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This presentation is devoted to modeling multiple default times in presence of some

extra information.




Marked Point Processes

Marked Point Processes

We recall some results on Marked Point Processes.

A MPP M is a sequence (o, Yy )r>1 where
1. The random variables oy, satisfy 0 < o < 011
2. The r.vs Y, (the marks) are valued in R?

We note (My,t > 0) the history of M (the marked point process filtration
generated by M) so that M, = o{(o1,Y1),..., (0K, Yz)}.

To any MPP, we associate the random measure 1 defined as

p(]0,¢] x C) = Z Li(o),vi)€l0,8]xCY
k

for C € B(R* - 0)




Marked Point Processes

For any integrable r.v. U, setting 0y = 0, one has

]E(]l{t<0'k—{—1}U’M0'k)
P(t < Ok+1 ‘Mo'k)

E(U|Mt> — Z ]1{O'k<t§0'k+1}

k>0




Marked Point Processes

An important tool is n*t1*(dt, dy), the regular version of the conditional
distribution of (og11, Yii1) w.r.t. M, .

The compensator of the point process M is the (unique) random measure v(dt, dy)
such that for any (bounded) predictable function K, the process K x (u — v) is a

local martingale, where
(=) = [ Kwssy)(u(wsds, dy) — viwsds, dy)
10,¢] xR

given by

PR (dt, dy)

v(dt,dy) = Zﬂ{ak§t<0k+l}nk—|—1|k([t co[xR9)
k>0 ’

P((O-k—l-la Yk—i-l) S (dtv dCI}) |M0'k>

— 1 or<t<lo
/; {0 <t<ok41} P(Ok_H > t‘-/\/lak)




Ranked Default Times

Ranked Default Times

We restrict our attention to a finite number of ranked default times (ox, k < n). We
set 09 =0,0,+1 = o0 and o = (01,...,0,). This is a MPP (without marks!)

We assume that the vector o has a density n(u), i.e.,

Elf(o)] = [ [flu)n(u)du,

RY
Here, we make use of the following notation
® U — (’U,l, CU 7un)7 U (k:p) = (uka T 7up)7 U(p) = U(1:p)
o du =duy---duy, dug.y) = dug...du,
e u > 0 stands for u; > 6; for all i € {1,--- ,n}

® »/it,—l—oo[ f(u(k:n))du(kn) = jit,—i—oo[ duk Tt L/it,—i—oo[ dun f(uk, ce ,un).
The (marginal) density of o () is

_|_




Ranked Default Times

Furthermore, on o, <t < 0g41

P(ogr1 > 0| M) :/ n* R (s)ds
f

where
1
k+1|k _ / d
n S Uu n)TN\O S, U nm
(5) U(k)(a'(k)) R:—(Hz) (k+2:n) ( (k) (k+2 >)
It follows that
E(f(@)lMe) = | f(w)n" (du)
-

where, on the set o <t < o1

]1{t<u(k—|—1:n)} 5

[ TR (s)ds 7

i (du) =

(du(k)) U(u(k), u(k+1:n)>du(k+1:n)




Ranked Default Times

Let Ny = > ,_; 11, <t3. The compensator of N is

A /t/\an nil Tre 1 k—|—1|k( )
t = Asds = / S 7 s)ds
0 k=0 "%k fs 77k+1|k(y)dy

Remark: it is useful to remember that the support of n is contained in
{fu <wug < -+ <upt.




Ranked Default Times with Reference Filtration

Ranked Default Times with Reference Filtration

We assume now that a reference filtration IF is given and that there exists a family

of F7; ® B(R" )-measurable functions (w,u) — a;(w,u) such that
Elf(o)|F]= | [flu)ar(u)du,
RY
We call the family a(w) the F-conditional density of . Note that «q is the
unconditional law of o.
We denote by G the filtration G; = F; V M;.
It can be useful to keep in mind that, if one defines

1
d@b:t\/a(a) — md]})}‘ft\/a(a)

then, F and o are independent under Q, and Q|z, = P|#,.




Ranked Default Times with Reference Filtration

For any fixed u € R, the process (a;(u),t > 0) is an F-martingale. The joint

conditional survival law is given, for any 8 = (61,--- ,0,) € R, by

S,(8) = IP)(0'>0|]-",5):/oodul---/oodunat(u):/Booozt(u)du

01 0n

The marginal density of o () with respect to F; is the F; ® B(R )-measurable
(k)

function a, (u(k)) given by

k
Oég )(U(k)) — /Rnk th<U)dU(k_|_1:n)

_|_

and, on o <1t < opa1,

P(ok4+1 > 0|Ge) =/ afH'k(s)ds

0
where
k+1lk 1
art |

¢ (8) — &gk)(o_(k))

/ dU(k+2,n)at(0'(k)7 Sy u(k+2>n))
Rn—(k+2)

10



Ranked Default Times with Reference Filtration

It follows that
E(f(o)|G:) = fuw)p(du)

RY

where, on the set o <t < 0g41

Il{t<u(kz+1,n)} 5
[ o (5)ds

t

i (du) = o (AU(r)) ar(w) dugq1 n)

Furthermore, for Yr(u) a family of positive Fr adapted random variables,

E(Yr(o)|Gr) = / E(Vr (w)ar () | ) e ()

1 oL<t<opi1 >
— Z oo{ kk_—|—1|kk+} / E(Yr(w)ar(w)|[Fe)|wg, =0 w) AW (k+1,n)
—o J; (s)ds Jt

11



Ranked Default Times with Reference Filtration

Let Ny =>4 i, <t3. The compensator of NV in the filtration G is

tN\o, Or4+1/\t k+1|k(8) Or4+1/\t
At:/ )\ds—Z/ IRPaLTmY ds—Z/ AL g
0 U

—|—1k¢ k—{—1|kz S
A| Iz ’““'k((«i)

where . Note that )\I;H'k depends on o ).
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General Construction

General Construction

The random variable = is a random variable of law 7 taking values in a complete
metric space F with countable base and equipped with Borel o-algebra B(F). The
main example is = = (7%, Yx)1<k<n Where T is a sequence (not necessarily ranked)

of random times and Y, some marks.

Without loss of generality, we assume that = is the canonical map from F in F,
defined as Z(x) = x so that E(f = [ f(x)n(dx) where 7 is the law of =.

13



General Construction

The “default-free” market risk is represented by a filtered probability space (2, F, P).

We denote be o the ranked sequence of times, the filtration M; is the one of the
associated MMP M = (o, Y, k-

The filtration I is considered as well on €2 or on the product space.

The filtration H is defined as H; = F, @ B(F) = F; @ 0(Z).

The filtration G is G; = F; V M..

All the filtrations are defined in such a way that they satisfy usual conditions.

14



General Construction

We start with the fundamental case where the two sources of risks are independent

(i.e., the random variable = is independent from F,,), the probability measure is
the product measure @O(dw, dy) = P(dw) ® n(dx).

15



General Construction

The conditional law of = given M, is denoted by nM.
Given a non-negative measurable function Y on (2 X E, we define

(V) = [E Y ()i (dx) = B IY (L 5)| Fo v M

which is F V M-measurable.

One should take care about the notation: n™ refers to the filtration F., V M, and

not to M.

Note that, from the independence assumption, Eo(f(E)M/lt) = Eo(f(E)M/lt V Foo)-
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General Construction

As an exemple, let us study the case where = = (71, 72), with law 7 and define
G(t,s) = @0(7'1 > t, 75 > s). Then, denoting by M the filtration generated by

]]-Tigta

E(f(Tl, 7'2)‘./\/175) — It(l, 1)f(7'1, Tg)—l—It(l, 0)\111,0(7'1, t)—l—It(O, 1)\11(),1(15, 7'2)—|—It(0, O)\P0,0(t)

where
1 0
Uy ot = — 01G(u, d
() = g [ oG dy
1 O
W1 (t = — O-G(d
1(t) = g [ 0)nGdu)
1
Uoolt) = 1) / / f(u,v)G(du, dv)
It(17 1) — H{Tlgt,ngt} ) ( 70 — Il{7'1>t To >t}
It(170) — I]‘{Tlgt,T2>t} ’ ( 71) - 1]‘{7'1>t,’7'2§t}
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General Construction

Given a non-negative measurable function Y on Q x E (that is (w, x) — Y (w, X)),
there exists a family of F-adapted processes, parametrized by v, say Y7 (), such
that P-a.s, for any x € F, and for any t > 0, Y7 (x) = E[Y (-, x)|F].

An useful example is Y = Xh(=Z) where X € F.
We shall call Y7 the universal version of conditional expectation.

One has EO(Y]Ht) = Y7 (£) and, for any H;-measurable r.v. Y;

E(VilG:) = /E Vi) (dx) = pM(Y)

Hi = Ft Vo(=2) 18



General Construction

Given a non-negative measurable function Y on Q x E (that is (w, x) — Y (w, X)),
there exists a family of F-adapted processes, parametrized by vy, say Y7 (), such
that P-a.s, for any x € F, and for any t > 0, Y7 (x) = E[Y (-, x)|F].

An useful example is Y = Xh(Z) where X € Fo.
We shall call Y7 the universal version of conditional expectation.
One has EO(Y]Ht) = Y,” (2) and, for any H;-measurable r.v. Y;
—0
B'(4i16) = [ Yibon(@d0) = i (v)
In the same way, if K = K(X, M;) where X € F,, nd M; € M,;, one has

E'(K|G,) = E (K(X,m)|F)ment, = KT

He = Fi Vo(E) 19



General Construction

Consider now a non-negative measurable random variable Y on ) x E. The
calculation of its conditional expectation w.r.t. G; can be done in two different ways
as shown below:

On the one hand, using the notation of the universal martingale

E'[Y|G] =E [E[Y[H]|G] = E Y7 |G| = ' (Y{)

On the other hand, using the intermediary o-algebra F,, V M;

MG = MY

E[Y|G]=FE [E'[Y|Fx vV M]|G]=F

20



General Construction

In the general case, we characterize the dependence between = and F = (F;);>0 by

- - —=0
a change of probability w.r.t. the probability measure P .

We suppose that there exist an F-stopping time 7' and a strictly positive
Fr ® B(E)-measurable random variable S, (w, x) with expectation under P
equal to 1 and we define the probability measure P on the product space by

P(dw, dx) = Br(w, \)P (dw, dx)

In the following, we suppose the process 87 > 0 where 37 (x) = (BT( X)|Hz)-

21



General Construction

We can generate different types of density processes depending on the structure

information:
gt = E[Br|H) =BT (E)
BM = E[Br|Fe vV My = nM(Br)
89 = E'[Br|G]) = (BT = nM(6T)
Then

E(f(E)| MV Foo) = / FOOTM (dy) = /f <><>
E(f(2)|G:) = /f tng /f Bt )5; (dx)

and, for any integrable G measurable random variable Y

EO[YTBT‘gt] _ it (YrBr))
E[5r|G:] i (B7)

E[Yr |G:] =

H+ th\/J(E) 22



General Construction

The density of 7 under Q is

He = Fi Vo(E) 23



General Construction

The computation in a closed form is not difficult, even if tedious. Let us present the
case where Z = 7 (unidimensional case), with law with density 7, and F is a

Brownian filtration. Furthermore, assume that 8 so that

Bi(x) = exp (/Ot Ws(x)dBs — %/Ot(\lfs(x))st>
Then, E(8r(Z)|G:) = L; where

dL; = Ly (¢Y+dBy + v d M)

Jo Wi (u) B (w)n(u)du
¢ =1 T L o0 +1 T v (T)
T [ Bwn(wd T
_ Be(t)G(t) .

24



General Construction

Let us mention that one can obtain a characterization of martingales in the large
filtration, in terms of martingales in the reference filtration. Let us reduce our
attention, for simplicity, to the case where = = 7. Then, a process

Vi =vylier + 1<y (7) is a G martingale if and only if
1. For any u, the process y:(u)a:(u),t > u is an F-martingale
2. The process E(Y;|F;) is an F-martingale

In the multidimensional case, for a ranked sequence, the process

n—1

}/t — Z yf(a(k))ﬂ{ak§t<ak+1)}
k=0

is a G martingale if and only if

k
yF (O )P(0k41 > t|G) )+/ezid@(kﬂzn)ﬂ{0k+1<t}y§;+11040k+1(9)

are martingales

25



Examples

Examples
Gaussian model

Let f;,i =1,...,n be a family of functions with L? norm equal to 1 and
X; = [37 fi(s dB’ where B* are F-BMs with correlation p*.

Then
IP)(XZ >0,,Vi=1,... ,n|.7:t)

— @* ( 01 1 977'

n S~ Mgy = — MMy ;
vV1-=pi 1 —p5

where
o m! = fo fi(s)dB!

o O (z1,...,2n;v(t)) =P(GY > 2, Vi=1,...,n)
where G(t) = (th),i =1,...,n) is a Gaussian vector, centered, with covariance
matrix () with
i) = [ B s,
t

Let H; be an increasing function from R to Rt with inverse h; and 7, = H;(X;).

26



Examples

Then
P(Ti > t@',V’L' = 1, ,n\ft)
sk hi (tl) hn(tn) n
(I)n( 5 1:5[7 y 5 mt ;V(t)vt)
1— P1 1 — Pn
In particular,
hi(t:)

P(Ti >ti):q)*( )

V1-p;

where ®*(x) is the survival function of a standard Gaussian law.

27



Examples

Uniform law (From Kchia and Larson)

On start with r.v. U;, with exponential law, independent from F and R a r.v. with

given conditional density p;(r). Set 7, = RU;. Then

IP)(TZ' >t =1,.. n|j’:t / H 1——
1=1

28
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