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Integer-valued time series

Fields of usage of counting processes

meteorology (earthquakes counting),

insurance theory (counts of accidents),

communications (transmitted messages),

medicine (number of patients),

law and social sciences (crime victimizations) and so on.

History of development of integer-valued time series

Model based on Markov chains (Cox and Miller (1965))

MTD models (Raftery (1985a))

DARMA models (Jacobs and Lewis (1978a,b,c))
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First ordered integer-valued autoregressive model (INAR(1))

Defined by the recursion

Xt =
Xt−1∑
i=1

Bi(t) + εt, t ∈ Z,

with demands:

{Bi(t)} and {εt} are integer-valued,

{Bi(t)} is i.i.d. sequence independent of Xt−1 and εt,

{εt} is i.i.d. sequence independent of Xt−i, for i ≥ 1.

Note that Xt−1 = 0⇒ Xt = εt.
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Binomial thinning operator
Generalized thinning operator

Thinning operators

Probabilistic operations that can be applied to random counts.

Purpose: shrinking the observed population
Method: randomly deletes some members of the
population

Many different types of thinning operators, refer to a survey of
Weiss (2008).
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Binomial thinning operator
Generalized thinning operator

Binomial thinning

Let X be integer-valued r.v. and α ∈ [0, 1]. Define a random variable

α ◦ X =
X∑

i=1

Yi,

where {Yi} are i.i.d. Bernoulli indicators with parameter α (called
counting series), which are independent of X.
We say: α ◦ X arises from X by binomial thinning, and "◦" is the
binomial thinning operator.

α ◦ X|(X = x) : Bin(x, α)

α ◦ X ≤ X

⇒ The term is entirely justified.
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Binomial thinning operator
Generalized thinning operator

Interpretation of α ◦ X

Observe the population of size X at certain time t.

At next time point t + 1 the population may be shrinked,
because some of the elements have left between time
points t and t + 1.

Assume that elements under the study leave
independently of each other with probability 1− α.

⇒ Size of the observed population at time point t + 1 is α ◦ X.
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Binomial thinning operator
Generalized thinning operator

Some properties of binomial thinning

α ◦ (X + Y) d= α ◦ X + α ◦ Y, for independent r. v. X, Y

α ◦ (β ◦ X) d= (αβ) ◦ X

1 ◦ X
wp1= X

0 ◦ X
wp1= 0

E[α ◦ X] = αE[X]
Var[α ◦ X] = α2Var[X] + α(1− α)E[X]
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Binomial thinning operator
Generalized thinning operator

INAR(1) model based on binomial thinning

Let α ∈ (0, 1). The model is defined by the recursion

Xt = α ◦ Xt−1 + εt, t ∈ Z,

with demands:

Thinning operations are performed independently of each other
and of {εt}

At each time t thinning operations at that time and εt are
independent of {Xs}s<t

Special case: geometric marginals (GINAR(1) introduced by Alzaid
and Al-Osh (1988))
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Binomial thinning operator
Generalized thinning operator

Interpretations

Basic interpretation

Xt - size of the population at time t

α ◦ Xt−1 - survivors of time t− 1

εt - immigration

An alternative interpretation

Xt - customers at time t

εt - new customers arrived between time points t− 1 and t

Xt−1 − α ◦ Xt−1 - customers that have been lost between time
points t− 1 and t
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Binomial thinning operator
Generalized thinning operator

Some generalizations of binomial thinning

Obtained by relaxing conditions specified in the definition of binomial
thinning.

counting variables have full range N0 - generalized thinning

special case: negative binomial thinning

negative integers are included - signed thinning

random coefficient thinning

dependent Bernoulli indicators
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Binomial thinning operator
Generalized thinning operator

Model based on negative binomial thinning

Defined by the recursion

Xt = α∗Xt−1+εt, where α∗X =
X∑

i=1

Yi, for Yi : Geom
(

α

1 + α

)
.

Operator ” ∗ ” is not actually a "thinning", because α ∗ X 6 X is
not always true.

Special case: geometric marginals (NGINAR(1) introduced by
Ristić et al. (2009))
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Binomial thinning operator
Generalized thinning operator

◦ vs ∗

The main differences are
0 ◦ X

wp1
= 0 and 0 ∗ X

wp1
= 0, but

1 ◦ X
wp1
= X, while 1 ∗ X

d=


0, w.p. 1

1+µ

X, w.p µ2

(1+µ)2

X + Y, w.p. µ

(1+µ)2

where Y is

geometric
( 1+µ

2+µ

)
independent of X.

β ◦ (α ◦ X) = (βα) ◦ X, where counting sequences of ”α ◦ ” and ”β ◦ ” are
independent, unfortunately

β ∗ (α ∗ X) d=


0, w.p. 1+α

1+α+αµ

(βα) ∗ X + Y1, w.p. α2µ2

(1+α+αµ)(1+αµ)
(βα) ∗ X + Y2, w.p. αµ

(1+α+αµ)(1+αµ)

Y1 and Y2 are

independent and geometrically distributed with parameters βα
1+βα and

β(1+α+αp)
1+β(1+α+αp) , respectively and are independent of X.

E(α ◦ X)2 = α2E(X2) + α(1−α)E(X), similarly
E(α ∗ X)2 = α2E

(
X2
)

+ α(1+α)E(X).
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Binomial thinning operator
Generalized thinning operator

Model based on dependent Bernoulli counting series

1 Generate a sequence of dependent Bernoulli r. v. as

Ui = (1− Vi)Wi + ViZ, where
{Wi} is i.i.d. with Ber(α) distribution,
{Vi} is i.i.d. with Ber(θ) distribution,
Z : Ber(α).

U1 + U2 + . . .+ Un
d=
{

Bin(n, α(1− θ)), w.p. 1− α
Bin(n, α+ θ − αθ), w.p.α

2 Define thinning operator as α ◦θ X =
∑X

i=1 Ui.
3 Obtained model

Xt = α ◦θ Xt−1 + εt, t ∈ Z.

Introduced by Ristić et al. (2013)
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Motivation
The mixed thinning operator
The mixed model

Models based on binomial thinning

elements can enter/survive/leave (contribution to the overall
thinning sum 0 or 1)

Models based on negative binomial thinning

elements by replicating themselves contribute to the overall
thinning sum more than 1

By mixing we could deal with elements which are active in some
period and passive in another

Applications:

the number of patients with certain transmitting disease

the number of crimes in some police district

the number of bacteria
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Motivation
The mixed thinning operator
The mixed model

Construction of the mixed thinning operator

Let {Wi}i∈N be i.i.d. sequence, defined as

Wi =
{

Bi, w.p. p,
Gi, w.p. 1− p, p ∈ [0, 1], Bi : Ber(α), Gi : Geom

(
α

1 + α

)
.

The new thinning operator is

α •p X =
X∑

i=0

Wi,

where W0 = 0, X is nonnegative integer-valued r.v. independent of
the counting series {Wi}i∈N.
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Motivation
The mixed thinning operator
The mixed model

Basic properties of the mixed thinning operator

Using p.g.f. of Wi, we obtain

α •p X|{X = x} d=


NB
(

x, α
1+α

)
w.p. (1− p)x

Bin(i, α) + NB
(

x− i, α
1+α

)
w.p.

(x
i

)
pi(1− p)x−i

Bin(x, α) w.p. px

for 1 ≤ i ≤ x− 1.
Let J : Bin(x, p). Then

α•pX|{X = x} d= Bin(J, α)+NB
(

x− J,
α

1 + α

)
d= α◦J+α∗(x−J).

Also,
E[α •p X] = αE[X]
Var[α •p X] = α2Var[X] + α(1 + α− 2αp)E[X]
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Motivation
The mixed thinning operator
The mixed model

Construction of the mixed model with geometric marginals (MixGINAR(1))

MixINAR(1) model is defined by recursion

Xt = α •p Xt−1 + εt, t ∈ Z (1)

with demands:

{εt}t∈Z is a sequence of i.i.d. r. v. independent of the counting
series {Wi}i∈N,

r. v. Xt−i and εt are independent for all i > 1.

The mixed model (1) with geometric marginals (MixGINAR(1))
contains two existing models as special cases:

for p = 0⇒ MixGINAR(1) ≡ NGINAR(1),

for p = 1⇒ MixGINAR(1) ≡ GINAR(1).
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Motivation
The mixed thinning operator
The mixed model

Distribution of innovation process for (MixGINAR(1))

Using the p.g.f. of innovation r.v. we obtain next result:

Let Xt : Geom
(

µ
1+µ

)
for t ∈ Z and µ > α(1− αp)/(1− α). Then

εt
d=


0, with probability αp,
Geom

(
α

1+α

)
, with probability αµ(1−p)

µ−α ,

Geom
(

µ
1+µ

)
, with probability µ−α(1+µ−αp)

µ−α .
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Motivation
The mixed thinning operator
The mixed model

Conditional least squares estimations

The unknown parameters α, µ and p need to be estimated. Since the
conditional expectation E(Xt|Xt−1) = αXt−1 + (1− α)µ only
depends on the first two parameters α and µ, we will use the
two-step conditional least squares approach considered by Karlesen
and Tjøstheim (1986).

Step one: estimation of the unknown parameters α and µ,

Step two: estimation of the unknown parameter p using the
conditional least squares estimates of the parameters α and µ
obtained in the first step.
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Motivation
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The mixed model

Obtained conditional least squares estimates

α̂cls =
(n− 1)−1 ∑n−1

t=2 XtXt−1 − (n− 1)−2∑n
t=2 Xt

∑n
t=2 Xt−1

(n− 1)−1
∑n

t=2 X2
t−1 − (n− 1)−2

(∑n
t=2 Xt−1

)2

µ̂cls =
∑n

t=2 Xt − α̂cls
∑n

t=2 Xt−1

(n− 1)(1− α̂cls)

p̂cls =
∑n

t=2 Ẑt(Xt−1 − µ̂cls)
2α̂2

cls
∑n

t=2(Xt−1 − µ̂cls)2
,

where
Ẑt = −Ŷt + α̂cls(1 + α̂cls)Xt−1 + µ̂cls(1− α̂cls− 2α̂2

cls + µ̂cls− α̂2
clsµ̂cls)

Ŷt = Xt − α̂clsXt−1 − (1− α̂cls)µ̂cls.
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We will compare GINAR(1), NGINAR(1) and MixGINAR(1).

Consider data series representing a monthly counting of committing a
light criminal activity, public drunkenness, in a period from January
1990 to December 2001, constituting sequence of 144 observations.

1 Series PubDrunk-22 is created by the 22nd police car beat of
Pittsburgh and can be downloaded from a website Forecasting
Principles (http://www.forecastingprinciples.com).

The sample mean, variance and autocorrelation of the PubDrunk-22
are respectively, 1.34, 10.1 and 0.761.
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Model MLE MLV RMS
GINAR(1) q̂ = 0.6030

α̂ = 0.4800 188.099 2.248
NGINAR(1) µ̂ = 1.3729

α̂ = 0.5720 178.010 2.146
MTGINAR(1) µ̂ = 1.4544

p̂ = 0.2234
α̂ = 0.6167 177.320 2.111

MLE- maximum likelihood parameter estimates
MLV - maximum log-likelihood values
RMS - the root mean squares of differences between the
observations and predicted values
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