CFOs
I use lower discount rates to value cash flows,
I use more debt,
I are less likely to pay dividends and more likely to repurchase

shares,
I use proportionally more long-term (as opposed to short-term)

debt.
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Statistical inference

Aim:

“The business of statistics is to provide information or
conclusion about uncertain quantities and to convey the extent
of uncertainty in the answer”[Berger (1980)].

Obtain statistical results in a way so that they can be easily
utilized also by non-statisticians for decision making.
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Parametric statistical modeling

A statistical investigation is performed to obtain information
about a certain state of nature θ (e.g. state of the economy,
credit risk portfolio).

The nature is approximated by a model and θ is a parameter
(e.g. GDP, CPI, PD, LGD, volatility).

A vector x = (x1, . . . , xn) of observations is collected. The
probability distribution of X depends on the sate of nature and
thus on the model and θ.

f (x |θ) is the joint density of the data X given a value of θ.

Often, functions ∆(θ) of the parameters θ are of interest
(e.g. VaR, ES)
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The key questions

What is f ?

What is θ?
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“The story that I have to tell is marked all the way
through by a persistent tension between those who assert
that the best decisions are based on quantification and
numbers, determined by the patterns of the past, and
those who base their decisions on more subjective degrees
of belief about the uncertain future. This is a controversy
that has never been resolved.”

From the introduction to Against the Gods:
The remarkable story of risk, by Peter l. Bernstein
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Patterns of the past: an example

58
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Patterns of the past: an example (cont’d)
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Patterns of the past: an example (cont’d)
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Patterns of the past: an example (cont’d)

(lots of output regarding the share price of Volkswagen AG...)
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Patterns of the past: an example (cont’d)
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Patterns of the past: an example (cont’d)

(lots of output regarding the share price of Volkswagen AG...)
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Different uncertainties

Aleatory Uncertainty

Caused by randomness

Based on historical data

Quantified by statistical data analysis

Epistemic uncertainty

Due to imperfect knowledge

Typically associated with one-off, unrepeatable things

Assessed by expert judgement
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Expert judgement and subjective opinions

Principles for sound stress testing practices and supervision
(BIS Consultative Document, March 2009)

“The management of most banks did not ... sufficiently take
account of qualitative expert judgment to develop innovative
ad-hoc stress scenarios.”

“The compilation of forward-looking scenarios requires
combining the knowledge and judgment of experts across the
organization.”

“The financial crisis has shown that estimating ex ante the
probabilities of stress events is problematic. ... In this respect,
the crisis has underscored the importance of giving appropriate
weight to expert judgment in defining relevant scenarios with a
forward looking perspective.”
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Frequency probability

The frequency probability of an event is the relative proportion of
its occurrence in a long, ideally infinte, series of independent
repetitions.

Example (coin-tossing game)

Consider the relative number of “heads” in a (obviously repeatable)
coin-tossing game. The strong law of large numbers ensures that
the sample average of the independent tosses converges in
probability towards the expected value, i.e. for the coin-tossing
game we have that

P( lim
n→∞

Hn

n
=

1

2
) = 1 ,

where Hn denotes the number of “heads” in a series of n trials.
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Frequency probability (cont’d)

The main attraction of frequency probability is that it is impersonal
and only relates to events of the objective world.

There are, however, several difficulties with the frequency
interpretation of probability.

Problems:

it is circular because independence is defined in terms of
probability,

it gives probabilities only to long or infinite series of trials, not
to nonrepeatable events,

it is counterintuitive and contrasts the notion probability
people are using in everyday reasoning.
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Frequency probability (cont’d)

Examples:

What is the probability of an earthquake in California with
magnitude m ≥ 7 in the next 20 years?

What is the probability of a severe global H1N1 pandemic?

What is the probability of a lasting rise in interest rates?
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Subjective probability

The theory of subjective probability (personal probability) has been
developed to overcome the shortcomings of the frequency
interpretation of probability. Early advocate have been Bruno de
Finetti, Frank Ramsey, Leonard Savage, and Dennis Lindley.

Definition (Subjective probability)

The probability of an event is a measure of the degree of belief that
this event will occur.
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Subjectivity in science

I.J. Good (1916 - 2009)

“The subjectivist states his judgements, whereas the
objectivist sweeps them under the carpet by calling
assumptions knowledge, and he basks in the glorious
objectivity of science.”
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Subjectivity in science (cont’d)

Accept the subjective bias of knowledge and science.

Subjectivity is an inherent and required part of the scientific
method and statistical inference.

Informed scientific judgement should not be shunned as a
nonobjective and therefore a poor methodological approach.

Only very few statistical investigations are approximately
“objective”. Usually, choices of such features as the model will
have a serious bearing on the results and the conclusion.
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The Bayesian approach

Thomas Bayes

Bayesian statistics appears as the calculus of uncertainty.

In Bayesian statistics parameters θ are random variables.

Bayesian techniques allow for prior beliefs about θ.
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The Bayesian approach (cont’d)

Bayesian inference means updating the prior belief on θ after having
observed the current data x ,

π(θ|x) =
f (x |θ)π(θ)∫
f (x |θ)π(θ) dθ

,

where f (x |θ) is the conditional probability distribution of data x .

Remarks:

The prior belief is contained in the prior distribution π(θ).

The prior distribution also models the uncertainty on the
model parameters θ.

The posterior distribution π(θ|x) reflects the updated beliefs
about θ after observing x .
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Bayesian inference–credible intervals

The posterior distribution contains all available information (prior
and data!) about θ and is the basis of inference concerning θ and
functions of it.

Since, in contrast to frequency statistics, the Bayesian approach
provides a probability distribution π(θ|x) for the uncertain
parameter, a natural confidence region appears.

Definition (Credible interval) For a given α ∈ (0, 1) we can find
an interval (a, b) such that

1− α = P(a < θ < b|x) =

∫ b

a
π(θ|x) dθ .

The interval (a, b) is called credible interval.
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Bayesian inference–predictive distribution

Suppose you have a model f (x |θ) with posterior π(θ|x) and you
want to predict a random variable Y ∼ g(y |θ, x), i.e. based on the
observation of X ∼ f (x |θ).

Then, the predictive distribution of y is given by

g(y |x) =

∫
g(y |θ, x)π(θ|x) dθ .

Remarks:

Note that g(y |x) is independent of θ and just depends on the
x (e.g. past realizations of the random variable X ).

The result provides an entire distribution for Y rather than a
simple point estimate. Hence, parameter uncertainty can
properly taken into account, for instance by reporting credible
intervals.
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