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Solvency Il and the SCR

Definition (Solvency Capital Requirement)

"The SCR is the capital required to ensure that the (re)insurance company will
be able to meet its obligations over the next 12 months with a probability of at
least 99.5%." (Wikipedia)

Extrapolation of the magnitude of an event that occurs once per 200 years, i.e.
that is not observed!



Motivation: insurance companies as Hedge Fund investors

Standard formula for " other equities” J

The capital requirement is 48% of the investment whatever is the HF strategy.

Expected Reums Expecied Rems > 0]

Annualized returns Lyxor indices



SCR as a VaR of the log ratios

Definition
Log ratios r; = log(P;+1/P:) where (P;) are weakly prices of HF indices. J

As log(x) ~ x — 1 and log(xy) = log(x) + log(y), we have

P(M < —SCR) —0.005 <~> P(Iog (P%) < —SCR) — 0.005

Pr T
T+52
<x> P( ) < -SCR) = 0.005.
t=T
Definition

The Value at Risk (VaR, quantile) at the confidence level « of the r.v. X is

VaR, = inf{x; P(X < x) > a}

SCR ~ —VaRy o05 with X = 3%,



The need for Quantitative Risk Management

Hedge Fund Strategies Indices

CTALong Tern

Convertle Bonds Aiage: LS CreditAirage:

3 different strategies, same SCRs under standard formula

Solvency Il: a challenge for the mathematician

Use a standard formula or find a more realistic calculation of the SCR
(quantiles, VaR) using an internal model.
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Modern portfolio theory

Definition (Standard gaussian distribution)
A r.v. X is standard gaussian N(0,1) if

fx(x) = exp(—x2/2), x € R.

1
V2

Properties
Q@ Y =p+o0Xthen Y ~ N(p,0?) with 4 = E[Y] and
0 = Var(Y) = E[(Y — p)?],
@ If X; ~ N(0,1) iid and X = (Xi,..., Xy)' then Y = A+ X ~ Ny(A, £2)
with £2 = ¥3'.

quorm(0.005) [1] -2.575829 = SCR ~ —2.6 x var(}) 2% r,).



Modern portfolio theory

ExeedRetsEgee eams >

Mean-VaR Portfolio Optlmlzatlon MarkOW|tz (1952)

Remark

Work for other elliptical distribution where SCR ~ —3 x var(}_,_7 T2y 8
being the risk aversion coefficient, see McNeil et al. (2006).




Advantages

@ Easy calculations: VaR reduces to Var,

@ Any point of the convex hull corresponds to a feasible strategy: stability of
the gaussian law.



Gaussian modeling works on average

Convertible.Bonds.Arbitrage

Density

T T
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N =560 Bandwidth = 0.085

Dark: marginal density of the log-ratio of an index
Red: Gaussian model
Blue: Gaussian model excluding the 40 worst days
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Exceedances
"Let the tails speak by themselves”! (Embrechts et al., 1997)

m | al o

Ww II !lﬂ

X \!

Convertible.Bonds. Arbitrage

Date

Definition (Exceedance)

For a threshold u, exceedance E is the excess of the r.v. X above u:

E,=X—-u conditionally to X > u.




Feasible calculations when v — oo

The threshold v is large and varies. Let U be a monotone function on (0, o)
(for instance U(u) = E[|E,|]).

Lemma (Feller, 1971)

It exists a function V such that for any x > 0

l{j((x:)) — VY(x) u— 00
iff¥(x) =x*, p R,
iff U(u) = u”L(u) for some slowly varying function L satisfying
L
(xu) — 1, u — 00.
L(u)

U(x; U(xyu) U
Proof: for any x,y > 0 then L(/(Z;') = U((yylj’)) U((yi)) and then W(xy) = W(x)W(y).



Regularly varying functions

Definition (Karamata, 1930)
The function U on (0, 00) is regularly varying with index p iff U(u) = u”L(u).

v

Theorem (Karamata, 1930, Feller, 1971)
If U € RV, and if Uy(x) = [° uPU(u)du exists then

xPTLU(x)
Up(x)
Conversely, if A >0, then U € RV, withy=—-A—p—1and U, € RV_j.

—-A=—(p+v+1)=0.

Remark

The regularly varying functions U and U, have slowly varying functions that are
equivalent up to a constant at +oo.

v




@ Motivations: Empirical Risk Management
e The Markowitz approach

© Regularly varying functions

@ Regularly varying random variables

© Regularly varying random vectors

© Regularly varying processes

«O>r «Fr <

it
it
it
N)
re
?



Regularly varying nonnegative r.v.

Definition (Feller, 1971)
The r.v. X > 0 is regularly varying of index o > 0, X € RV,, iff

1-P(X <u)=P(X >u)=u"*L(u), u>0.

Definition (Pareto distribution)
The r.v. X follows a Pareto distribution (a, ) if

P(X > x) = (%)a X > A




Maxima of random regularly varying variables

Let X; iid and M, = max{X;; 1 < i < n}.

Theorem (Fisher, 1927)

There exists a non-decreasing sequence (a,) such that M, /a, converges to a non
degenerate limit iff X;s are regularly varying of index a > 0. For some ¢ > 0,

P(M, < xa,) — exp(—cx™ ), n — oo.

Proof: Denote F and G the X;'s and asymptotic distribution. Then
F"(xa,) — G(x) < n(1 — F(xa,)) — —log(G(x))
We conclude as 1 — F is non-increasing and for a, < t < a1

1— F(xant1) _ 1— F(xt) 1 — F(xan)
1—F(an+) S 1—F(t) s 1— F(ant1)




Exceedances

Theorem (Pickands-Balkema-de Haan, 1975-1974)
Let (X;) iid regularly varying r.v. with index o > 0. Denote F, the distribution
of the exceedances E, over u > 0Q:
Fu(x)=P(X —u<x|X>u), x>0, X~F.
Then
lim sup |Fu(x)— Gep(x)|=0

U—30 0<x< 0o

where G¢ g is the Generalized Pareto Distribution

Ges) =1-(1-&lx—u)/B) ™5, €=2p>0.




Peak Over Threshold approach, Embrechts et al. (1997)

POT approach: fit by MLE a GPD on the exceedances E, for many u = fAu:

1180 o.831 o.6z6 o.a66 o©.383 o.zos o.zas o.233

Shape ) (C1,p=095)

cccccccccccc



Sums of random regularly varying variables

Let X; iid and M, = max{X;; 1 < i< n}.

Theorem (Feller, 1971)

If X1 and X, are independent regularly varying r.v. with index o > 0 and with
respective slowly varying function Ly and L, then

P(X1 + Xo > x) ~ x~“(L1(x) + La(x))

Proof: We show that

]P(Xl + X5 > X) ~ P(Xl > X) + P(XQ > X).



Regularly varying distribution

Definition (Feller, 1971)

A rv. X € RV, iff it exist p,g > 0 with p+ g = 1 and a slowly varying
function L such that

IP’(X>X)~pL;<) and P(X<—x)~gq
x




Example: strictly stable r.v.

Definition

A r.v. Y is strictly a-stable distributed iff 9 a > 0, Y; and Y5> independent,
distributed as Y such that Y; + Y, = aY in distribution.

Then Y is strictly a-stable with 0 < @ < 2 and c.f. exp(—c®|x|*xa(X, P, q)),

r2-a)

1= (cos(mar/2) — isgn(x)(p — q) sin(w a/2)).

Xa(X, P, q) =

00
I

05
|

0



Domain of attraction

Let X; iid and S, =", X;.

Theorem (Central Limit Theorem with heavy tails, Feller 1971)
Assume that E[X?] = +oc and X is centered if E[X] < oc.

The sequence (a,S,) has a non degenerate limit for some (a,) iff X € RV,,.
The limit is distributed according to a (strictly) a-stable law (for oz # 1).




Precise large deviations

Theorem (A.V. Nagaev, 1969)

(X;) iid random variables with oo > 0 regularly varying (centered if o. > 1)
distribution then S, = >_"_, X; satisfies the precise large deviations relation

]P) n . ]P ngf
lim sup (Sh > x) —p|=0and lim sup c x)

_n = 7 gl=0
nso s | nP(IX] > x) nbe o | AP(IX] > x) 7

with b, = n®t1/(@"2) for any § > 0.

Remark

gnP(|X] > x) ~ nP(X < x)

v

If (r;) iid = P(ZJT:E n< —SCR) — 0.005 <~> P(rt < —5CR> — 0.0001.

SCR ~ —VaRy go5 with X = r;.



SCR calculation in the iid case

SCR calculation with POT approach, Smith (197)

where m is the number of exceedances.

Regular Variations Approach
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SCR extrapolation when extremes cluster

Hedge Fund Strategies Indices

Comertble Bonds Ariege LS Credtitage CTaLong Tem

What is happening for dependent sequences for whom extremes cluster?
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Regular variations revisited

Remark
A r.v. X is regularly varying with index « > 0 iff there are r.v. © € {—1,+1}
and Y ~ Pareto(a, 1) independent satisfying
P(IX|72X € -, | Xo| > xu | |X| >u) = PO €), u— 0o,
P(|X| < xu | |X]| > u) = P(Y < x), u— 00.

Eran
e




Breiman's Lemma

Lemma (Breiman (1965))
If Xy > 0 and X, > 0 are independent, X; € RV,, and E[X5""¢] < oo, then

P(X1X2 > U) ~ E[X;‘]P(Xl > U).

Proof: (Jessen and Mikosch, 2006)

PG> PO )

]P(Xl > u) P(Xl > U) d]P)(XQ > y) ~ /yad]P)(Xz > y).

Remark
Let X € RV, associated with ©. We also have

P(X > u) = P(04|X]| > u) = E[O]P(|X]| > u)
=P(© = 1)P(|X]| > v) = pP(|X] > u).




Regularly varying multivariate distributions

Regular variations, Basrak et al. (2002)

A random vector X = (Xi, ..., Xy) is regularly varying if a non-null Radon
measure g is such that

nP(a; }(X1,..., Xq) €)= pa(-),

where (a,) satisfies nP(|X| > a,) — 1 and pq(tA) = t~*uq(A), t > 0.

Definition (Resnick, 1987)
It is equivalent to the existence of the spectral tail vector © = (©1,...,0y)

satisfying

P(X|71(X1,..., Xq) € - | |X| > u) = P((©1,...,04) €-), u— 00,
P(|X| < xu | |X]| > u) = P(Y < x), u— 0.




Where is the trick?

Choose d =2, X = (Xy, X2) with X; € RV, independent of X, € RV,, and
|X‘ = X1 + X2. If Lz(u) = o(Ll(u))

P(X; > u) ~P(|X]| > u) ~ u=*(L1(u) + La(v)),
P(Xy/IX|=1]|X|>u)—1 P(X/|X|=1||X|>u)—1and © =(1,0).
To avoid degenerate ©, we assume that X; are identically distributed.

Remark
When Li(u) ~ Ly(u) then © = (1,0) or = (0,1) w.p. 1/2.
If X; ~ F; then we standardize via the transform 1/(1 — F;(X;)) ~ Pareto(1,1).




|dentically distributed margins

Definition (Basrak and Segers, 2009)

Assume that X; are identically regularly varying distributed with index o > 0 iff
it exists the spectral tail vector © = (O, ...,0,) satisfying

P(| X1 M (X1, .-, Xa) € - | |Xa] > u) = P((©1,...,04) €), u—00.

Example
If the X; are independent then © = (1,0,...,0).
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Regularly varying processes

Definition (Basrak and Segers, 2009)

A stationary sequence (X;) is regularly varying of order « > 0 iff Xy € RV, and
it exists the spectral tail process (©;) defined for any k > 0, any u > 0 by the
relation

P(| X0l " (X0, -, Xk) € - | [Xo| > 1) = B((©p,...,04) €),  u— oo.

Example
If the (X;) are iiid then ©; =0, |t| # 0.




The AR(1) model

Definition (AR(1) model)

The AR(1) model is the solution of X; = ¢X;_1 + Z;, |¢| < 1 with (Z;) is an iid
regularly varying sequence if order o > 0.

y

Proposition
We have Xy € RV,, and ©; = ¢, t > 0.




The GARCH(1,1) model

Definition (Bollerslev, 1986)

The GARCH(1,1) model (X;) is the solution of X; = 0;Z;, t € Z with (Z;) is an
iid mean zero and unit variance sequence of random variables and (o02) satisfies
the stochastic recurrence equation

Uf = g + (0412,_,2_1 + 61)05_1, teZ.

Proposition
If Xo € RV, then we have

— 1 «
P(|Xo| 7 (Xos - - Xe) € - | | Xo] > x) — WEDZO' 1(zo,zln?-5,...,ztn9-5)e|zo|} 3

where rlt = Al LR At with At S O[]_Zt2_1 + 51'




Alternative measures of dependance

Definition (The extremal index)

The stationary sequence (X;) has extremal index @ if for any x > 0 we have
P(max{|Xi|, | Xal, ..., | Xa|} = anx) ~ P(max{|X]|, | X5], ..., | X[} = anx)’

where X are iid copies.

Proposition (Basrak and Segers, 2009)
If (X¢) € RV, then

0 = E[max{|©q|, |©1], 92|, ...}* — max{|@1], |©2], |©3], .. .}*].




Alternative measures of dependance

Definition (Upper tail dependence coefficient)
For any vector (Xo, Xp) the upper tail dependence coefficient p(h) satisfies

p(h) = lim P(Xy > u| Xo > u).

u—o00

Proposition (Davis et al., 2013)

If (X,) € RV, then
E[min{©, ©:}¢]

E[(©0)5]

p(h) =

Proof: Applying Breiman’s Lemma, we have

P(min{Xp, Xo} > u) = P(min{©p, O} Xo| > u) = E[min{O4, Oo}{]P(|Xo| > u)



Examples in the m-dependent case

Assume (X, t < 0) is independent of o(X:, t > m+ 1) then ©; = 0 for
[t] = m.
Definition (Conditional spectral tail process)

Define for m-dependent RV(«) processes (©p,...,0,) = (Oq,...,Omn)
conditionally to ©_; = 0,0 < j < m.

Example




Large deviations in the m-dependent case

Theorem (Mikosch and W., 2012)
Assume (X:) is o > 0 regularly varying (centered if o > 1) distribution then

P(S, > x)
nP(|X| > x)

P(S, < —x)

= by nP(|X] > x)

=0and lim sup
n—>OOX2bn

lim sup
n—oo X}bn

-b-| =0,

with b, = n®*1/(2"2) for any § > 0 and cluster indices

m m

e =[(30); - (2 0)}] =re=01<j < mE|(3er)]

t=0 iz t=0




Application to risk management

Definition (Empirical conditional spectral tail process)

Define (8),...,04 ) = (r;/Irjl,- -, i/ I6]) if [rel >, t € 1= {j,...,j+ K},
|ri—1] < eu and |rj1xy1| < u are clusters of exceedances starting with a jump.
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Approximation of the cluster index

T+52
IP’( 3 or< —SCR) — 0.005 <~> ]P’<|rt| > SCR) — 0.0001/b_,
j=T

with b_ = yE[(> 1, ©.)*] where y =P(©_; = 0,1 < j < m) can be
interpreted as the inverse of the average length of the clusters of exceedances
starting with a jump.

Definition (Empirical cluster index)




Calculation of the SCR when extremes cluster

Definition

SCR = 158mea0 g m + g [(LO“OOI){ - 1]'
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Conclusion

@ An alternative approach of risk management based on exceedances and not
on variances,
@ Regular variations ensure stability and feasible computations,

@ The statistical inference remains to be done.

LS Equiy. Short Bas



Conclusion

Thank you for your attention!
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