
Dynamic Portfolio Choice with Parameter

Uncertainty

by

Jakša Cvitanić (Social Sciences, Caltech)

Ali Lazrak (Finance Dept., University of

British Columbia)

Lionel Martellini (EDHEC, Nice)

Fernando Zapatero (FBE, USC)

1



OUTLINE

• Motivation and applications: investing in

hedge funds; value of analysts recommen-

dations

• The model and the optimal portfolio

• Data calibration to hedge funds and em-

pirical results

• Value of analysts recommendations

:) Disclaimer: We are not responsible for your

profits/losses if you follow the method of this

paper!!! :)
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Treynor and Black (1973)

• Consider α, the deviation from CAPM re-

turn

r̄A − rf = αA + βA(r̄M − rf)

• Objective: allocate between market and A

• Denote by σεA the firm-specific risk of A

and

γA =
αA/σ2

εA

(r̄M − rf)/σ2
M

• Solution: invest proportion πA,

πA =
γA

1 + (1− βA)γA
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The Model

• We have three types of securities

• A risk-free security that pays a constant

interest rate r

• A market portfolio, whose change in price

dS0 satisfies

dS0/S0 = µ0dt + σ0dW0

• Risky securities whose change in price dSi

satisfy

dSi/Si = µidt + σidW0 + σεidWi

“Noise terms” Wi are sources of risk, nor-

mally distributed
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The Investor

• We assume a risk-averse, non-myopic in-

vestor with wealth XT and maximizing util-

ity

max
π

E
(XT )1−a

1− a

• Risk premium:

θ = σ−1[µ− r1]

• Investor knows σ, but is uncertain about µ:

θ∼N (θ̄,∆)

So, θ̄ is the initial estimate of risk-premium

θ and ∆ is its initial variance-covariance

matrix.
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RELATED LITERATURE

• Black and Litterman (1992), Detemple (1986),

Lakner (1995, 1998), Brennan and Xia (2001),

Karatzas and Zhao, X. (2001), Rogers (2001),

Sekine (2001), Zohar (2001), Stojanovic

(2002), Pastor and Stambaugh (1999, 2000),

Baks, Metrick and Wachter (2001).

• We have explicit formula in multi-dimensional

setting
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SOLUTION

• We are looking for πi(t) =percentage (pro-

portion, weight) of investor’s wealth in-

vested in stock i at time t

• P orthogonal, D diagonal matrix with ele-

ments di:

∆ = P ′DP

• Denote A−1(t) diagonal matrix with ele-

ments A−1
i (t):

Ai(t) = a−(1−a)δi(t)(T−t), δi(t) :=
di

1 + dit
,

With certainty, Ai(t) ≡ a

• Then the optimal portfolio weights

π = (π1, . . . , πn)
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are given by

π(t) = (σ′)−1P ′A−1(t)P θ̄(t)

where θ̄(t) is the estimate of risk-premium

at time t.



Digression on learning/estimation

• Suppose a single asset,

dSt

St
= µdt + σdWt

• The investor knows σ

• The investor is uncertain about µ,

µ∼N (µ̄, γ)
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• The investor sees the dynamics of the stock,

dSt

St
= µ̄tdt + σdW̃t

• Here, W̃ is the “innovation” noise

dW̃t = dWt +
µ̄t − µ

σ
dt

•
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• The “observed” expected return changes,

dµ̄t =
γt

σ
dW̃t

• The volatility decreases in a deterministic

way

γt =
γ0σ2

σ2 + γ0t

• It becomes a familiar problem with µ̄ in-

stead of µ

• However, µ̄ is stochastic and for power util-

ity generates hedging components
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ALPHA-BETA INTERPRETATION

• Define estimated “alpha” by

µi = r + βi (µ0 − r)︸ ︷︷ ︸
normal return

+ αi︸︷︷︸
abnormal return

• Define “beta” as βi = σi
σ0

• Assume no prior correlation, ∆ = Id

• Optimal portfolio weights:

πi(t) =
αi(t)

σ2
εi

Ai(t)
, π0(t) =

µ̄0(t)− r

σ2
0A0(t)

−
n∑

i=1

βiπi(t)

where π0 is money held in the risk-free as-
set.

• With certainty, Ai(t) = a and we have the
risk-adjusted Sharpe ratio
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• These are “alpha-driven” holdings (that is,

in excess of their participation in the mar-

ket portfolio)

• Increase with expected abnormal return

• Decrease with specific risk, risk aversion,

prior variance and time to maturity
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Example: One “hedge fund”

• Funding for the investment in the hedge

fund: When β1 < 1/2 the majority comes

from risk-free security

• Low-beta hedge funds, substitutes of risk-

free security, high-beta hedge funds, sub-

stitutes of the market portfolio (risky in-

vestment)
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Correlated Priors

• Assume only two “hedge funds” with cor-

related priors

• Suppose that the market expected return

is known

• Introduce p, positive if positively correlated

and negative otherwise

• Optimal weights for two “hedge funds”:

π1 =
1

σε1

(
p2

A1
+

1− p2

A2

)
α1

σε1

+
1

σε2

(
p
√

1− p2
(

1

A1
− 1

A2

))
α2

σε2
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• When they are negatively correlated,

– Proportions are larger than in the un-

correlated case

– Higher appraisal ratio αi/σεi of one stock

means higher investment in both

– Diversification result

• When they are positively correlated, hold-

ings in one decreases with the appraisal ra-

tio of the other
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Example

• Setting: risk free asset, the market port-

folio and the Fama and French SMB and

HML portfolios

• We mimic the calibration from Brennan

and Xia (2001)

• Our results do not match exactly those in

Brennan and Xia (2001)

• Importance of hedging demand, especially

with prior correlation
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a 2 3 4 5
Myopic demand

Market 1.7793 1.1862 0.8896 0.7117
SMB 1.0399 0.6933 0.5200 0.4160
HML 4.3871 2.9247 2.1935 1.7548

Hedging demand with prior correlation
Market -0.4622 -0.3781 -0.3068 -0.2559
SMB -0.2701 -0.2210 -0.1793 -0.1496
HML -1.1395 -0.9322 -0.7564 -0.6310

Optimal demand with prior correlation
Market 1.3171 0.8081 0.5829 0.4558
SMB 0.7698 0.4723 0.3407 0.2664
HML 3.2476 1.9925 1.4371 1.1239
Hedging demand without prior correlation

Market -0.6827 -0.5371 -0.4286 -0.3542
SMB -0.0938 -0.0940 -0.0821 -0.0712
HML -1.4884 -1.1861 -0.9517 -0.7889
Optimal demand without prior correlation

Market 1.0966 0.6491 0.4610 0.3575
SMB 0.9461 0.5993 0.4379 0.3448
HML 2.8987 1.7386 1.2419 0.9659
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Application to Analysts’

Recommendations

• Many papers on analysts’ recommendations

(AR) New: We have an utility-based frame-

work
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Data

• We use IBES data on AR

• Available 11/93 through 12/02

• Then we use CRSP for individual stocks,

market and T-Bills

• We use 2,280 stocks with average coverage

of more than 4.5 analysts

• Average recommendation is 2.03, correspond-

ing to a “buy”
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Implementation

• Translate AR into alphas

• Initial mapping:

– “Strong buy” corresponds to α = 2
ω%

– “Buy”corresponds to α = 1
ω%

– “Holds”corresponds to α = 0%

– “Sell”corresponds to α = −1
ω%

– “Strong sell”corresponds to α = −2
ω%
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• We use a scaling coefficient ω and consider

several values for it

• We call this mapping “raw” alphas

• Several refinements:

– “Centered” alphas (zero average)

– Changes in alphas
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• With respect to the other parameters, we

estimate them using two methods:

– A rolling window of three years

– The whole sample

The advantage of the latter is that we use

better estimates for the “objective” pa-

rameters of the exercise
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• With respect to uncertainty over alphas,

we assume two components:

– Standard deviation of AR

– Average of the dispersion over the whole

sample period

• With respect to the correlation, we try two

approaches:

– Ad hoc numbers, with comparison across

them

– Sample correlations
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• Problem: analysts upgrade information

– Is this going to match the formula for

Bayesian upgrade?

• We assume analysts observe firm-specific

risk and do not observe market risk

• Analysts have information about market risk

and upgrade priors in a Bayesian way

• Investors do not observe neither

– We assume analysts upgrade in a Bayesian

way given their information

24



Accounting for “Expected Utility”

• We want to study the impact of AR on

expected utility

• The effect of AR on one path is not enough

• We try two approaches:

– Bootstrapping

– We set up portfolios of securities (at

random) and we average over a large

number of portfolios

• We report the latter

25



• Assume we start with a level of wealth W0

• We compute the monetary equivalent ξ such

that W0 + ξ invested using Merton (1971)

optimal passive strategy would yield the

same expected utility as the portfolio bases

on AR

– When we use bootstrapping, we gen-

erate many possible paths and average

over them

– When we compute expected utility av-

eraging over portfolios, we only use one

path
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Basic Results and Extensions

• Overall we find that AR are not very useful

• Changes in alphas mapping gives higher

utility. Correlation among priors improve

the usefulness of AR

• In a final exercise, we split each portfolio in

two subportfolios, according to the number

of AR

– AR are more useful when there is broader

coverage

– Counterintuitive or conflict of interests?
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ω Centered alphas Change in alphas Raw alphas
15 -0.02% 0.35% 0.15%
25 0.03% 0.29% 0.29%
35 0.03% 0.23% 0.25%
45 0.03% 0.19% 0.21%
55 0.03% 0.16% 0.18%
65 0.02% 0.13% 0.16%
75 0.02% 0.12% 0.14%
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ω high coverage low coverage p-value
15 0.97% -0.89% .1400
25 0.58% -0.32% .0986
35 0.42% -0.18% .0831
45 0.33% -0.12% .0753
55 0.27% -0.09% .0705
65 0.23% -0.07% .0674
75 0.20% -0.06% .0651
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Utility gains significant for optimal vs naive

strategies

A: xL = 60%;xS = 20%.
Horizon

a 1 3 5
2 8.04% 26.60% 49.15%
5 4.21% 13.22% 23.09%
8 3.95% 12.34% 21.44%

B: xL = 40%;xS = 10%.
Horizon

a 1 3 5
2 7.84% 25.94% 47.89%
5 3.60% 11.27% 19.60%
8 2.93% 9.06% 15.59%
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Conclusions

• Closed form solutions

• Dynamic model of investment in actively

managed portfolios

• Application to analysts’ recommendations

and to hedge funds

31


