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Extremal dependence and heavy tails in real-life data
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Figure 1. Scatterplot of 5 minute foreign exchange rate log-returns, USD-DEM against USD-FRF.
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Figure 2. Scatterplot of file sizes of teletraffic data - extremal independence
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1. Regularly varying stationary sequences

• An Rd-valued strictly stationary sequence (Xt) is regularly

varying with index α > 0 if its finite-dimensional distributions

are regularly varying with index α:

• For every k ≥ 1, there exists a non-null Radon measure µk in

R
dk

0 such that as x → ∞,

P (x−1(X1, . . . , Xk) ∈ ·)

P (|X1| > x)

v
→ µk(·) .

• The measures µk determine the extremal dependence structure

of the finite-dimensional distributions and have the scaling

property µk(tA) = t−αµk(A), t > 0, for some α > 0.
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• Alternatively, Basrak, Segers (2009) for α > 0, k ≥ 0,

P (x−1(X0, . . . , Xk) ∈ · | |X0| > x)
w
→ P ((Y0, . . . , Yk) ∈ ·) ,

|Y0| is independent of (Y0, . . . , Yk)/|Y0| and P (|Y0| > y) = y−α,

y > 1.

• For d = k = 1, t > 0: for some p, q ≥ 0 such that p+ q = 1,

P (x−1X1 ∈ (t,∞))

P (|X1| > x)
→ p t−α and

P (x−1X1 ∈ (−∞,−t])

P (|X1| > x)
→ q t−α .
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Examples.

• IID sequence (Zt) with regularly varying Z0.

• Starting from a Gaussian linear process, transform marginals to

a student distribution.

• Linear processes e.g. ARMA processes with iid regularly

varying noise (Zt). Rootzén (1978,1983), Davis, Resnick (1985)

• Solutions to stochastic recurrence equation: Xt = AtXt−1 +Bt

Kesten (1973), Goldie (1991)

• GARCH process. Xt = σtZt, σ
2
t = α0 + (α1Z

2
t−1 + β1)σ

2
t−1

Bollerslev (1986), M., Stărică (2000), Davis, M. (1998), Basrak, Davis, M. (2000,2002)

• The simple stochastic volatility model with iid regularly

varying noise. Davis, M. (2001)



7

• Infinite variance α-stable stationary processes are regularly

varying with index α ∈ (0, 2). Samorodnitsky, Taqqu (1994), Rosiński

(1995,2000)

• Max-stable stationary processes with Fréchet (Φα) marginals

are regularly varying with index α > 0. de Haan (1984), Stoev (2008),

Kabluchko (2009)
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2. The extremogram - an analog of the autocorrelation

function Davis, M. (2009,2012)

• For an Rd-valued strictly stationary regularly varying sequence

(Xt) and a Borel set A bounded away from zero the

extremogram is the limiting function

ρA(h) = lim
x→∞

P (x−1Xh ∈ A | x−1X0 ∈ A)

= lim
x→∞

P (x−1X0 ∈ A , x−1Xh ∈ A)

P (x−1X0 ∈ A)

=
µh+1(A× R

d(h−1)

0 ×A)

µh+1(A× R
dh

0 )
, h ≥ 0 .
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• Since

cov(I(x−1X0 ∈ A), I(x−1Xh ∈ A))

P (x−1X0 ∈ A)

= P (x−1Xh ∈ A | x−1X0 ∈ A) − P (x−1X0 ∈ A)

→ ρA(h) , h ≥ 0 ,

• (ρA(h)) is the autocorrelation function of a stationary process.

• One can use the notions of classical time series analysis to

describe the extremal dependence structure in a strictly

stationary sequence.
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Examples. Take A = B = (1,∞). Tail dependence function

ρA(h) = lim
x→∞

P (Xh > x | X0 > x) .

• The AR(1) process Xt = φXt−1 + Zt with iid symmetric

regularly varying noise (Zt) with index α and φ ∈ (−1, 1) has

the extremogram

ρA(h) = const max(0, (sign(φ))h|φ|αh) .

Short serial extremal dependence
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Figure 3. Sample extremogram with A = B = (1,∞) for 5 minute returns of USD-DEM foreign
exchange rates. The extremogram alternates between large values at even lags and small ones at odd
lags. This is an indication of AR behavior with negative leading coefficient.
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• The extremogram of a GARCH(1, 1) process is not very

explicit, but ρA(h) decays exponentially fast to zero. This is in

agreement with the geometric β-mixing property of GARCH.

Short serial extremal dependence

• The stochastic volatility model with stationary Gaussian

(logσt) and iid regularly varying (Zt) with index α > 0 has

extremogram ρA(h) = 0 as in the iid case.

No serial extremal dependence

• The extremogram of a linear Gaussian process with index

α > 0 has extremogram ρA(h) = 0 as in the iid case.

No serial extremal dependence
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3. The sample extremogram – an analog of the sample

autocorrelation function

• (Xt) regularly varying, m = mn → ∞ and mn/n → 0.

• The sample extremogram

ρ̂A(h) =
m
n

∑n−h
t=1 I(a

−1
m Xt+h ∈ A, a−1

m Xt ∈ A)
m
n

∑n
t=1 I(a

−1
m Xt ∈ A)

=
γ̂A(h)

γ̂A(0)

estimates the extremogram

ρA(h) = lim
n→∞

P (x−1Xh ∈ A | x−1X0 ∈ A) .

•m → ∞ and m/n → 0 needed for consistency.

• Pre-asymptotic central limit theory with rate
√
n/m applies if

(Xt) is strongly mixing. Asymptotic covariance matrix is not

tractable.
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• These results do not follow from classical time series analysis:

the sequences
(
I(a−1

m Xt ∈ A)
)
t≤n

constitute a triangular array

of rowwise stationary sequences.

• The quantities am are high thresholds, e.g.

P (|X0| > am) ∼ m−1 which typically have to be replaced by

empirical quantiles.

• Confidence bands: based on permutations of the data or on the

stationary bootstrap Politis and Romano (1994).
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Figure 4. The sample extremogram for the lower tail of the FTSE (top left), S&P500 (top right),
DAX (bottom left) and Nikkei. The bold lines represent 95% confidence bands based on random
permutations of the data.
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Figure 5. Left: 95% bootstrap confidence bands for pre-asymptotic extremogram of 6440 daily FTSE
log-returns. Mean block size 200. Right: For the residuals of a fitted GARCH(1, 1) model.
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4. Cross-extremogram

• Consider a strictly stationary bivariate regularly varying time

series ((Xt, Yt))t∈Z.

• For two sets A and B bounded away from 0, the

cross-extremogram

ρAB(h) = lim
x→∞

P (Yh ∈ xB | X0 ∈ xA) , h ≥ 0 ,

is an extremogram based on the two-dimensional sets A× R

and R ×B.

• The corresponding sample cross-extremogram for the time

series ((Xt, Yt))t∈Z:

ρ̂A,B(h) =

∑n−h
t=1 I(Yt+h ∈ am,YB,Xt ∈ am,XA)

∑n
t=1 I(Xt ∈ am,XA)

.
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5. The extremogram of return times between rare events

• We say that Xt is extreme if Xt ∈ xA for a set A bounded

away from zero and large x.

• If the return times were truly iid, the successive waiting times

between extremes should be iid geometric.

• The corresponding return times extremogram

ρA(h) = lim
x→∞

P (X1 6∈ xA, . . . ,Xh−1 6∈ xA,Xh ∈ xA | X0 ∈ xA)

=
µh+1(A× (Ac)h−1 ×A)

µh+1(A× R
dh

0 )
, h ≥ 0 .

• The return times sample extremogram

ρ̂A(h) =

∑n−h
t=1 I(Xt+h ∈ amA,Xt+h−1 6∈ amA, . . . ,Xt+1 6∈ amA,Xt ∈ amA)

∑n
t=1 I(Xt ∈ amA)

,
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Figure 6. Left: Return times sample extremogram for extreme events with A = R\[ξ0.05, ξ0.95]
for the daily log-returns of BAC using bootstrapped confidence intervals (dashed lines), geometric
probability mass function (light solid). Right: The corresponding extremogram for the residuals of
a fitted GARCH(1, 1) model (right).
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6. Frequency domain analysis M. and Zhao (2012,2013)

• The extremogram for a given set A bounded away from zero

ρA(h) = lim
n→∞

P (x−1Xh ∈ A | x−1X0 ∈ A) , h ≥ 0 ,

is an autocorrelation function.

• Therefore one can define the spectral density for λ ∈ (0, π):

fA(λ) = 1 + 2
∞∑

h=1

cos(λh) ρA(h) =
∞∑

h=−∞

e−i λ h ρA(h) .

• and its sample analog: the periodogram for λ ∈ (0, π):

f̂nA(λ) =
InA(λ)

InA(0)
=

m
n

∣∣∣
∑n

t=1 e−itλI(a−1
m Xt ∈ A)

∣∣∣
2

m
n

∑n
t=1 I(a

−1
m Xt ∈ A)

.
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• One has EInA(λ)/µ1(A) → fA(λ) for λ ∈ (0, π).

• As in classical time series analysis, f̂nA(λ) is not a consistent

estimator of fA(λ): for distinct (fixed or Fourier) frequencies

λj, and iid standard exponential Ej,

(f̂nA(λj))j=1,...,h
d

→ (fA(λj)Ej)j=1,...,h .
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Figure 7. Sample extremogram and periodogram for ARMA(1,1) process with student(4) noise. A = (1,∞)
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• Smoothed versions of the periodogram converge to f(λ):

If wn(j) ≥ 0, |j| ≤ sn → ∞, sn/n → 0,
∑

|j|≤sn
wn(j) = 1 and

∑
|j|≤sn

w2
n(j) → 0 (e.g. wn(j) = 1/(2sn + 1)) then for any

distinct Fourier frequencies λj such that λj → λ,

∑

|j|≤sn

wn(j)f̂nA(λj)
P
→ fA(λ) , λ ∈ (0, π) .
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Figure 8. Sample extremogram and smoothed periodogram for BAC 5 minute returns. The end-of-the
day effects cannot be seen in the corresponding sample autocorrelation function.
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7. The integrated periodogram

• The integrated periodogram2

JnA(λ) =

∫ λ

0

f̂nA(x) g(x) dx , λ ∈ Π = [0, π] .

for a non-negative weight function g is an estimator of the

weighted spectral distribution function

JnA(λ)
P
→ JA(λ) =

∫ λ

0

fA(x) g(x) dx , λ ∈ Π .

• Goal. Use the integrated periodogram for judging whether the

extremes in a time series fit a given model.

2For practical purposes, one would use a Riemann sum approximation at the Fourier frequencies. The asymp-
totic theory does not change.



25

• Goodness-of-fit tests are based on functional central limit

theorems in C(Π):3

( n
m

)0.5

[JnA − EJnA]

=
( n
m

)0.5[
ψ0 [γ̂A(0) − Eγ̂A(0)] + 2

n−1∑

h=1

ψh [γ̂A(h) − Eγ̂A(h)]
]

d
→ ψ0Z0 + 2

∞∑

h=1

ψhZh = G ,

where (Zh) is a dependent Gaussian sequence and

ψh(λ) =

∫ λ

0

cos(hx) g(x) dx , λ ∈ Π .

3not self-normalized, pre-asymptotic
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• Grenander-Rosenblatt test:

(n/m)0.5 sup
x∈Π

|JnA(λ) − EJnA(λ)|
d

→ sup
x∈Π

|G(λ)| .

• ω2- or Cramér-von Mises test:

(n/m)

∫

λ∈Π

(JnA(λ) − EJnA(λ))2 dλ
d

→

∫

λ∈Π

G2(λ) dλ .

• The distribution of G is not tractable, but the stationary

bootstrap allows one to approximate it.
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• Example. If (Xt) is iid or a simple stochastic volatility model

then Zh = 0 for h ≥ 1 and the limit process collapses into

G = ψ0Z0. But in this case

n0.5
[
(JnA − EJnA) − ψ0 (γ̂A(0) − Eγ̂A(0))

] d
→ 2

∞∑

h=1

ψhZh ,

for iid (Zh). For g ≡ 1, ψh(λ) = sin(hλ)/h and limit becomes a

Brownian bridge on Π.
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Figure 9. Grenander-Rosenblatt test statistic, g ≡ 1, for 1560 1-minute Goldman-Sachs log-returns.
Left: Under an iid hypothesis. Right: Under GARCH(1, 1) hypothesis.


