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The Setup

@ Data matrix: A p x n matrix X consisting of n observations of a
p-dimensional time series, i.e.,

X1 Xz o0 Xin

Xor Xoo -+ Xop
X=| . . )

Xo1 Xoz -+ Xpn

@ Sample covariance matrix: the p x p sample covariance matrix
(normalized) is given by

n p
xXT = nf(0) = [Z X,-tX,-tl
t=1

ij=1
@ Objective: study the ordered eigenvalues
/1(1) > /1(2) >...2> /l(p)
of the p x p sample covariance matrix XX .
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The Setup-continued

Data matrix and sample covariance matrix:

X1 Xz oo Xin

Xor Xoo -0 Xon "
X=| . . . and XX' = nl(0)

Xo1 Xoz -+ Xpn

@ Note that if the rows are independent and identically distributed
ergodic time series (with mean 0 and variance 1), then for p fixed,

A

F(0) S Ip.

@ Relation to PCA: 4(4) is the empirical variance of the first principal
component, 4z of the second, and so on.
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Known results for the largest eigenvalue

@ Assume the entries of X are iid Gaussian (with mean zero and
variance one)
@ For n — oo and fixed p, Anderson [1963] proved that

@(%—1)&N(0,1).
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Known results for the largest eigenvalue

@ Assume the entries of X are iid Gaussian (with mean zero and
variance one)
@ For n — oo and fixed p, Anderson [1963] proved that

@(%—1)3N(0,1).

@ Johnstone [2001] showed that for p,n — o0 s.t. p/n — y € (0, c0)

\/_+\/_[ A(1)
(Vva+ vp

) 1] i Tracy-Widom distribution

Vvt
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Known results for the largest eigenvalue

@ Assume the entries of X are iid Gaussian (with mean zero and
variance one)
@ For n — oo and fixed p, Anderson [1963] proved that

@(%—1)3N(0,1).

@ Johnstone [2001] showed that for p,n — co s.t. p/n — ¥ € (0, )
Vn+ \p [ A1)
Y+
@ The assumption of Gaussianity in Johnstone’s result can be relaxed
to a moment condition (c.f. Four Moment Theorem by Tao and

Vu [2011]; and work by Erdds, Johansson, Péché, Schiein,
Soshnikov, Yau and others).

5 - 1] i Tracy-Widom distribution
v+ Vb)
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Setting

@ Suppose X = (Xi)ir, i=1,...,p, t =1,...,n, with

i h(k,j)Zi-kt-j -

@ The noise (Z;;) is iid with regularly varying tails of index « € (0,4)
(infinite fourth moment), i.e

o0
Xit =
j=0k

nP(|Z11| > apx) = x ¥ as n — oo, for x > 0,
(an = L(n)n"?) and

P(Z
lim M:m and lim (—:1—pJr

xoe0 P(|Zy1] > X)
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Conditions on h

Summability assumptions on h(k, I):

(SO o]

Z Z lh(k,j)I° < co for some & < min{1, a}
k=0 j=0

and
0o oo a/2-€
Z(Zlh(k,j)l] <o, fork=0,1,2.....
t=0\ j=t

Note: latter condition is implied by

[

ij/a+e’|h(kaj)|<°°’ k=0,1,...,,
=0

for € > 0 arbitrarily close to zero.
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Setting (cont)

@ Let A4,..., 1, be the eigenvalues of

XXT, if @ € (0,2),
XXT — E(XXT), ifae(2,4).

@ Let (Ds) be the iid sequence given by

n
. -0 - 322,
t=1

Note:

@ The D play a key role in determining the asymptotic properties of the

ordered eigenvalues A1y > -+ > A(p).

@ Large deviations result implies pP(D; > a2,x) — x~%/? for a € (0, 2).

np
(Mean correct Dy for a € (2,4).)
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One more thing!

Set h; = (hi, hj1,...)" and define the matrix H = (hg, hy,...,). Let

M=HH.
i.e., the (i, j)th entry of M is
Mj=hlh;=> iy, i,j=01,..,.
1=0

By construction, M is symmetric and non-negative definite and has

ordered eigenvalues
Vi=>Vo2>Vg2>---

Let r < oo be the rank of M so that v, > 0 while v,;.1 = 0if r < co.
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One more thing!

Seth; = (h,‘o, hi, .. .)T and define the matrix H = (ho, hy,..., ) Let

M=HH.
i.e., the (i, j)th entry of M is
Mj=hlh;=> iy, i,j=01,..,.
1=0

By construction, M is symmetric and non-negative definite and has
ordered eigenvalues
Vi>2Vo2>Vg2>---

Let r < oo be the rank of M so that v, > 0 while v,;.1 = 0if r < co.
Remark: M is the covariance matrix of the vector X* = (X, X, .. .)T,

[ee)

X' =Y h(i.)Z, {Z)~1D(0,1)
I=0
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Example

Xit = Zit+Zit-1—(2Zi21t — 2Zi-1,1-1)

which has non-negative eigenvalues vy = 8 and vo = 2 (r = 2).
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Theorem (Main result to the point process convergence)
Let p = p, — oo be a sequence satisfying certain growth conditions (to be
specified later) and suppose k = k, — oo is any sequence such that
k% = o(p).
a) Ifa €(0,2), then

) > -+ > A(p) are the ordered eigenvalues of XX .
@ 0(1) 2 -+ = O(p) are the ordered values from the set
Wi i=1,...k, j=1,2,...,}.

Note: 6(1) = Vi D(1), 5(2) = V2D(1) V vy D(z), etc.
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Theorem (Main result cont)
b) Ifa € (2,4), then
2 ~ =P
a,,p i:I”anp|/l(,-) —5,'| -0, n- o,
where

@ A1ys-es /"l(p) are the ordered eigenvalues ( ;) according to their
absolute values.

@ Oy =2 S(p) are the ordered values from the set
(D, -ED)v;, i=1,....k, j=1,2,...,}.

Davis (Columbia University)
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Theorem (Point process convergence)

Let p = pp, — oo be a sequence satisfying certain growth conditions (to be
specified later). Then we have the point process convergence,

p r oo
No = D egn =N =20 D ey
i=1 j=1i=1

wherel'; = Ey + ... 4+ E; is the cumulative sum of iid standard (i.e., mean
one) exponentially distributed rv’s,

Note: The point process N* = > \° | 2/ is a Poisson process with
E(N*(dx)) = a/2x~/>"1dXx.
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The largest eigenvalues

Let d(1) = di2) = - - - be the ordered values of the set

yr2lei=1,....j=1.2..,)

i
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The largest eigenvalues
Let d(1) = di2) = - - - be the ordered values of the set
2o i=1,...,j=12..,)

day = vl 2%, diy = max(vel 2%, viT52/)
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The largest eigenvalues
Let d(1) = di2) = - - - be the ordered values of the set
2o i=1,...,j=12..,)

day = vl 2%, diy = max(vel 2%, viT52/)

@ The theorem implies the joint convergence of the m-largest
eigenvalues

ang (A0 Am) = (A1) ) -
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The largest eigenvalues
Let d(1) = di2) = - - - be the ordered values of the set
2o i=1,...,j=12..,)

day = vl 2%, diy = max(vel 2%, viT52/)

@ The theorem implies the joint convergence of the m-largest
eigenvalues

a8 (At Am) = (oo i)
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The largest eigenvalues
Let d(1) = di2) = - - - be the ordered values of the set
2o i=1,...,j=12..,)

day = vl 2%, diy = max(vel 2%, viT52/)

@ The theorem implies the joint convergence of the m-largest
eigenvalues

a8 (At Am) = (oo i)

/1(1) i VA4 I

In fact, we have more!!
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Self-normalization

Under the conditions of the theorem, the following limit results hold.
Q@ Ifae(0,2),then
P r oo
- d -2/ -2/a
an‘?(/l(ﬂ,Z/l,') - (I’12/ ,ZZeri 2/ ),
i=1 j=1 i=1
and in particular,

A1) d 12 r1_2/a
9 , N—> oo,
/l1+"'+/lp v1+...+vrz;>i1rl_—2/a
Q Ifae(2,4)then
1 r—2/(r
(1) _d> Vi 1 n— o

’

A+ 42 Vi+...+ Vv 60/2’

where

T —2/a —2/(1
Saj2 = 'y'[‘g Z (ri ey ~ T, ’{r,‘Z/">y})
i=1
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Example (cont)

Model: Xit = Zit + Zjt-1 — (2Zi-1t — 2Zi_1 t-1)
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Example (cont)

Model: Xit = Zit + Zjt-1 — (2Zi-1t — 2Zi_1 t-1)
Then,

(5]

2 d
Noi= D €aga = N =2, (€8r;2’“ * 62r,f2’“) '
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Example (cont)
Model: Xit = Zit + Zjt-1 — (2Zi-1t — 2Zi_1 t-1)
Then,
P g o0
. ':1 ! !

i=1 i

Results:
d ___
] 355/1(1) - 8F12/“
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Example (cont)
Model: Xit = Zit + Zjt-1 — (2Zi-1t — 2Zi_1 t-1)
Then,

P o
Np = Z €, 2/1, Z (68r;2/a + 62r;2/n) .

i=1 i=1
Results:
d _
-] 352/1(1) - 8F 2/

o a,2(A(1). A(2)) = (sr 2le ar 2/ v 8r2')

Quantitative Methods in Finance
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Example (cont)
Model: Xit = Zit + Zjt—1 — (2Zi—1t — 2Zj_1,1-1)
Then,

P o
Np = Z €, 2/1, Z (68r;2/a + 62r;2/n) .

i=1 i=1
Results:
d _
) 352/1(1) — 8F 2/

o a,2(A(1). A(2)) = (sr 2le ar 2/ v 8r2')
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QQ-Plot via ratio of partial sums to A1

Model: Xit = Zit + Zit-1 — (2Zi-1t — 2Zj_1 +-1), Pareto noise wih @ = 1.5
and a = 3.0, replications = 200

n=1000,p=200,N=200,c=(1,1,-2,2),a=1.5,pareto,non-centered

08 08 10
I i

04

Normalized partial sums of the tranf. largest ey
02

0.0
1

200
QQ-plot via ratios of partial sums of the largest eigenvalue
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QQ-Plot via ratio of partial sums to A1

Model: Xit = Zit + Zit-1 — (2Zi-1t — 2Zj_1 +-1), Pareto noise wih @ = 1.5

and a = 3.0, replications = 200

n=1000,p=200,N=200,c=(1,1,-2,2),a=1.5,pareto,non-centered

Normalized partial sums of the tranf. largest ey
04

200
QQ-plot via ratios of partial sums of the largest eigenvalue
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QQ-plot via ratios of partial sums of the largest eigenvalue

i/200
n=1000,p=200,N=200,c=(1,1,-2,2),a=3,pareto,centered
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Example: Ratio of largest to second largest, A(1)/A2):

Recall:
A 4, if 87,%/% < 2,2/,
20) 9 r1—2/“ _
A(2) Y otherwise
2

It follows that

Jim P(14) =4de) = P(2r*" > 8r,”")
E;
Ei+ E2

<2 ") =2""= 354(a¢=15)

and

. Eq - -
lim P(A(1) = 4424 2x)=P 27%E; < 8x7/?).
Aim P(At) = 44@)l ) > appx) = P(g— 5 < 27IE < 8777
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E4

n—oo

<27%) =27 = 354(a = 1.5)

n=1000,p=200,N=200,c=(1,1,-2,2),a=1.5,pareto,noncentered

centeredA(1)
4000 6000 8000
|

2000

0
i

T T T
0 500 1000 1500 2000

centered A(2)
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. E
lim P(/l(1) = 4/1(2)) = P(—E1 —i—1E2 <

n—oo

27%) = 27 = 354(a = 1.5)

n=1000,p=200,N=200,c=(1,1,-2,2),a=1.5 pareto,noncentered P(A(1)=4A(2)]A(1)>x) from simulation and asymptotic distribution
8 o
S = imuiation
asymptotic distribution |~~~ __ - --=
| P S
b
8 |
g o
=
<
A
= = =
® 8 Suic
g v 3
= ¥
3 = 57
a
g 0 |
S S
<
=
S
o 4

T T T T T T T
0 500 1000 1500 2000 100 200 300 400 500

o

centered A(2) |
n=1000,p=200,N=1000,c=(1,1,-2,2),a=1.5,pareto,noncentered

liMp—oo P(/l(1) = 4/1(2)|/l(1) > a,%px) = P( E151E2 <27YE; < 8X_a/2).
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Growth conditions on p,
Case P(Zy > x) ~ cx™*: Here Lp(x) = Clog(x).

@ Fora €(0,2),
pn = O(nP), foranys>0.

Can allow for a touch faster growth rate (p, = O(exp{cn}), where
c2/n — 0inthe a € (0,1) case.

@ Fora € (2,4),

pn=0(). Be(0.(4-a)/[2(a-1)).

This excludes the case p, ~ cn.
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Elements of the proof I:

Special case: Xj; = 6pZ;t + 61Zi-1

n n

2 2 -2 2 2
int = Zeozi,t + 6014 1t+29091ZZ:tZ:1t
t=1 t=1 ﬁ/—’ =1 ——
tail index «/2 tail index o

= QSD,' 92D,1+0p( p)
and

n
ZX,-tXi+1,t = 6ot Z t+ op(a
t=1

= 6pb4 D,‘+ Op( np)
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Elements of the proof I:

Special case: Xj; = 6pZ;t + 61Zi-1

n n
2 2 -2 2 -2
ZX = D BZh+ ezu+zeoe1zznzm

t=1 t=1
tail index /2 tail index «

= G3Dj+ 67Dy + 0p(a5)

n
ZXitXi+1,t = 90912 2+ 0p(a
t=1

= 6pb4 D,‘+ Op( np)

and

XX X[, X 6 6ob4 6> 0
~ 0 . 1 .
( ) = (i % Joe(G o)

0 O

X1 X XT X 0 0

i+1
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The covariance matrix can be approximated by
p
XXT =" DiM; + 0p(ahy)
i=1
where M; is the p x p matrix consisting of all zeros except for a 2 x 2 matrix,

62 6o0
— 0
v=( o, )

whose NW corner is pinned to the i position on the diagonal. For
example,

65 66y 0 --- 0 0 0 0 0
bty 65 0 0 0 65 6o 0
M=| 0 0 0 0| My=|0 6061 67 0
0 0 0 0 O 0 0 0 0 O
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Denote the order statistics of the D;'s by D1y > D) = -+ = D) and write
DL,- = D(,-).

Then,
o XXT =37, DMy, + 05(a3,) in the sense that

p
_ P
e IXXT = " DiMillo = 0,
i=1

where

[|All, = \/Iargest eigenvalue of AAT (operator 2-norm).
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Stochastic volatility models—special case

Suppose the rows are independent copies of the SV process given by
Xt = O'tZt

where (Z;) is iid RV(a) and (Ino?) is a purely nondeterministic stationary
Gaussian process (this can be weakened), independent of (Z;).

Theorem  Suppose pn, N — oo such that

lim sup Pn < oo, forsome B > 0 satisfying

n—oo nﬂ

Q@ B<xifae(0,1), and
Q p<Eifac(1,2).
Then, we have the point process convergence,

i=1

p ; oo
Np := Z €21, N = Z er;Z/(y .
i=1
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Stochastic volatility models—special case

Point process convergence:

p

(o)
d
Npi= > €ziy = N=, -2t -
i=1

i=1

Remarks:
@ Proof uses a large deviation result of Davis and Hsing (1995); see
also Mikosch and Wintenberger (2012).

@ Likely that we can weaken the restriction on 8

@ Similar results hold for GARCH processes if X; is RV(a) with
a €(0,2).
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