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Libor market models — introduction

Discrete tenor structure: 0 =Ty < T1 < ... < T, = T*, with 6y = Ti41 — Tk

Defaultable zero coupon bonds with credit ratings: Be(-, T1), ..., Be(+, Th)

Defaultable forward Libor rate at time ¢ < Ty for the accrual period [Tk, Ti+1]

1 Belm)
Le(t, Ti) = o <Bc(l, Tit1) 1>
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Libor modeling

@ modeling under forward martingale measures, i.e. risk-neutral measures that
use zero-coupon bonds as numeraires

@ on a given stochastic basis, construct a family of Libor rates L(-, 7x) and a
collection of mutually equivalent probability measures Py, such that

(B(r, 7)

B(1, Ti) >ogt§TkAT,-

are Pr,-local martingales
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Libor modeling

@ modeling under forward martingale measures, i.e. risk-neutral measures that
use zero-coupon bonds as numeraires

@ on a given stochastic basis, construct a family of Libor rates L(-, 7x) and a
collection of mutually equivalent probability measures Py, such that

(B(r, 7)

B(1, Ti) >ogt§TkAT,-

are Pr,-local martingales

@ model additionally defaultable Libor rates Lc(-, Tx) such that

<BC([7 T/))
B(1, Ti) 0<I<TyAT;

are Pr,-local martingales
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Credit risk with ratings

@ Credit risk: risk associated to any kind of credit-linked events (default, changes
in the credit quality etc.)

@ Credit rating: measure of the credit quality (i.e. tendency to default) of a
company

() 6/36



Credit risk with ratings

@ Credit risk: risk associated to any kind of credit-linked events (default, changes
in the credit quality etc.)

@ Credit rating: measure of the credit quality (i.e. tendency to default) of a
company

@ Credit ratings identified with elements of a finite set £ = {1,2,...,K}, where 1 is
the best possible rating and K is the default event

@ Credit migration is modeled by a conditional Markov chain C with state space K,
where K is the absorbing state

@ Default time 7: the first time when C reaches state X, i.e.

T=inf{r >0: C, =K}
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Defaultable bonds with ratings

@ Consider defaultable bonds with credit migration process C and fractional
recovery of Treasury value ¢ = (qu, - . ., gk—1) upon default

@ Payoff of such a bond at maturity equals

Be(Ty, Tx)

Lirony +4gc. Lr<ny
K—1
Z Lic; =iy +9c._ e =kys

i=1

where C-_ denotes the pre-default rating.
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Defaultable bonds with ratings

@ Consider defaultable bonds with credit migration process C and fractional
recovery of Treasury value ¢ = (qu, - . ., gk—1) upon default

@ Payoff of such a bond at maturity equals

Be(Ti, Tv) = 1irspy +qc, _lir<ry
K—1

> Yop=iy +dc, - Licy=xy,

i=1

where C-_ denotes the pre-default rating.

@ time- price of such a defaultable bond can be expressed as

K—1

Be(t,Tx) = Z Bi(t, Tk)l{C,:i} +qc,_B(1, T/")l{Q:K}’

i=1

where B;(1, T;) represents the bond price at time  provided that the bond has
rating i during the time interval [0, 1].
We have B;(Ty, Tx) = 1, for all i.
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Canonical construction of C

Let (Q, Fr«,F = (F)o<i<7+, Pr=) be a given complete stochastic basis.
@ Let A = (Ar)o<i<7~ be a matrix-valued F-adapted stochastic process
A]](I) Alz(l‘) )\11(([)
A1 (t) Azz(l‘) . )\21(([)
A= | . o :
0 o ... O

which is the stochastic infinitesimal generator of C.
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Canonical construction of C

Let (Q, Fr«,F = (F)o<i<7+, Pr=) be a given complete stochastic basis.
@ Let A = (Ar)o<i<7~ be a matrix-valued F-adapted stochastic process
A]](I) Alz(l‘) ce )\11(([)
A1 (t) Azz(l‘) . )\21(([)
A= | . o :
0 o ... O
which is the stochastic infinitesimal generator of C.
@ Enlarge probability space
(Q7 Fr= ) PT*) - (Q7 gT* ) QT* )
and use canonical construction to construct C (Bielecki and Rutkowski, 2002)

The process C is a conditional Markov chain relative to F if for every 0 < t < s and any
functionh: K — R

Eqg,. [1(C))|Fi V F] = Eqy. [R(C))| F V o (C)],

where F€ = (FF) denotes the filtration generated by C.
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Canonical construction - details

@ Let A = (As)o<i<r= be a matrix-valued [F-adapted stochastic process on
(97 Fr=, Pre )

A]](Z) Alz(l‘) ce )\11(([)
A1 (t) Azz(l‘) . )\21(([)
A= . . )
0 0o ... 0
where )\; are nonnegative processes, integrable on every [0, 7] and
Aii(t) = — Zje)c\{,-} Ay (1)
@ Let u = (;,j € K) be a probability distribution on Q = K.
@ Define
(©,Gr,Qre) = (@ x QV x Q, Fre @ F @ 2%, Pre @ PV @ p),

@ On (QY, FY,PY) a sequence (Uy,)), i,j € N, of mutually independent random
variables, uniformly distributed on [0, 1].
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@ The jump times 7, are constructed recursively as

Tr—1+1
Te = Thi +inf{t >0:exp </ )\Ck—lck—l(u)du> < UM},
Thk—1

with 7 := 0.

@ The new state at the jump time 7, is defined as
Cr := C(Uz i, Ck—1, %),

with Co(w,w?, ) = @ and where C : [0, 1] x K x Ry x Q — K is any mapping
such that for any i,j € KC, i # j, it holds

Leb ({u € [0,1] : C(u,i,1) =j}) = ,/\l:/'(’)’

)\,i(l)
if Xi(#) < 0and 0, if X\;(r) = 0.
@ Finally, for every ¢t > 0
C; ::EA;], for tE[Tk_l,Tk), k> 1.
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Definition

The process C is a conditional Markov chain relative to T, i.e. for every 0 <t < s and
any function h : K — R it holds

Eq,. [1(Co)|F: V Ff] = Eq,. [A(C))|Fi V o (C))],

where F€ = (FF) denotes the filtration generated by C.

Proposition

The conditional expectations with respect to enlarged o-algebras can be expressed in
terms of F,-conditional expectations. It holds

K
Eo. [YIF Vo(C) = 1ig=n

i=1

Eoy. [Yla= 7]
Eop [Lie=n|F1]

for any G-measurable random variable Y.

() 11/36



Properties of C

(a) foreveryr <s < uandany function i : £ — R a stronger version of conditional
Markov property holds:

Eq,. [1(Co)|Fu V F(] = Eq,. [H(Co)|Fu V 0(C1)]

(b) foreveryr<sandBe F’:
Eq,. [15F5] = Eq,. [15| 7]

(c) F-conditional Chapman-Kolmogorov equation
P(t,s) = P(t,u)P(u,s),
where P(t,s) = [p;(t,s)]ijex and

) _ Q- (G =, G =i|F)
plj(tvs) T QT* (Ct — l|-7:s)

(d) F-conditional forward Kolmogorov equation

dP(t,s)

P P(t,s)A(s)
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The progressive enlargement of filtration G = (G:)o<:<7~, Where
gt = f} Vv -7:IC1

satisfies the (7)-hypothesis:

(H) Every local F-martingale is a local G-martingale.
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The progressive enlargement of filtration G = (G:)o<:<7~, Where
gt = f} Vv -7:IC1

satisfies the (7)-hypothesis:

(H) Every local F-martingale is a local G-martingale.

It is well-known that () is equivalent to
(H1) Eqp [Y|Fr+] = Eq,. [YF],
for any bounded, F-measurable random variable Y.

But this follows easily from property

]EQT* [13|~7:A] = ]E@T* [13|]:f]7 t< S,B S -,Ftc7

which is proved as a consequence of the canonical construction.
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Risk-free Lévy Libor model

(Eberlein and Ozkan, 2005)

Let (Q, Fr«,F = (Fi)o<i<r=, Pr+) be a complete stochastic basis.

@ as driving process take a time-inhomogeneous Lévy process X = (X', ..., X%)
whose Lévy measure satisfies certain integrability conditions, i.e.
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Risk-free Lévy Libor model

(Eberlein and Ozkan, 2005)

Let (Q, Fr«,F = (Fi)o<i<r=, Pr+) be a complete stochastic basis.

@ as driving process take a time-inhomogeneous Lévy process X = (X', ..., X%)
whose Lévy measure satisfies certain integrability conditions, i.e. an adapted,
cadlag process with X, = 0 and such that

(1) X has independent increments
(2) the law of X, is given by its characteristic function

Efexp(i(u, X,))] = exp ( /0 ’ t‘)s(iu)ds) with

0, (iu) = i(u, by) — %(u,cm} +/

Rd

(ei<u,x> — 1 —i(u, x)F! (dx))’
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@ X is a special semimartingale with canonical decomposition
t t . t g «
X, = / bsds —l—/ Vesdw! +/ / x(p— v )(ds, dx),
0 0 0 JRd

where W' denotes a Pz--standard Brownian motion and
1 is the random measure of jumps of X with P7--compensator v .
We assume that b = 0.
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Construction of Libor rates

Begin by specifying the dynamics of the most distant Libor rate under P~ (regarded
as the forward measure associated with date 7*)

L(t,T,—1) = L(0, T,—1) exp (/Of b (s, T,_1)ds + /Ota(s, Tn_|)dXs),

where the drift is chosen in such a way that L(-,7,—1) becomes a Pr--martingale:

!

2

_ / (00 1 (o (s, Tur),2) ) FI (@),
Rd

bL(s7 Tnfl) = <U(S7T"*1)7CSU(S7 Tn*1)>

() 16 /36



Construction of Libor rates

Begin by specifying the dynamics of the most distant Libor rate under P~ (regarded
as the forward measure associated with date 7*)

~t

L(t, Ty—1) = L(0, Ty—1) exp (/0

t

b (s, T,_1)ds + /

0

o (s, Tho1 )dXS) ,

where the drift is chosen in such a way that L(-,7,—1) becomes a Pr--martingale:

1
bL(s, T.1) = -3 (o(s,Tu=1),cso(s, Tu1))

- / (e<U(IY,Tn71)7X) -1- <U(Sv Tn—‘):-x>) FZ* (d'x)
Rd

Next, define the forward measure Py, |, associated with date 7, via

dPTn —1
dPy+

- 14+ 5,,_1[,([, Tn_|)
1+ (5,171L(0, Tnfl)

t

and proceed with modeling of L(-, T,—2)...
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General step: for each T;
(i) define the forward measure Pz, , via

n—1

H 1+51L - B(O,T*) B([,Tk+1)
1+(51L B(O,Tk+1) B(I,T*) ’

dPr,,
dPr+

I=k+1
(i) the dynamics of the Libor rate L(-, Tx) under this measure

L(t,Ty) = L(0, Ty) exp (/0 b (s, Te)ds + /Oza(s, Tk)dx?*'), (1)

Tk+] :/ \/adWTH-l // k+1 ds dx)
Rd

where

() 17/36



General step: for each T;
(i) define the forward measure Pz, , via

n—1

H 1+51L - B(O,T*) B(Z‘,Tk+1)
1+(51L B(O,Tk+1) B(I,T*) ’

dPTk+1
dP7+«

I=k+1
(i) the dynamics of the Libor rate L(-, Tx) under this measure

L(t,T) = L(0, Ty) exp (/0[ b" (s, Ty)ds + /Oza(s, Tk)dX.zk+l>, (1)

X :/ VEdWH 4 // VT4 (ds, dx)
Rd

with Pz, -Brownian motion W’«! and

where

n—1

SL(s—, Ty) .
Ti+1 (ds. dx) = _ O ) e oy 41 T (ds. dio).
e = 1 (7550 4 1) o7 (@5, a9

The drift term b" (s, Tx) is chosen such that L(-, 7x) becomes a Py, -martingale.
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@ This construction guarantees that the forward bond price processes

(M

B(z, Tk)>ogr§rj/\rk

are martingales for all j = 1, ..., n under the forward measure P, associated
with the date 7, (k =1,...,n).

@ The arbitrage-free price at time ¢ of a contingent claim with payoff X at maturity
Ty is given by
' = B(t, Ti)Epy, [X| ).
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How to include credit risk with ratings in the Lévy Libor

model?
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How to include credit risk with ratings in the Lévy Libor

model?

(1) Use defaultable bonds with ratings to introduce a concept of defaultable Libor
rates

(2) Adopt the backward construction of Eberlein and Ozkan (2005) to model
default-free Libor rates

(3) Define and model the pre-default term structure of rating-dependent Libor rates

To include credit migration between different rating classes:

(4) Enlarge probability space: (2, F,F,Pr«) — (ﬁ, G,G,Qr~)
and construct the migration process C

(5) The (H)-hypothesis = X remains a time-inhomogeneous Lévy process with
respect to Q7 and G with the same characteristics

(6) Define on this space the forward measures Q, by:

for each tenor date T Qr, is obtained from Q7= in the same way as Pz, from Pz«
(k=1,...,n—1)
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Conditional Markov chain C under forward measures

Note that

=F

where ¥ is an F,-measurable random variable with expectation 1.
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Conditional Markov chain C under forward measures

Note that
=F

where ¥ is an F,-measurable random variable with expectation 1.

Let C be a canonically constructed conditional Markov chain with respect to Qr~. Then
C is a conditional Markov chain with respect to every forward measure Qr, and

Q .
Py (t,5) = paT (1,5)

i.e. the matrices of transition probabilities under Qr~ and Qr, are the same.
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Conditional Markov chain C under forward measures

Note that
=F

where ¥ is an F,-measurable random variable with expectation 1.

Theorem

Let C be a canonically constructed conditional Markov chain with respect to Qr~. Then
C is a conditional Markov chain with respect to every forward measure Qr, and

Q &
Py (t,5) = paT (1,5)

i.e. the matrices of transition probabilities under Qr~ and Qr, are the same.

Theorem

The (H)-hypothesis holds under all Qr,, i.e. every (F,Qr,)-local martingale is a
(G, Qr,)-local martingale.

| A

A\
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Rating-dependent Libor rates

@ The forward Libor rate for credit rating class i

1 B,‘(l7 Tk) .
Li(t, Ty) := — -1, =12,...,K—1
( k) Ok <Bi([~, Tk+1) ! T ’

We put Lo(z, Tx) := L(t, Tx) (default-free Libor rates).
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Rating-dependent Libor rates

@ The forward Libor rate for credit rating class i

1 B,‘(Z,Tk) .
Lt,T) = — (=020 ) =12, K —1
0.1 = 5 (et =12,

We put Lo(z, Tx) := L(t, Tx) (default-free Libor rates).

@ The corresponding discrete-tenor forward inter-rating spreads

Li(t,Tx) — Li—1(t, Tx)

Hi(t,Ty) :=
( l\) 1 +5kL;_|(l, Tk)
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Observe that the Libor rate for the rating i can be expressed as

1+ (SkL,'(l, Tk) = (] =+ 51(1,,',107 Tk))(l + (SkH,'(t, Tk))

= (1 + (SkL(l‘, Tk)) t[ (1 + 6k1{j(t7 Tk))

=1
default-free Libor / spread j—1—j
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Observe that the Libor rate for the rating i can be expressed as

1+ (SkL,'(l, Tk) = (] =+ 51(1,,',107 Tk))(l + (SkH,'(t, Tk))

= (1+&L(t,Ti)) ﬁ (1 + 6cH;(t, Ti))

=1
default-free Libor / spread j—1—j

Idea: model H;(-, Tx) as exponential semimartingales and thus ensure automatically
the monotonicity of Libor rates w.r.t. the credit rating:

L(t,Te) < Li(t,Tx) < -+ < Lg—1(t, Tx)

= worse credit rating, higher interest rate
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Pre-default term structure of rating-dependent Libor

rates

For each rating i and tenor date 7 we model H;(-, Tx) as

H;(t,Tx) = H;(0, Tx) exp (/[ b (s, Ty)ds + /”y,(s Ty )dX; Tt > (2)
Jo

with initial condition

1 (Bi(0,T¢)Bi—1(0, Teq1)
Hi(0,T) = 5 ( Bi—1(0,Tx)B;(0, Tkil) - 1) '

X"+ is defined as earlier and b"i (s, T) is the drift term (we assume b (s, T;) = 0, for
s> T = Hi(t, Tk) = H,'(Tk, Tk), for ¢ > Tk).
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Pre-default term structure of rating-dependent Libor

rates

For each rating i and tenor date 7 we model H;(-, Tx) as

H;(t,Tx) = H;(0, Tx) exp (/[ bH"(s, Ty)ds + /”y,(s Ty )dX; Tt > (2)
Jo

with initial condition

1 (Bi(0,T¢)Bi—1(0, Teq1)
Hi(0,T) = 5 ( Bi—1(0,Tx)B;(0, Tkil) - 1) '

X"+ is defined as earlier and b"i (s, T) is the drift term (we assume b (s, T;) = 0, for
s> T = Hi(t, Tk) = H,'(Tk, Tk), for ¢ > Tk).

= the forward Libor rate L;(-, Tx) is obtained from relation

1 + (SkL,'(l, Tk) = (1 =+ 61(L(l‘7 TA))ﬂ(l + (skl‘]j(l, Tk)).

j=1
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Assume that L(-, Tx) and H;i(-, Tx) are given by (1) and (2). Then:
(a) The rating-dependent forward Libor rates satisfy for every Ty andt < Ty

L(t,Te) < Li(t, Ty) < -+ - < Lg—1(1, Tx),

i.e. Libor rates are monotone with respect to credit ratings.
(b) The dynamics of the Libor rate Li(-, Tx) under P, is given by

Li(t,To) = Li(0, T¢) exp </1 b (s, Ti)ds +/’ Vesoi(s, To)dW, !

//R (s, %, T¢) ,I_VH)(dsdx))

where
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oi(s, Ty) = zi(s—,Tk)—l(zi_l(s—,rk)ai_l(s, o) + hi(s—, To) s, Tk))

bls=, 1) [£o=, T (s, T) + Y (=, T (s, T

j=1

represents the volatility of the Brownian part and

Si(s,x, T¢) := In (1 T 4i(s—, T) " (Bi(s,x, Tx) — 1))

controls the jump size. Here we set
(5kHi(S Tk)

hi(s, Tx) == ———————,

(s, 7o) 1 + 6cHi(s, Tx)
5kL,‘(S Tk)

(s, Ty) i= ———2—2—,

(s, 74) 1+ 6Li(s, Ty)

and
Bi(s,x,T¢) = Biz1(s, x, Tk)<l + hi(s—, Te) (D00 1))

= (14 =17 — 1)

i
XTI (14 iils—, T (e — 1)),

Jj=1
25/36



Hi(t,T,—1)
L(t,T,—1) |- > Loy (1, Tuzr) Li(t,Th—1)

L([, Tk*l)

L(l‘erl) .,

Default-free Rating i — 1 Rating i

Figure: Connection between subsequent Libor rates
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No-arbitrage condition for the rating based model

Recall the defaultable bond price process with fractional recovery of Treasury value ¢

K—1

Bc(l, Tk) = Z B,‘(l‘, Tk)l{q:i} + qc. B(t, Tk)l{C,:K}~

i=1
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No-arbitrage condition for the rating based model

Recall the defaultable bond price process with fractional recovery of Treasury value ¢

K—1

Bc(l, Tk) = Z B,‘(l‘, Tk)l{q:i} + qc. B(l, Tk)l{C,:K}-

i=1

No-arbitrage: the forward bond price process

Be(-, Tr)
B(vT/)

must be a Q7;-local martingale for every k,j = 1,...,n — 1.
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No-arbitrage condition for the rating based model

Recall the defaultable bond price process with fractional recovery of Treasury value ¢

K—1
Be(t,Ti) = Z Bi(t, Ti)lic,—iy + qc,_ B(t, Te)lic,=x3-

i=1

Or equivalently: the forward bond price process
Bc(T) _ Be(-,Tv) B(:,T;)
B(aT/) B('>Tk) B('ka)
N——

dQ‘Tk
dQr.
o

must be a Qr, -local martingale forevery k =1,...,n — 1.
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We postulate that the forward bond price process is given by

K—1 i k-1

B(‘(Z‘, T/\) }() i (s)ds
— " = 1ic,=i 1
B(t, T¢) 2 5507 1+5,H (t,T)) {a=iy +4c-_le=ry

i=1 j=1[=0

=H(t,T},i)
K—1
= STH( T el O ey + ge, Vs, )
i=1

where ), is some F-adapted process that is integrable on [0, T*].
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We postulate that the forward bond price process is given by

B( t, T/\ —
(I TA) Z

i=1 j=

i

k—1
}()A()d‘l B 1
IH l+<)/H D) {a=i}y T 9c._ L=k}

c=H(1,Tg,i)

K—
_ Z H(t, Ty, i)e-"' A’(S)dsl{(,:i} +qc, 1{C,:K}~,

where ), is some F-adapted process that is integrable on [0, T*].

Note that this specification is consistent with the definition of H; which implies the
following connection of bond prices and inter-rating spreads:

B;(t, Ty) _ Bi(t,Ti—1) 1
Bi_1(t,Tx) Bi—1(t, Te—1) 1 + 0k—1H;(t, Tr—1)

and relation .
Bi(t,Te) _ Bi(t,Te) yp _Bi(t, Tk)

B(t7 Tk) B(ta Tk) =2 ijl(tv Tk)-
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Lemma

Let T, be a tenor date and assume that H;(-, T) are given by (2). The process
H(-, T, i) has the following dynamics under Py,

l Tk, = 0 Tk,

( sTk7 ds—/ ﬁZZh TlfyjsTl)dW"

j=1 =1

/L,(Hﬁ +h(S—T,(<‘Y/(STz)X>_1))1_1>

j=1I=1

X (p — v (ds, dx)>,

where b™ (s, Ty, i) is the drift term.
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No-arbitrage condition

Theorem

Let Ty be a tenor date. Assume that the processes H;(-,Tx),j=1,...,K — 1, are given
by (2). Then the process % defined in (3) is a local martingale with respect to the
forward measure Qy, and filtration G iff:
for almost allt < Ty on the set {C; # K}

BT C) 4 he) = (1 a6 52 N s 4)
s Lk, Gt Cy = qc']HI(t—7Tk,C,) C/K

K—1 t
H(t—. T:. i Jg Aj(s)ds
+ D (1_ - Aci(t).

J=1#£C H(i—, Tx, C)elo e )%
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No-arbitrage condition

Theorem

Let Ty be a tenor date. Assume that the processes H;(-,Tx),j=1,...,K — 1, are given
by (2). Then the process % defined in (3) is a local martingale with respect to the
forward measure Qy, and filtration G iff:
for almost allt < Ty on the set {C; # K}

BT C) 4 he) = (1 a6 52 N s 4)
s Ty, G c(f) = qc']HI(t—7Tk,C,) CK

K—1 t
3 H(t—, Ti, j)elo X%
" <1 - ( 7 kJ)e )\C,j(l‘).

J=1#£C H(t—, Ty, Cr)elo e ()%

Sketch of the proof: Use the fact that the jump times of the conditional Markov chain
C do not coincide with the jumps of any F-adapted semimartingale, use some
martingales related to the indicator processes 1;¢,—;, i € K, and stochastic calculus
for semimartingales.
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Defaultable forward measures

Assume that 2¢C10 s a true martingale w.r.t. forward measure Qr, .
B(-,Ty) 3
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Defaultable forward measures

Assume that Bl;‘((_"Tik)) is a true martingale w.r.t. forward measure Qr, .

The defaultable forward measure Qc,r, for the date 7y is defined on (€2, Gr,) by

dQc,1,
dQr,

__ B(0,T%) Bc(1,Ti)
" Be(0T) B(LTY) |

G

This corresponds to the choice of B¢(+, Tx) as a numeraire.
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Defaultable forward measures

Assume that Bg‘((_"Tik)) is a true martingale w.r.t. forward measure Qr, .

The defaultable forward measure Qc,r, for the date 7y is defined on (€2, Gr,) by

dQc,r,
dQr,

B B(O7 Tk) Bc(l‘7 Tk)

S o BC(07 Tk) B(l7 Tk) .

This corresponds to the choice of B¢(+, Tx) as a numeraire.

Proposition

The defaultable Libor rate Lc(-, Tx) is a martingale with respect to Qc,z, ., and

dQcr, | _ Bc(0,Titn)
dQc,r ., G Bc(0, Tx)

(1 + 5kLc(Z‘, Tk)).
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Pricing problems |: Defaultable bond

The price of a defaultable bond with maturity T and fractional recovery of Treasury
value g at time t < Ty is given by

K—1
Be(t, Ti)liczky = B(6,Te) Y Lc=n [E@Tk[l = pix(t, T)| F1]
i=1
K—1

+ Eoy Mp<r<my o= :}l{cf_—J}%lfrq

—1 ]EQTk [1{C1=t}|'7:t]

—
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Pricing problems |l: Credit default swap

@ consider a maturity date 7,, and a defaultable bond with fractional recovery of
Treasury value ¢ as the underlying asset

@ protection buyer pays a fixed amount S periodically at tenor dates T, .. ., T—1
until default

@ protection seller promises to make a payment that covers the loss if default
happens:
1 —qc,_
has to paid at Tx+ if default occurs in (T, Ti+1]
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Pricing problems |l: Credit default swap

@ consider a maturity date 7,, and a defaultable bond with fractional recovery of
Treasury value ¢ as the underlying asset

@ protection buyer pays a fixed amount S periodically at tenor dates T, .. ., T—1
until default

@ protection seller promises to make a payment that covers the loss if default
happens:
1 —qc,_
has to paid at Tx+ if default occurs in (T, Ti+1]

Proposition

The swap rate S at time 0 is equal to

S = ka:z B(0, T¥) ZIK=_11 E@Tk [(1- qj)l{Tk71<T§Tk,Cr—:f}]
i) B(0, T)Eqy [1 — pix(0, T¢)]

bl

if the observed class at time zero is i.
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Pricing problems lll: use of defaultable measures

Proposition
LetY be a promised Gr,-measurable payoff at maturity Ty of a defaultable contingent
claim with fractional recovery q upon default and assume that Y is integrable with

respect to Qr, .
The time-t value of such a claim is given by

Trt(Y) = Bc(l‘, Tk)]EQC,Tk [Y|gf]
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Pricing problems lll: use of defaultable measures

Proposition

LetY be a promised Gr,-measurable payoff at maturity Ty of a defaultable contingent
claim with fractional recovery q upon default and assume that Y is integrable with
respect to Qr, .

The time-t value of such a claim is given by

Trt(Y) = Bc(l‘, Tk)]EQC,Tk [Y|gf]

Example: a cap on the defaultable forward Libor rate

The time-t price of a caplet with strike K and maturity 7, on the defaultable Libor rate
is given by
Ci(Ti, K) = 8iBc(t, Ter1)Baoc ., [(Le(Ti, Ti) — K) T |G]

and the price of the defaultable forward Libor rate cap at time ¢ < T; is given as a sum

Ci(K) = i Si—1Be(t, To)Eqc 7, [(Le(Timt, Tier) — K)T1G)).

k=1
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