Analysis of the EUR/HRK exchange rate and pricing options on the Croatian market: the NGARCH model as the alternative to the Black-Scholes model

Petra Posedel
Faculty of Economics and Business
University of Zagreb

Croatian Quants Day (CQD)
February 22, 2008
Department of Mathematics, University of Zagreb
1. Croatian Market of Derivatives: a Challenge of forming one
 - An explosive increase in trading on the Croatian market
 - The goal of the study

2. Non-linear in mean asymmetric GARCH model
 - The NGARCH model for the EUR/HRK time series
 - Risk estimation

3. GARCH option pricing model
 - The European call option on the foreign currency
 - Analysis of foreign currency options
Outline

1. Croatian Market of Derivatives: a Challenge of forming one
 - An explosive increase in trading on the Croatian market
 - The goal of the study

2. Non-linear in mean asymmetric GARCH model
 - The NGARCH model for the EUR/HRK time series
 - Risk estimation

3. GARCH option pricing model
 - The European call option on the foreign currency
 - Analysis of foreign currency options
1. Croatian Market of Derivatives: a Challenge of forming one
 - An explosive increase in trading on the Croatian market
 - The goal of the study

2. Non-linear in mean asymmetric GARCH model
 - The NGARCH model for the EUR/HRK time series
 - Risk estimation

3. GARCH option pricing model
 - The European call option on the foreign currency
 - Analysis of foreign currency options
Outline

1. Croatian Market of Derivatives: a Challenge of forming one
 - An explosive increase in trading on the Croatian market
 - The goal of the study

2. Non-linear in mean asymmetric GARCH model
 - The NGARCH model for the EUR/HRK time series
 - Risk estimation

3. GARCH option pricing model
 - The European call option on the foreign currency
 - Analysis of foreign currency options
Croatian Market of Derivatives: a Challenge of forming one

Trading on the Croatian market

- The interest of professional investor for financial derivatives on the Croatian market has been increasing a lot recently.
- The Croatian market of derivatives does not exist yet!
- Some law conventions...trading with derivatives is expected to follow.
The goal of the study

The interest of professional investor for financial derivatives on the Croatian market has been increasing a lot recently.

- The Croatian market of derivatives does not exist yet!
- Some law conventions...trading with derivatives is expected to follow
Croatian Market of Derivatives: a Challenge of forming one

Trading on the Croatian market

- The interest of professional investor for financial derivatives on the Croatian market has been increasing a lot recently.
- The Croatian market of derivatives does not exist yet!
- Some law conventions...trading with derivatives is expected to follow.
Croatian Market of Derivatives: a Challenge of forming one

Trading on the Croatian market

- The interest of professional investor for financial derivatives on the Croatian market has been increasing a lot recently.
- The Croatian market of derivatives does not exist yet!
- Some law conventions...trading with derivatives is expected to follow.
Everybody is talking of some *trading*: a hot subject lately

- The possibility of forming the market of derivatives in Croatia attracts the interest of many investors
- It is thus of crucial importance to quantify the *fair* price of different financial instruments
- The use of the Black-Scholes option pricing model is also expected
Everybody is talking of some *trading*: a hot subject lately

- The possibility of forming the market of derivatives in Croatia attracts the interest of many investors.
- It is thus of crucial importance to quantify the *fair* price of different financial instruments.
- The use of the Black-Scholes option pricing model is also expected.
Everybody is talking of some *trading*: a hot subject lately

- The possibility of forming the market of derivatives in Croatia attracts the interest of many investors
- It is thus of crucial importance to quantify the *fair* price of different financial instruments
- The use of the Black-Scholes option pricing model is also expected
Everybody is talking of some *trading*: a hot subject lately

- The possibility of forming the market of derivatives in Croatia attracts the interest of many investors.
- It is thus of crucial importance to quantify the *fair* price of different financial instruments.
- The use of the Black-Scholes option pricing model is also expected.
The interest of market participants has been attracted lately by interventions of the Croatian national bank on the foreign capital market.

Croatia faces a possibility of changing the domestic currency.

We are motivated thus in exploring different kinds of foreign currency options.

We analyze in details the empirical distribution of the EUR/HRK currency time series and the consequences of such analysis for pricing foreign currency.
The interest of market participants has been attracted lately by interventions of the Croatian national bank on the foreign capital market.

- Croatia faces a possibility of changing the domestic currency.
- We are motivated thus in exploring different kinds of foreign currency options.
- We analyze in details the empirical distribution of the EUR/HRK currency time series and the consequences of such analysis for pricing foreign currency.
The interest of market participants has been attracted lately by interventions of the Croatian national bank on the foreign capital market.

Croatia faces a possibility of changing the domestic currency.

We are motivated thus in exploring different kinds of foreign currency options.

We analyze in details the empirical distribution of the EUR/HRK currency time series and the *consequences* of such analysis for pricing foreign currency.
The interest of market participants has been attracted lately by interventions of the Croatian national bank on the foreign capital market.

Croatia faces a possibility of changing the domestic currency.

We are motivated thus in exploring different kinds of foreign currency options.

We analyze in details the empirical distribution of the EUR/HRK currency time series and the consequences of such analysis for pricing foreign currency.
The interest of market participants has been attracted lately by interventions of the Croatian national bank on the foreign capital market.

Croatia faces a possibility of changing the domestic currency.

We are motivated thus in exploring different kinds of foreign currency options.

We analyze in details the empirical distribution of the EUR/HRK currency time series and the consequences of such analysis for pricing foreign currency.
Outline

1. Croatian Market of Derivatives: a Challenge of forming one
 - An explosive increase in trading on the Croatian market
 - The goal of the study

2. Non-linear in mean asymmetric GARCH model
 - The NGARCH model for the EUR/HRK time series
 - Risk estimation

3. GARCH option pricing model
 - The European call option on the foreign currency
 - Analysis of foreign currency options
The model of Black and Scholes

Connection to the Black-Scholes model

- Prices on option markets are commonly quoted in terms of Black-Scholes implied volatility.
- This *does not* mean that market participants believe in the hypothesis of the Black-Scholes model.
- The Black-Scholes formula is not used as a pricing model for vanilla options but as a tool for *translating* market prices into a representation in terms of implied volatility.
Connection to the Black-Scholes model

- Prices on option markets are commonly quoted in terms of Black-Scholes implied volatility
- This *does not* mean that market participants believe in the hypothesis of the Black-Scholes model
- the Black-Scholes formula is not used as a pricing model for vanilla options but as a tool for *translating* market prices into a representation in terms of implied volatility
The model of Black and Scholes

Connection to the Black-Scholes model

- Prices on option markets are commonly quoted in terms of Black-Scholes implied volatility.
- This *does not* mean that market participants believe in the hypothesis of the Black-Scholes model.
- The Black-Scholes formula is not used as a pricing model for vanilla options but as a tool for *translating* market prices into a representation in terms of implied volatility.
Connection to the Black-Scholes model

- Prices on option markets are commonly quoted in terms of Black-Scholes implied volatility
- This *does not* mean that market participants believe in the hypothesis of the Black-Scholes model
- the Black-Scholes formula is not used as a pricing model for vanilla options but as a tool for *translating* market prices into a representation in terms of implied volatility
The goal of this study is

- to estimate the parameters in the dynamics of the currency time series using the NGARCH model,
- to simulate the prices of foreign currency options by means of the GARCH options pricing model using the estimated parameters,
- to compare the obtained prices with those resulting from the Black-Scholes model.
The goal of this study is

- to estimate the parameters in the dynamics of the currency time series using the NGARCH model,
- to simulate the prices of foreign currency options by means of the GARCH options pricing model using the estimated parameters,
- to compare the obtained prices with those resulting from the Black-Scholes model.
The goal of this study is

- to estimate the parameters in the dynamics of the currency time series using the NGARCH model,
- to simulate the prices of foreign currency options by means of the GARCH options pricing model using the estimated parameters,
- to compare the obtained prices with those resulting from the Black-Scholes model.
The proposed model

The goal of this study is

- to estimate the parameters in the dynamics of the currency time series using the NGARCH model,
- to simulate the prices of foreign currency options by means of the GARCH options pricing model using the estimated parameters
- to compare the obtained prices with those resulting from the Black-Scholes model
Outline

1. Croatian Market of Derivatives: a Challenge of forming one
 - An explosive increase in trading on the Croatian market
 - The goal of the study

2. Non-linear in mean asymmetric GARCH model
 - The NGARCH model for the EUR/HRK time series
 - Risk estimation

3. GARCH option pricing model
 - The European call option on the foreign currency
 - Analysis of foreign currency options
Modelling the EUR/HRK time series

- P_t ... the EUR/HRK exchange rate price at time t, defined as the number of Croatian kunas required to purchase 1 euro

- The dynamics of returns R_t is described with

\[R_{t+1} = \ln \left(\frac{P_{t+1}}{P_t} \right) = r_d - r_f + \lambda \sigma_{t+1} - \frac{1}{2} \sigma_{t+1}^2 + \sigma_{t+1} Z_{t+1}, \tag{1} \]

\[\sigma_{t+1}^2 = \omega + \alpha (\sigma_t Z_t - \rho \sigma_t)^2 + \beta \sigma_t^2, \tag{2} \]

where Z_t are i.i.d. $N(0, 1)$ and

\[\omega > 0, \quad \alpha \geq 0, \quad \beta \geq 0 \quad \text{and} \quad \alpha (1 + \rho^2) + \beta < 1. \tag{3} \]
Modelling the EUR/HRK time series

- P_t . . . the EUR/HRK exchange rate price at time t, defined as the number of Croatian kunas required to purchase 1 euro
- The dynamics of returns R_t is described with a non linear in mean, asymmetric GARCH (1,1) model:

$$R_{t+1} \equiv \ln \left(\frac{P_{t+1}}{P_t} \right) = r_d - r_f + \lambda \sigma_{t+1} - \frac{1}{2} \sigma^2_{t+1} + \sigma_{t+1} Z_{t+1},$$

$$\sigma^2_{t+1} = \omega + \alpha \left(\sigma_t Z_t - \rho \sigma_t \right)^2 + \beta \sigma^2_t,$$

where Z_t are i.i.d. $N(0, 1)$ and

$$\omega > 0, \quad \alpha \geq 0, \quad \beta \geq 0 \quad \text{and} \quad \alpha (1 + \rho^2) + \beta < 1.$$
Introduction
NGARCH
Summary
The NGARCH model for the EUR/HRK time series

EUR/HRK 2001-2005

Petra Posedel
Option pricing on the Croatian market
We use the MLE where the log-likelihood function is

\[
L_T = \frac{1}{T} \sum_{t=1}^{T} \left[-\frac{1}{2} \ln(2\pi) - \frac{1}{2} \ln(\sigma_t^2) - \frac{1}{2} \frac{(P_t - (r_d - r_f + \lambda \sigma_t - \frac{1}{2} \sigma_t^2))^2}{\sigma_t^2} \right], \quad (4)
\]

where \(T = 1297 \).

Maximizing the \(L_T \) function we obtain

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Sample standard error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{\omega})</td>
<td>1.7339 · 10^{-7}</td>
<td>2.92 · 10^{-8}</td>
</tr>
<tr>
<td>(\hat{\lambda})</td>
<td>-0.0301153</td>
<td>0.11311</td>
</tr>
<tr>
<td>(\hat{\alpha})</td>
<td>0.095345</td>
<td>0.012028</td>
</tr>
<tr>
<td>(\hat{\beta})</td>
<td>0.86840994</td>
<td>0.014289</td>
</tr>
<tr>
<td>(\hat{\rho})</td>
<td>-0.1707379</td>
<td>0.074885</td>
</tr>
<tr>
<td>(\hat{\alpha}(1 + \hat{\rho}^2) + \hat{\beta})</td>
<td>0.96653484</td>
<td>-</td>
</tr>
</tbody>
</table>
We use the MLE where the log-likelihood function is

\[L_T = \frac{1}{T} \sum_{t=1}^{T} \left[-\frac{1}{2} \ln(2\pi) - \frac{1}{2} \ln(\sigma_t^2) - \frac{1}{2} \left(\frac{P_t - (r_d - r_f + \lambda \sigma_t - \frac{1}{2} \sigma_t^2)}{\sigma_t^2} \right)^2 \right], \quad (4) \]

where \(T = 1297 \).

Maximizing the \(L_T \) function we obtain

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Sample standard error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{\omega})</td>
<td>1.7339 \cdot 10^{-7}</td>
<td>2.92 \cdot 10^{-8}</td>
</tr>
<tr>
<td>(\hat{\lambda})</td>
<td>-0.0301153</td>
<td>0.11311</td>
</tr>
<tr>
<td>(\hat{\alpha})</td>
<td>0.095345</td>
<td>0.012028</td>
</tr>
<tr>
<td>(\hat{\beta})</td>
<td>0.86840994</td>
<td>0.014289</td>
</tr>
<tr>
<td>(\hat{\rho})</td>
<td>-0.1707379</td>
<td>0.074885</td>
</tr>
<tr>
<td>(\hat{\alpha}(1 + \hat{\rho}^2) + \hat{\beta})</td>
<td>0.96653484</td>
<td>-</td>
</tr>
</tbody>
</table>
We use the MLE where the log-likelihood function is

\[
L_T = \frac{1}{T} \sum_{t=1}^{T} \left[-\frac{1}{2} \ln(2\pi) - \frac{1}{2} \ln(\sigma_t^2) - \frac{1}{2} \left(\frac{P_t - (r_d - r_f + \lambda \sigma_t - \frac{1}{2} \sigma_t^2)}{\sigma_t^2} \right)^2 \right], \quad (4)
\]

where \(T = 1297 \).

Maximizing the \(L_T \) function we obtain

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Sample standard error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{\omega})</td>
<td>(1.7339 \cdot 10^{-7})</td>
<td>(2.92 \cdot 10^{-8})</td>
</tr>
<tr>
<td>(\hat{\lambda})</td>
<td>-0.0301153</td>
<td>0.11311</td>
</tr>
<tr>
<td>(\hat{\alpha})</td>
<td>0.095345</td>
<td>0.012028</td>
</tr>
<tr>
<td>(\hat{\beta})</td>
<td>0.86840994</td>
<td>0.014289</td>
</tr>
<tr>
<td>(\hat{\rho})</td>
<td>-0.1707379</td>
<td>0.074885</td>
</tr>
<tr>
<td>(\hat{\alpha}(1 + \hat{\rho}^2) + \hat{\beta})</td>
<td>0.96653484</td>
<td>-</td>
</tr>
</tbody>
</table>
Outline

1. Croatian Market of Derivatives: a Challenge of forming one
 - An explosive increase in trading on the Croatian market
 - The goal of the study

2. Non-linear in mean asymmetric GARCH model
 - The NGARCH model for the EUR/HRK time series
 - Risk estimation

3. GARCH option pricing model
 - The European call option on the foreign currency
 - Analysis of foreign currency options
The NGARCH model gives a more accurate estimation of risk since it incorporates the *heteroscedasticity*.

![Graph showing price movements over time with different bounds.](image-url)
Outline

1. Croatian Market of Derivatives: a Challenge of forming one
 - An explosive increase in trading on the Croatian market
 - The goal of the study

2. Non-linear in mean asymmetric GARCH model
 - The NGARCH model for the EUR/HRK time series
 - Risk estimation

3. GARCH option pricing model
 - The European call option on the foreign currency
 - Analysis of foreign currency options
We use the GARCH option pricing model of Duan (1995).

Days to maturity are counted in calendar days (365) not in business days per year (256)

\[T \ldots \text{maturity} \]
\[K \ldots \text{strike} \]
\[\tau \ldots \text{number of days remaining to maturity} \]

We introduce some risk neutral criterium, namely the *equilibrium price measure*.
We use the GARCH option pricing model of Duan (1995).

Days to maturity are counted in calendar days (365) not in business days per year (256)

\[T \ldots \text{maturity} \]
\[K \ldots \text{strike} \]
\[\tau \ldots \text{number of days remaining to maturity} \]

We introduce some risk neutral criterium, namely the *equilibrium price measure*.
We use the GARCH option pricing model of Duan (1995).

Days to maturity are counted in calendar days (365) not in business days per year (256)

\[T \ldots \text{maturity} \]
\[K \ldots \text{strike} \]
\[\tau \ldots \text{number of days remaining to maturity} \]

We introduce some risk neutral criterium, namely the \textit{equilibrium price measure}.
Definition

The equilibrium price measure satisfies the local risk neutral valuation relationship (LRNVR) if every asset value X_t measured in domestic currency satisfies

1. X_{t+1}/X_t is conditionally log-normal distributed w.r.t the equilibrium measure \ast

2.

 \[E_t^* \left[X_{t+1}/X_t \right] = e^{r_d}, \quad (5) \]

3.

 \[\text{Var}_t^* \left[\ln(X_{t+1}/X_t) \right] = \text{Var}_t \left[\ln(X_{t+1}/X_t) \right], \quad (6) \]
Definition

The equilibrium price measure satisfies the **local risk neutral valuation relationship** (LRNVR) if every asset value X_t measured in domestic currency satisfies

1. X_{t+1}/X_t is conditionally log-normal distributed w.r.t the equilibrium measure \mathcal{E}^*

2. $E_{t}^{*}[X_{t+1}/X_t] = e^{rd}$, \tag{5}

3. $Var_{t}^{*}[\ln(X_{t+1}/X_t)] = Var_{t}[\ln(X_{t+1}/X_t)]$, \tag{6}

Petra Posedel

Option pricing on the Croatian market
Definition

The equilibrium price measure satisfies the local risk neutral valuation relationship (LRNVR) if every asset value X_t measured in domestic currency satisfies

1. X_{t+1}/X_t is conditionally log-normal distributed w.r.t. the equilibrium measure \mathbb{E}^*

2. $E_t^* \left[X_{t+1}/X_t \right] = e^{r_d}$,

3. $Var_t^* \left[\ln(X_{t+1}/X_t) \right] = Var_t [\ln(X_{t+1}/X_t)]$.

(5)

(6)
Definition

The equilibrium price measure satisfies the local risk neutral valuation relationship (LRNVR) if every asset value X_t measured in domestic currency satisfies

1. X_{t+1}/X_t is conditionally log-normal distributed w.r.t. the equilibrium measure \mathcal{E}^*

2. $E_t^*\left[\frac{X_{t+1}}{X_t}\right] = e^{r_d}$, \hspace{1cm} (5)

3. $\text{Var}_t^*\left[\ln\left(\frac{X_{t+1}}{X_t}\right)\right] = \text{Var}_t\left[\ln\left(\frac{X_{t+1}}{X_t}\right)\right]$, \hspace{1cm} (6)
The process defined with

\[R_{t+1} \equiv \ln(P_{t+1}) - \ln(P_t) = r_d - r_f - \frac{1}{2} \sigma_{t+1}^2 + \sigma_{t+1} Z_{t+1}^*, \quad (7) \]

and

\[\sigma_{t+1}^2 = \omega + \alpha [\sigma_t Z_t^* - (\lambda + \rho) \sigma_t]^2 + \beta \sigma_t^2, \quad (8) \]

where \(Z_{t+1}^* = Z_{t+1} + \lambda \sim N(0, 1) \), i.e. \(Z_t^* \) are i.i.d. with respect to the measure \(*\), satisfies properties 1, 2 and 3.

Relation (7) enables pricing foreign currency options!

We have even more: from relation (8) it follows that the risk premium \(\lambda \) has global influence on the conditional variance even the risk was locally neutralized with respect to \(*\).

The option price given by the GARCH model will be a function of the risk premium.
The process defined with

\[R_{t+1} \equiv \ln(P_{t+1}) - \ln(P_t) = r_d - r_f - \frac{1}{2} \sigma^2_{t+1} + \sigma_{t+1} Z^*_{t+1}, \quad (7) \]

and

\[\sigma^2_{t+1} = \omega + \alpha[\sigma_t Z^*_t - (\lambda + \rho)\sigma_t]^2 + \beta \sigma^2_t, \quad (8) \]

where \(Z^*_{t+1} = Z_{t+1} + \lambda \sim N(0, 1) \), i.e. \(Z^*_t \) are i.i.d. with respect to the measure *, satisfies properties 1, 2 and 3.

Relation (7) enables pricing foreign currency options!

We have even more: from relation (8) it follows that the risk premium \(\lambda \) has global influence on the conditional variance even the risk was locally neutralized with respect to *.

The option price given by the GARCH model will be a function of the risk premium.
The process defined with

\[R_{t+1} \equiv \ln(P_{t+1}) - \ln(P_t) = r_d - r_f - \frac{1}{2} \sigma^2_{t+1} + \sigma_{t+1} Z^*_{t+1}, \quad (7) \]

and

\[\sigma^2_{t+1} = \omega + \alpha [\sigma_t Z^*_t - (\lambda + \rho) \sigma_t]^2 + \beta \sigma^2_t, \quad (8) \]

where \(Z^*_{t+1} = Z_{t+1} + \lambda \sim N(0, 1) \), i.e. \(Z^*_t \) are i.i.d. with respect to the measure *, satisfies properties 1, 2 and 3.

Relation (7) enables pricing foreign currency options!

We have even more: from relation (8) it follows that the risk premium \(\lambda \) has global influence on the conditional variance even the risk was locally neutralized with respect to *.

The option price given by the GARCH model will be a function of the risk premium.
The price of the European call option on foreign currency

Definition

The *fair* price of the European call option, in the risk neutral world, in time t with strike K and maturity date $\tau + t$, $\tau > 0$ is given by

$$co_t = \exp(-r_d \tau) E_t^* \left[\max(P_{t+\tau} - K, 0) \right].$$

(9)

$P_{t+\tau}$ is not known explicitly in analytical form!

E_t^* cannot be computed explicitly!
The price of the European call option on foreign currency

Definition

The fair price of the European call option, in the risk neutral world, in time t with strike K and maturity date $\tau + t$, $\tau > 0$ is given by

$$\text{co}_t = \exp(-r_d\tau)E_t^* \left[\max(P_{t+\tau} - K, 0) \right].$$

(9)

$P_{t+\tau}$ is not known explicitly in analytical form!

$\implies E_t^*$ cannot be computed explicitly!
We use Monte Carlo simulations

\[c^{GH} \approx \exp(-r_d \tau) \frac{1}{MC} \sum_{i=1}^{MC} \max \{ P_{i,t+\tau} - K, 0 \}, \quad (10) \]

where \(MC = 50000 \), and for the \(i-th \) simulation we have

\[P_{i,t+\tau} = P_t \exp \left(\sum_{j=1}^{\tau} R_{i,t+j} \right), \quad i = 1, 2, \ldots, MC. \quad (11) \]
1. Croatian Market of Derivatives: a Challenge of forming one
 - An explosive increase in trading on the Croatian market
 - The goal of the study

2. Non-linear in mean asymmetric GARCH model
 - The NGARCH model for the EUR/HRK time series
 - Risk estimation

3. GARCH option pricing model
 - The European call option on the foreign currency
 - Analysis of foreign currency options
Illustration: a simulation study

Option prices are calculated for:

- different days to maturity: $\tau = 30, 60 \text{ and } 90 \text{ days}$
- different moneyness $m = 0.97, 0.985, 1, 1.015 \text{ and } 1.03$
 which corresponds respectively to strikes $K = 7.11495, 7.224975, 7.335, 7.445 \text{ and } 7.555$ for currency spot price $P_t = 7.335$.

- the obtained prices are then compared to their Black-Scholes counterparts with the average annual volatility 0.036128

- in order to analyze the effect of the asymmetry parameter ρ, we repeat the simulation procedure for $\rho = -0.461$ and $\rho = 0$.

Petra Posedel
Option pricing on the Croatian market
Illustration: a simulation study

Option prices are calculated for:

- different **days to maturity**: $\tau = 30, 60$ and 90 days
- different **moneyness** $m = 0.97, 0.985, 1, 1.015$ and 1.03
 which corresponds respectively to strikes $K = 7.11495, 7.224975, 7.335, 7.445$ and 7.555 for **currency spot price** $P_t = 7.335$.
- the obtained prices are then compared to their Black-Scholes counterparts with the average annual volatility 0.036128
- in order to analyze the effect of the **asymmetry parameter** ρ, we repeat the simulation procedure for $\rho = -0.461$ and $\rho = 0$.

Petra Posedel

Option pricing on the Croatian market
Option prices are calculated for:

- different **days to maturity**: \(\tau = 30, 60 \text{ and } 90 \text{ days} \)
- different **moneyness** \(m = 0.97, 0.985, 1, 1.015 \text{ and } 1.03 \)
 which corresponds respectively to strikes \(K = 7.11495, 7.224975, 7.335, 7.445 \text{ and } 7.555 \) for **currency spot price** \(P_t = 7.335 \).
- the obtained prices are then compared to their Black-Scholes counterparts with the average annual volatility \(0.036128 \)
- in order to analyze the effect of the **asymmetry** parameter \(\rho \), we repeat the simulation procedure for \(\rho = -0.461 \text{ and } \rho = 0 \)
The comparison: \(\rho = -0.17074 \)

Mild negative asymmetry \(\implies \) options out of the money \((K/P > 1) \) are underpriced in the Black-Scholes model with constant volatility.
The comparison: $\rho = -0.461$

- Moderate asymmetry \implies options out of the money ($K/P > 1$) are underpriced in the Black-Scholes model with constant volatility and also some options ($\tau = 30$) in the money.
- The underpricing effect in the constant volatility model is now more pronounced for options in the money.
The comparison: $\rho = 0$

- The asymmetry is completely absent \implies the graph of implied volatility becomes almost symmetric (centered in $K/P = 1$)
- Options deeply in the money and deeply out of the money are underpriced in the constant volatility model
For all the graphs:

- for options out of the money, independently of ρ, the IV is a **decreasing** function of the maturity.
- for options near the money ($K/P \approx 1$) if the asymmetry is absent or very mild the IV is an **increasing** function of the maturity.
For all the graphs:

- for options out of the money, independently of ρ, the IV is a **decreasing** function of the maturity
- for options near the money ($K/P \approx 1$) if the asymmetry is absent or very mild the IV is an **increasing** function of the maturity
introducing **heteroscedasticity** results in better fitting of the empirical distribution of foreign currency

- the locally risk-neutral measure for the domestic economy is identified
- the GARCH model for option pricing in its formulation incorporates the risk premium
- Still, it is not a priori obvious what should be the risk premium for the volatility—using the time series data from the underlying we find it not significant
- once the market for derivatives will be formed, data from option markets!
introducing heteroscedasticity results in better fitting of the empirical distribution of foreign currency

the locally risk-neutral measure for the domestic economy is identified

the GARCH model for option pricing in its formulation incorporates the risk premium

Still, it is not a priori obvious what should be the risk premium for the volatility—using the time series data from the underlying we find it not significant

once the market for derivatives will be formed, data from option markets!
introducing heteroscedasticity results in better fitting of the empirical distribution of foreign currency

the locally risk-neutral measure for the domestic economy is identified

the GARCH model for option pricing in its formulation incorporates the risk premium

Still, it is not a priori obvious what should be the risk premium for the volatility—using the time series data from the underlying we find it not significant

once the market for derivatives will be formed, data from option markets!
introducing heteroscedasticity results in better fitting of the empirical distribution of foreign currency

the locally risk-neutral measure for the domestic economy is identified

the GARCH model for option pricing in its formulation incorporates the risk premium

Still, it is not a priori obvious what should be the risk premium for the volatility—using the time series data from the underlying we find it not significant

once the market for derivatives will be formed, data from option markets!
introducing heteroscedasticity results in better fitting of the empirical distribution of foreign currency.

The locally risk-neutral measure for the domestic economy is identified.

The GARCH model for option pricing in its formulation incorporates the risk premium.

Still, it is not a priori obvious what should be the risk premium for the volatility—using the time series data from the underlying we find it not significant.

Once the market for derivatives will be formed, data from option markets!
Duan, J.-C.
The GARCH option pricing model.

Duan, J.-C.
Pricing foreign currency and cross currency options under GARCH.
Duan, J.-C.

Duan, J.-C.
Bibliography

Duan, J.-C.

Duan, J.-C.