Zagreb, 11 may 2012 Croatian Quants Day

Monique Jeanblanc, Université d'Évry-Val-D'Essonne

Multidefaults

Joint work with N. El Karoui, Y. Jiao

Financial support from Fédération Bancaire Française

1

This presentation is devoted to modeling multiple default times in presence of some extra information.

Marked Point Processes

We recall some results on Marked Point Processes.

A MPP \mathbb{M} is a sequence $(\sigma_k, Y_k)_{k \geq 1}$ where

- 1. The random variables σ_k satisfy $0 \leq \sigma_k < \sigma_{k+1}$
- 2. The r.vs Y_k (the marks) are valued in \mathbb{R}^d

We note $(\mathcal{M}_t, t \ge 0)$ the history of \mathbb{M} (the marked point process filtration generated by \mathbb{M}) so that $\mathcal{M}_{\sigma_k} = \sigma\{(\sigma_1, Y_1), \dots, (\sigma_k, Y_k)\}.$

To any MPP, we associate the random measure μ defined as

$$\mu(]0,t] \times C) = \sum_{k} 1\!\!1_{\{(\sigma_k, Y_k) \in]0,t] \times C\}}$$

for $C \in \mathcal{B}(\mathbb{R}^d - 0)$

For any integrable r.v. U, setting $\sigma_0 = 0$, one has

$$\mathbb{E}(U|\mathcal{M}_t) = \sum_{k \ge 0} \mathbb{1}_{\{\sigma_k < t \le \sigma_{k+1}\}} \frac{\mathbb{E}(\mathbb{1}_{\{t < \sigma_{k+1}\}}U|\mathcal{M}_{\sigma_k})}{\mathbb{P}(t < \sigma_{k+1}|\mathcal{M}_{\sigma_k})}$$

An important tool is $\eta^{k+1|k}(dt, dy)$, the regular version of the conditional distribution of (σ_{k+1}, Y_{k+1}) w.r.t. \mathcal{M}_{σ_k} .

The compensator of the point process \mathbb{M} is the (unique) random measure $\nu(dt, dy)$ such that for any (bounded) predictable function K, the process $K \star (\mu - \nu)$ is a local martingale, where

$$(K \star (\mu - \nu))_t(\omega) = \int_{]0,t] \times \mathbb{R}^d} K(\omega; s, y)(\mu(\omega; ds, dy) - \nu(\omega; ds, dy))$$

given by

$$\nu(dt, dy) = \sum_{k \ge 0} \mathbbm{1}_{\{\sigma_k \le t < \sigma_{k+1}\}} \frac{\eta^{k+1|k}(dt, dy)}{\eta^{k+1|k}([t, \infty[\times \mathbb{R}^d)])}$$
$$= \sum_{k \ge 0} \mathbbm{1}_{\{\sigma_k \le t < \sigma_{k+1}\}} \frac{\mathbb{P}((\sigma_{k+1}, Y_{k+1}) \in (dt, dx) | \mathcal{M}_{\sigma_k})}{\mathbb{P}(\sigma_{k+1} \ge t | \mathcal{M}_{\sigma_k})}$$

Ranked Default Times

We restrict our attention to a finite number of ranked default times $(\sigma_k, k \leq n)$. We set $\sigma_0 = 0, \sigma_{n+1} = \infty$ and $\boldsymbol{\sigma} = (\sigma_1, \dots, \sigma_n)$. This is a MPP (without marks!) We assume that the vector $\boldsymbol{\sigma}$ has a density $\eta(\boldsymbol{u})$, i.e.,

$$\mathbb{E}[f(\boldsymbol{\sigma})] = \int_{\mathbb{R}^n_+} f(\boldsymbol{u}) \eta(\boldsymbol{u}) d\boldsymbol{u},$$

Here, we make use of the following notation

- $\boldsymbol{u} = (u_1, \cdots, u_n), \quad \boldsymbol{u}_{(k:p)} = (u_k, \cdots, u_p), \quad \boldsymbol{u}_{(p)} = \boldsymbol{u}_{(1:p)}$
- $d\boldsymbol{u} = du_1 \cdots du_n$, $d\boldsymbol{u}_{(k:p)} = du_k \dots du_p$
- $\boldsymbol{u} > \boldsymbol{\theta}$ stands for $u_i > \theta_i$ for all $i \in \{1, \cdots, n\}$
- $\int_{]\boldsymbol{t},+\infty[} f(\boldsymbol{u}_{(k:n)}) d\boldsymbol{u}_{(k:n)} := \int_{]t,+\infty[} du_k \cdots \int_{]t,+\infty[} du_n f(u_k,\ldots,u_n).$

The (marginal) density of $\sigma_{(k)}$ is

$$\eta^{(k)}(\boldsymbol{u}_{(k)}) = \int_{\mathbb{R}^{n-k}_+} \eta(\boldsymbol{u}) d\boldsymbol{u}_{(k+1:n)}$$

Furthermore, on $\sigma_k \leq t < \sigma_{k+1}$

$$\mathbb{P}(\sigma_{k+1} > \theta | \mathcal{M}_t) = \int_{\theta}^{\infty} \eta^{k+1|k}(s) ds$$

where

$$\eta^{k+1|k}(s) = \frac{1}{\eta^{(k)}(\boldsymbol{\sigma}_{(k)})} \int_{\mathbb{R}^{n-(k+2)}_{+}} d\boldsymbol{u}_{(k+2:n)} \eta(\boldsymbol{\sigma}_{(k)}, s, \boldsymbol{u}_{(k+2:n)})$$

It follows that

$$\mathbb{E}(f(\boldsymbol{\sigma})|\mathcal{M}_t) = \int_{\mathbb{R}^n_+} f(\boldsymbol{u}) \eta_t^{\mathcal{M}}(d\boldsymbol{u})$$

where, on the set $\sigma_k \leq t < \sigma_{k+1}$

$$\eta_t^{\mathcal{M}}(d\boldsymbol{u}) = \frac{\mathbbm{1}_{\{\boldsymbol{t} < \boldsymbol{u}_{(k+1:n)}\}}}{\int_t^\infty \eta^{k+1|k}(s)ds} \delta_{\boldsymbol{\sigma}_{(k)}}(d\boldsymbol{u}_{(k)}) \ \eta(\boldsymbol{u}_{(k)}, \boldsymbol{u}_{(k+1:n)}) d\boldsymbol{u}_{(k+1:n)}$$

Let $N_t = \sum_{k=1}^n \mathbb{1}_{\{\sigma_k \leq t\}}$. The compensator of N is

$$\Lambda_t = \int_0^{t \wedge \sigma_n} \lambda_s ds = \sum_{k=0}^{n-1} \int_{\sigma_k}^{\sigma_{k+1} \wedge t} \frac{1}{\int_s^\infty \eta^{k+1|k}(y)dy} \eta^{k+1|k}(s) ds$$

Remark: it is useful to remember that the support of η is contained in $\{u_1 < u_2 < \cdots < u_n\}.$

Ranked Default Times with Reference Filtration

We assume now that a reference filtration \mathbb{F} is given and that there exists a family of $\mathcal{F}_t \otimes \mathcal{B}(\mathbb{R}^n_+)$ -measurable functions $(\omega, \boldsymbol{u}) \to \alpha_t(\omega, \boldsymbol{u})$ such that

$$\mathbb{E}[f(\boldsymbol{\sigma})|\mathcal{F}_t] = \int_{\mathbb{R}^n_+} f(\boldsymbol{u}) \alpha_t(\boldsymbol{u}) d\boldsymbol{u},$$

We call the family $\alpha(\boldsymbol{u})$ the \mathbb{F} -conditional density of $\boldsymbol{\sigma}$. Note that α_0 is the unconditional law of $\boldsymbol{\sigma}$.

We denote by \mathbb{G} the filtration $\mathcal{G}_t = \mathcal{F}_t \vee \mathcal{M}_t$.

It can be useful to keep in mind that, if one defines

$$d\mathbb{Q}|_{\mathcal{F}_t \vee \sigma(\boldsymbol{\sigma})} = \frac{1}{\alpha_t(\boldsymbol{\sigma})} d\mathbb{P}|_{\mathcal{F}_t \vee \sigma(\boldsymbol{\sigma})}$$

then, \mathbb{F} and $\boldsymbol{\sigma}$ are independent under \mathbb{Q} , and $\mathbb{Q}|_{\mathcal{F}_t} = \mathbb{P}|_{\mathcal{F}_t}$.

For any fixed $\boldsymbol{u} \in \mathbb{R}^n_+$, the process $(\alpha_t(\boldsymbol{u}), t \ge 0)$ is an \mathbb{F} -martingale. The joint conditional survival law is given, for any $\boldsymbol{\theta} = (\theta_1, \dots, \theta_n) \in \mathbb{R}^n_+$, by

$$S_t(\boldsymbol{\theta}) := \mathbb{P}(\boldsymbol{\sigma} > \boldsymbol{\theta} | \mathcal{F}_t) = \int_{\theta_1}^{\infty} du_1 \cdots \int_{\theta_n}^{\infty} du_n \, \alpha_t(\boldsymbol{u}) = \int_{\boldsymbol{\theta}}^{\infty} \alpha_t(\boldsymbol{u}) d\boldsymbol{u}$$

The marginal density of $\boldsymbol{\sigma}_{(k)}$ with respect to \mathcal{F}_t is the $\mathcal{F}_t \otimes \mathcal{B}(\mathbb{R}^k_+)$ -measurable function $\alpha_t^{(k)}(\boldsymbol{u}_{(k)})$ given by

$$\alpha_t^{(k)}(\boldsymbol{u}_{(k)}) = \int_{\mathbb{R}^{n-k}_+} \alpha_t(\boldsymbol{u}) d\boldsymbol{u}_{(k+1:n)}$$

and, on $\sigma_k \leq t < \sigma_{k+1}$,

$$\mathbb{P}(\sigma_{k+1} > \theta | \mathcal{G}_t) = \int_{\theta}^{\infty} \alpha_t^{k+1|k}(s) ds$$

where

$$\alpha_t^{k+1|k}(s) = \frac{1}{\alpha_t^{(k)}(\boldsymbol{\sigma}_{(k)})} \int_{\mathbb{R}^{n-(k+2)}} d\boldsymbol{u}_{(k+2,n)} \alpha_t(\boldsymbol{\sigma}_{(k)}, s, \boldsymbol{u}_{(k+2,n)})$$

It follows that

$$\mathbb{E}(f(\boldsymbol{\sigma})|\mathcal{G}_t) = \int_{\mathbb{R}^n_+} f(\boldsymbol{u}) \mu_t(d\boldsymbol{u})$$

where, on the set $\sigma_k \leq t < \sigma_{k+1}$

$$\mu_t(d\boldsymbol{u}) = \frac{\mathbbm{1}_{\{t < \boldsymbol{u}_{(k+1,n)}\}}}{\int_t^\infty \alpha_t^{k+1|k}(s)ds} \delta_{\boldsymbol{\sigma}_{(k)}}(d\boldsymbol{u}_{(k)}) \; \alpha_t(\boldsymbol{u}) \; d\boldsymbol{u}_{(k+1,n)}$$

Furthermore, for $Y_T(\boldsymbol{u})$ a family of positive \mathcal{F}_T adapted random variables,

$$\mathbb{E}(Y_T(\boldsymbol{\sigma})|\mathcal{G}_t) = \int_{\mathbb{R}^n_+} \frac{1}{\alpha_t(\boldsymbol{u})} \mathbb{E}(Y_T(\boldsymbol{u})\alpha_T(\boldsymbol{u})|\mathcal{F}_t)\mu_t(d\boldsymbol{u})$$

$$= \sum_{k=0}^{n-1} \frac{1_{\{\sigma_k \le t < \sigma_{k+1}\}}}{\int_t^{\infty} \alpha_t^{k+1|k}(s)ds} \int_t^{\infty} \mathbb{E}(Y_T(\boldsymbol{u})\alpha_T(\boldsymbol{u})|\mathcal{F}_t)|_{\boldsymbol{u}_{(k)}=\boldsymbol{\sigma}_{(k)}} d\boldsymbol{u}_{(k+1,n)}$$

Let
$$N_t = \sum_{k=1}^n \mathbbm{1}_{\{\sigma_k \le t\}}$$
. The compensator of N in the filtration \mathbb{G} is

$$\Lambda_t = \int_0^{t \wedge \sigma_n} \lambda_s ds = \sum_{k=0}^{n-1} \int_{\sigma_k}^{\sigma_{k+1} \wedge t} \frac{\alpha_s^{k+1|k}(s)}{\int_s^{\infty} \alpha_s^{k+1|k}(u) du} \, ds = \sum_{k=0}^{n-1} \int_{\sigma_k}^{\sigma_{k+1} \wedge t} \lambda_s^{k+1} \, ds$$
where $\lambda_s^{k+1|k} = \frac{\alpha_s^{k+1|k}(s)}{\int_s^{\infty} \alpha_s^{k+1|k}(u) du}$. Note that $\lambda_s^{k+1|k}$ depends on $\sigma_{(k)}$.

General Construction

The random variable Ξ is a random variable of law η taking values in a complete metric space E with countable base and equipped with Borel σ -algebra $\mathcal{B}(E)$. The main example is $\Xi = (\tau_k, Y_k)_{1 \le k \le n}$ where τ is a sequence (not necessarily ranked) of random times and Y_k some marks.

Without loss of generality, we assume that Ξ is the canonical map from E in E, defined as $\Xi(\chi) = \chi$ so that $\mathbb{E}(f(\Xi)) = \int_E f(\chi)\eta(d\chi)$ where η is the law of Ξ .

The "default-free" market risk is represented by a filtered probability space $(\Omega, \mathbb{F}, \mathbb{P})$.

We denote be $\boldsymbol{\sigma}$ the ranked sequence of times, the filtration \mathcal{M}_t is the one of the associated MMP $\mathbb{M} = (\sigma_k, Y_{\sigma_k})_k$.

The filtration \mathbb{F} is considered as well on Ω or on the product space.

The filtration \mathbb{H} is defined as $\mathcal{H}_t = \mathcal{F}_t \otimes \mathcal{B}(E) = \mathcal{F}_t \otimes \sigma(\Xi)$.

The filtration \mathbb{G} is $\mathcal{G}_t = \mathcal{F}_t \vee \mathcal{M}_t$.

All the filtrations are defined in such a way that they satisfy usual conditions.

We start with the fundamental case where the two sources of risks are independent (i.e., the random variable Ξ is independent from \mathcal{F}_{∞}), the probability measure is the product measure $\overline{\mathbb{P}}^0(d\omega, d\chi) = \mathbb{P}(d\omega) \otimes \eta(d\chi)$.

The conditional law of Ξ given \mathcal{M}_t is denoted by $\eta_t^{\mathcal{M}}$.

Given a non-negative measurable function Y on $\Omega \times E$, we define

$$\eta_t^{\mathcal{M}}(Y) = \int_E Y(.,\chi) \eta_t^{\mathcal{M}}(d\chi) = \overline{\mathbb{E}}^0[Y(.,\Xi) | \mathcal{F}_\infty \lor \mathcal{M}_t]$$

which is $\mathcal{F}_{\infty} \vee \mathcal{M}_t$ -measurable.

One should take care about the notation: $\eta^{\mathcal{M}}$ refers to the filtration $\mathcal{F}_{\infty} \vee \mathcal{M}_t$ and not to \mathcal{M}_t .

Note that, from the independence assumption, $\overline{\mathbb{E}}^{0}(f(\Xi)|\mathcal{M}_{t}) = \overline{\mathbb{E}}^{0}(f(\Xi)|\mathcal{M}_{t} \vee \mathcal{F}_{\infty}).$

As an exemple, let us study the case where $\Xi = (\tau_1, \tau_2)$, with law η and define $G(t,s) = \overline{\mathbb{P}}^0(\tau_1 > t, \tau_2 > s)$. Then, denoting by \mathcal{M}_t the filtration generated by $\mathbb{1}_{\tau^i \leq t}$,

 $\mathbb{E}(f(\tau_1, \tau_2) | \mathcal{M}_t) = I_t(1, 1) f(\tau_1, \tau_2) + I_t(1, 0) \Psi_{1,0}(\tau_1, t) + I_t(0, 1) \Psi_{0,1}(t, \tau_2) + I_t(0, 0) \Psi_{0,0}(t)$ where

$$\begin{split} \Psi_{1,0}(t,u) &= -\frac{1}{\partial_1 G(u,t)} \int_t^\infty f(u,v) \partial_1 G(u,dv) \\ \Psi_{0,1}(t,v) &= -\frac{1}{\partial_2 G(t,v)} \int_t^\infty f(u,v) \partial_2 G(du,v) \\ \Psi_{0,0}(t) &= \frac{1}{G(t,t)} \int_t^\infty \int_t^\infty f(u,v) G(du,dv) \\ I_t(1,1) &= \mathbbm{1}_{\{\tau_1 \le t, \tau_2 > t\}}, \qquad I_t(0,0) = \mathbbm{1}_{\{\tau_1 > t, \tau_2 \le t\}} \\ I_t(1,0) &= \mathbbm{1}_{\{\tau_1 \le t, \tau_2 > t\}}, \qquad I_t(0,1) = \mathbbm{1}_{\{\tau_1 > t, \tau_2 \le t\}} \end{split}$$

Given a non-negative measurable function Y on $\Omega \times E$ (that is $(\omega, \chi) \to Y(\omega, \chi)$), there exists a family of \mathbb{F} -adapted processes, parametrized by χ , say $Y^{\mathcal{F}}(\chi)$, such that \mathbb{P} -a.s, for any $\chi \in E$, and for any $t \geq 0$, $Y_t^{\mathcal{F}}(\chi) = \mathbb{E}[Y(\cdot, \chi)|\mathcal{F}_t]$.

An useful example is $Y = Xh(\Xi)$ where $X \in \mathcal{F}_{\infty}$.

We shall call $Y^{\mathcal{F}}$ the universal version of conditional expectation. One has $\overline{\mathbb{E}}^{0}(Y|\mathcal{H}_{t}) = Y_{t}^{\mathcal{F}}(\Xi)$ and, for any \mathcal{H}_{t} -measurable r.v. Y_{t}

$$\overline{\mathbb{E}}^{0}(Y_{t}|\mathcal{G}_{t}) = \int_{E} Y_{t}(\chi)\eta_{t}^{\mathcal{M}}(d\chi) =: \eta_{t}^{\mathcal{M}}(Y_{t})$$

In the same way, if $K = K(X, M_t)$ where $X \in \mathcal{F}_{\infty}$ and $M_t \in \mathcal{M}_t$, one has

$$\overline{\mathbb{E}}^{0}(K|\mathcal{G}_{t}) = \overline{\mathbb{E}}^{0}(K(X,m)|\mathcal{F}_{t})_{m=M_{t}} =: K_{t}^{\mathcal{F}}$$

Given a non-negative measurable function Y on $\Omega \times E$ (that is $(\omega, \chi) \to Y(\omega, \chi)$), there exists a family of \mathbb{F} -adapted processes, parametrized by χ , say $Y^{\mathcal{F}}(\chi)$, such that \mathbb{P} -a.s, for any $\chi \in E$, and for any $t \geq 0$, $Y_t^{\mathcal{F}}(\chi) = \mathbb{E}[Y(\cdot, \chi)|\mathcal{F}_t]$.

An useful example is $Y = Xh(\Xi)$ where $X \in \mathcal{F}_{\infty}$.

We shall call $Y^{\mathcal{F}}$ the universal version of conditional expectation.

One has $\overline{\mathbb{E}}^0(Y|\mathcal{H}_t) = Y_t^{\mathcal{F}}(\Xi)$ and, for any \mathcal{H}_t -measurable r.v. Y_t

$$\overline{\mathbb{E}}^{0}(Y_{t}|\mathcal{G}_{t}) = \int_{E} Y_{t}(\chi)\eta_{t}^{\mathcal{M}}(d\chi) =: \eta_{t}^{\mathcal{M}}(Y_{t})$$

In the same way, if $K = K(X, M_t)$ where $X \in \mathcal{F}_{\infty}$ nd $M_t \in \mathcal{M}_t$, one has

$$\overline{\mathbb{E}}^{0}(K|\mathcal{G}_{t}) = \overline{E}^{0}(K(X,m)|\mathcal{F}_{t})_{m=M_{t}} =: K_{t}^{\mathcal{F}}$$

Consider now a non-negative measurable random variable Y on $\Omega \times E$. The calculation of its conditional expectation w.r.t. \mathcal{G}_t can be done in two different ways as shown below:

On the one hand, using the notation of the universal martingale

$$\overline{\mathbb{E}}^{0}[Y|\mathcal{G}_{t}] = \overline{\mathbb{E}}^{0}[\overline{\mathbb{E}}^{0}[Y|\mathcal{H}_{t}] | \mathcal{G}_{t}] = \overline{\mathbb{E}}^{0}[Y_{t}^{\mathcal{F}} | \mathcal{G}_{t}] = \eta_{t}^{\mathcal{M}}(Y_{t}^{\mathcal{F}})$$

On the other hand, using the intermediary σ -algebra $\mathcal{F}_{\infty} \vee \mathcal{M}_t$

$$\overline{\mathbb{E}}^{0}[Y|\mathcal{G}_{t}] = \overline{\mathbb{E}}^{0}[\overline{\mathbb{E}}^{0}[Y|\mathcal{F}_{\infty} \vee \mathcal{M}_{t}] | \mathcal{G}_{t}] = \overline{\mathbb{E}}^{0}[\eta_{t}^{\mathcal{M}}(Y)|\mathcal{G}_{t}] = (\eta_{t}^{\mathcal{M}}(Y))_{t}^{\mathcal{F}}$$

In the general case, we characterize the dependence between Ξ and $\mathbb{F} = (\mathcal{F}_t)_{t \geq 0}$ by a change of probability w.r.t. the probability measure $\overline{\mathbb{P}}^0$.

We suppose that there exist an \mathbb{F} -stopping time T and a strictly positive $\mathcal{F}_T \otimes \mathcal{B}(E)$ -measurable random variable $\beta_{T(\omega)}(\omega, \chi)$ with expectation under $\overline{\mathbb{P}}^0$ equal to 1 and we define the probability measure $\overline{\mathbb{P}}$ on the product space by

$$\overline{\mathbb{P}}(d\omega, d\chi) = \beta_T(\omega, \chi) \overline{\mathbb{P}}^0(d\omega, d\chi)$$

In the following, we suppose the process $\beta^{\mathcal{F}} > 0$ where $\beta_t^{\mathcal{F}}(\chi) = \overline{\mathbb{E}}^0(\beta_T(\cdot,\chi)|\mathcal{H}_t).$

We can generate different types of density processes depending on the structure information:

$$\beta_t^{\mathcal{H}} = \overline{\mathbb{E}}^0[\beta_T | \mathcal{H}_t] = \beta_t^{\mathcal{F}}(\Xi)$$

$$\beta_t^{\mathcal{M}} = \overline{\mathbb{E}}^0[\beta_T | \mathcal{F}_\infty \vee \mathcal{M}_t] = \eta_t^{\mathcal{M}}(\beta_T)$$

$$\beta_t^{\mathcal{G}} = \overline{\mathbb{E}}^0[\beta_T | \mathcal{G}_t] = (\beta_t^{\mathcal{M}})_t^{\mathcal{F}} = \eta_t^{\mathcal{M}}(\beta_t^{\mathcal{F}})$$

Then

$$\overline{\mathbb{E}}(f(\Xi)|\mathcal{M}_t \vee \mathcal{F}_{\infty}) = \int_E f(\chi)\overline{\eta}_t^{\mathcal{M}}(d\chi) = \int_E f(\chi)\frac{\beta_T(\chi)\eta_t^{\mathcal{M}}(d\chi)}{\beta_t^{\mathcal{M}}}$$
$$\overline{\mathbb{E}}(f(\Xi)|\mathcal{G}_t) = \int_E f(\chi)\overline{\eta}_t^{\mathcal{G}}(d\chi) = \int_E f(\chi)\frac{\beta_t^{\mathcal{F}}(\chi)\eta_t^{\mathcal{M}}(d\chi)}{\beta_t^{\mathcal{G}}}$$

and, for any integrable \mathcal{G}_T measurable random variable Y_T

$$\overline{\mathbb{E}}[Y_T \mid \mathcal{G}_t] = \frac{\overline{\mathbb{E}}^0[Y_T \beta_T \mid \mathcal{G}_t]}{\overline{\mathbb{E}}^0[\beta_T \mid \mathcal{G}_t]} = \frac{\eta_t^{\mathcal{M}}((Y_T \beta_T)_t^{\mathcal{F}})}{\eta_t^{\mathcal{M}}(\beta_t^{\mathcal{F}})}$$

 $\mathcal{H}_t = \mathcal{F}_t \vee \sigma(\Xi)$

The density of τ under \mathbb{Q} is

$$lpha_t^{\mathbb{Q}}(oldsymbol{u}) = rac{eta_t(oldsymbol{u})}{\int_{\mathbb{R}^n_+}eta_t(oldsymbol{v})doldsymbol{v}}$$

The computation in a closed form is not difficult, even if tedious. Let us present the case where $\Xi = \tau$ (unidimensional case), with law with density η , and \mathbb{F} is a Brownian filtration. Furthermore, assume that β so that

$$\beta_t(\chi) = \exp\left(\int_0^t \Psi_s(\chi) dB_s - \frac{1}{2}\int_0^t (\Psi_s(\chi))^2 ds\right)$$

Then, $\mathbb{E}(\beta_T(\Xi)|\mathcal{G}_t) = L_t$ where

$$dL_t = L_{t-}(\psi_t dB_t + \gamma_t dM_t)$$

$$\psi_t = \mathbbm{1}_{\{t \le \tau\}} \frac{\int_t^\infty \Psi_t(u)\beta_t(u)\eta(u)du}{\int_t^\infty \beta_t(u)\eta(u)du} + \mathbbm{1}_{\{\tau < t\}} \Psi_t(\tau)$$

and $\gamma_t = \frac{\beta_t(t)G(t)}{\int_t^\infty \beta_t(u)\eta(u)du} - 1.$

Let us mention that one can obtain a characterization of martingales in the large filtration, in terms of martingales in the reference filtration. Let us reduce our attention, for simplicity, to the case where $\Xi = \tau$. Then, a process $Y_t = y_t \mathbb{1}_{t < \tau} + \mathbb{1}_{\tau \leq t} y_t(\tau)$ is a \mathbb{G} martingale if and only if

- 1. For any u, the process $y_t(u)\alpha_t(u), t \ge u$ is an \mathbb{F} -martingale
- 2. The process $E(Y_t|\mathcal{F}_t)$ is an \mathbb{F} -martingale

In the multidimensional case, for a ranked sequence, the process

$$Y_t = \sum_{k=0}^{n-1} y_t^k(\boldsymbol{\sigma}_{(k)}) 1\!\!1_{\{\sigma_k \le t < \sigma_{k+1})\}}$$

is a $\mathbb G$ martingale if and only if

$$y_t^k(\boldsymbol{\theta}_{(k)}) \mathbb{P}(\sigma_{k+1} > t | \mathcal{G}_t^{(k)} + \int \theta_k^t d\boldsymbol{\theta}_{(k+1:n)} \mathbb{1}_{\{\theta_{k+1} < t\}} y_{\theta_{k+1}}^{k+1} \alpha_{\theta_{k+1}}(\boldsymbol{\theta})$$

are martingales

Examples

Gaussian model

Let $f_i, i = 1, ..., n$ be a family of functions with L^2 norm equal to 1 and $X_i = \int_0^\infty f_i(s) dB_s^i$ where B^i are F-BMs with correlation $\rho^{i,j}$. Then

$$\mathbb{P}(X_i > \theta_i, \forall i = 1, \dots, n | \mathcal{F}_t)$$

= $\Phi_n^* \left(\frac{\theta_1}{\sqrt{1 - \rho_1^2}} - m_t^1, \dots, \frac{\theta_n}{\sqrt{1 - \rho_n^2}} - m_t^n; \gamma(t) \right)$

where

- $m_t^i = \int_0^t f_i(s) dB_s^i$
- $\Phi_n^*(x_1,\ldots,x_n;\gamma(t)) = \mathbb{P}(G_i^{(t)} > x_i, \forall i = 1,\ldots,n)$

where $G^{(t)} = (G_i^{(t)}, i = 1, ..., n)$ is a Gaussian vector, centered, with covariance matrix $\gamma(t)$ with

$$\gamma_{i,j}(t) = \int_t^\infty f_i(s) f_j(s) \rho^{i,j} ds \,.$$

Let H_i be an increasing function from \mathbb{R} to \mathbb{R}^+ with inverse h_i and $\tau_i = H_i(X_i)$.

Examples

Then

$$\mathbb{P}(\tau_i > t_i, \forall i = 1, \dots, n | \mathcal{F}_t)$$

= $\Phi_n^* (\frac{h_1(t_1)}{\sqrt{1 - \rho_1^2}} - m_t^1, \dots, \frac{h_n(t_n)}{\sqrt{1 - \rho_n^2}} - m_t^n; \gamma(t), t)$

In particular,

$$\mathbb{P}(\tau_i > t_i) = \Phi^*\left(\frac{h_i(t_i)}{\sqrt{1 - \rho_i^2}}\right)$$

where $\Phi^*(x)$ is the survival function of a standard Gaussian law.

Uniform law (From Kchia and Larson)

On start with r.v. U_i , with exponential law, independent from \mathbb{F} and R a r.v. with given conditional density $p_t(r)$. Set $\tau_i = RU_i$. Then

$$\mathbb{P}(\tau_i > t_i, i = 1, \dots, n | \mathcal{F}_t) = \int p_t(r) \prod_{i=1}^n (1 - \frac{t_i}{r})^+$$

Some references

El Karoui, N., J.M., Jiao, Y. : Modeling defaults events, preprint Fermanian, J.-D. and Vigneron, O.: Pricing and hedging basket credit derivatives in the Gaussian copula. *Risk Magazine*, February 2010. Kchia, Y., Larsson, M. : Credit contagion and risk management with multiple non-ordered defaults, preprint

Crépey, S., J.M., Wu, D.: Informationally Dynamized Gaussian Copula, preprint

Thank you for your attention