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Introduction

The motivating example

Example: Allen-Cahn equation

ut = uxx + u − u3,

u(−L) = u(L) = 0,

u0 = u(0),

u(x , .) ∈ H2
0 ([−L, L]).

Lyapunov function L(u) =
∫ L
−L
[
1
2u2

x +
1
4u4 − 1

2u2
]

dx .

La Salle principle: dynamics converges to equilibria

But: It may take exponentially long time (a function of L) to get there!
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Introduction

Motivation

Consider the same equation on an unbounded domain, u ∈ H2
ul(R)

Eckmann, Rougemont (many other authors): A model for coarsening

Polačik 2014,2015: non-equilibria in ω-limit sets! (w.r. to uniform
convergence on compact sets)

What is the right definition of asymptotics for systems on large
domains?

Can one find bounds on relaxation times independent of the domain
size?

Important special case 1: Lagrangian dynamics with finite and infinite
degrees of freedom

Important special case 2: Some Markov chains on infinite lattices and
phase transitions (?)
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Introduction

Content of the talk

Part 1: Description of asymptotics and uniform recurrence

Example: Reaction-diffusion equation, many others

Part 2: Uniform convergence to equilibria

Example: Navier-Stokes equation on a strip

Part 3: Uniform convergence to an invariant manifold

Example: Entropy reaction-diffusion equation

Part 4: Lyapunov stability and invariant sets

Example: Arnold’s diffusion

Part 5: Invariant measures (to be continued - B. Rabar talk)

(Mostly) joint work with Thierry Gallay, Grenoble
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Part 1: Asymptotics and uniform recurrence

Part 1: Abstract definition of extended gradient systems

ϕ a continuous semiflow on metrizable X
e(x , t)-energy, d(x , t)-energy dissipation, f (x , t)-energy flux fields
associated to each (semi)-orbit of ϕ

e, d : RN ×R+ → R,

f : RN ×R+ → RN .

(A1) e, d , f continuous in x , t,

(A2) e(x , t) = divx f (x , t)− d(x , t) in the distributional sense,

(A3) f ≤ b(e)d for some strictly increasing b : R→ R,

(A4) d ≥ 0, e bounded from below,

(A5) d ≡ 0 if and only if the orbit is in equilibrium.
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Part 1: Asymptotics and uniform recurrence

Example: Reaction-diffusion equation

∂tu(x , t) = 4u(x , t)− V ′(u(x , t))

u : RN ×R+ → R,

V : R→ R+ a smooth potential,

X = H2
ul(R

N) - the uniformly local space

Axioms hold:

e =
1

2
|∇u|2 + V (u),

f = ut∇u,

d = u2
t .

(A3): |f |2 = u2
t |∇u|2 ≤ 2ed .
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Part 1: Asymptotics and uniform recurrence

A ton of other examples

Strongly damped wave equation

utt + ut − α4ut = 4u − V ′(u),

The complex Ginzburg-Landau equation, α = β,

ut = (1 + iα)4u + u − (1 + i β)|u|2u,

The Landau-Lifshitz-Gilbert Equation, u : RN → S2,

ut = −u ∧ (u ∧4u) + αu ∧4u,

A nonlinear diffusion equation, a : R→ (0, ∞) smooth:

ut = div(a(u)∇u).
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Part 1: Asymptotics and uniform recurrence

Asymptotics and uniform recurrence

Assume N = 1, 2, X compact.

(e.g. a bounded, closed invariant set in H2
ul(R

N) equipped with topology
of uniform convergence on compact sets)

Theorem (Th. Gallay, S.Sl, 2001, 2015)

1. ω-limit set always contains an equilibrium,

2. The only uniformly recurrent orbits are equilibria,

3. There are no periodic orbits,

4. All minimal sets consist of equilibria.

5. All invariant (Borel probability) measures are supported on equilibria.

Counterexamples if N ≥ 3!
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Part 1: Asymptotics and uniform recurrence

Qualitative bounds and the concept of proof

N=1, R ≤
√

T : ∫ T

0

∫
BR

d(x , t)dxdt = O
(√

T
)

.

N=2, R ≤ T / log T :∫ T

0

∫
BR

d(x , t)dxdt = O

(
T

log T

)
.

Idea of the proof:
1. Write integral equation for e, d , f ,
2. Factor-out d by (A3), bound e from above,
3. Write ordinary 1-d differential inequality in R for flux F (R, T )
integrated over the R-sphere and over [0, T ],
4. Solve and check when F (R, T ) blows-out for finite R.
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Part 2: Uniform convergence to equilibria

Uniformly local convergence to equilibria

Lucky case: two dissipating energies for the same system!!

Assume we can associate to X , ϕ, two families

e, d , f satisfying (A1-5), (A3): f 2 ≤ β1ed ,

ε, δ, ψ satisfying (A1-5), (A3): ψ2 ≤ β2εδ,

ε ≤ γd for some γ > 0!

Theorem: (Th. Gallay, S.Sl, 2014,2015)

Assume all as above, N = 1 (possibly N = 2 - to be checked). Then for
any initial condition, e is uniformly bounded, and δ converges uniformly
locally to 0.

If e, d , f , ε, δ, ψ are regular enough, dynamics always converges uniformly
locally to equilibria (with explicit upper bounds).
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Part 2: Uniform convergence to equilibria

Example: Navier-Stokes on a strip

∂tu + (u · ∇)u = ν∆u − 1

ρ
∇p,

divu = 0 ,

In the strip u ∈ ΩL = R×[0, L], u((x1, 0), t) = u((x1, L), t).

e(x1, t) =
1

2

∫ L

0
|u(x1, x2, t)|2dx2 +

M2

2
,

d(x1, t) =
∫ L

0
|∇u(x1, x2, t)|2dx2,

ε(x1, t) =
1

2

∫ L

0
|ω(x1, x2, t)|2dx2 ,

δ(x1, t) =
∫ L

0
|∇ω(x1, x2, t)|2dx2,

where ω = ∂1u2 − ∂2u1.
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Part 2: Uniform convergence to equilibria

Navier-Stokes on the strip: explicit bounds

Theorem: (Th. Gallay, S.Sl, 2015) convergence of ||û(., t)||∞, ||ω||2∞ to
0 as O(1/

√
t).

û(, .t) - the ”oscillatory” part of u,

û(x , t) = u(x , t)− 1

L

∫ L

0
u(x , t)dx2.

In more detail:
1. (Uniform boundedness of the velocity) There exists C > 0 such that,
for all t ≥ 0,

L

ν
‖u(·, t)‖L∞(ΩL) ≤ C

(
Ru + Rω + (1 + Rω)(R

2
u + R2

ω)
)

,

where Ru = L
ν ‖u0‖L∞(ΩL), Rω = L2

ν ‖ω0‖L∞(ΩL).
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Part 2: Uniform convergence to equilibria

Navier-Stokes on the strip: further bounds

2. (Uniform decay of the vorticity) There exists C > 0 such that, for all
t > 0, (L2

ν
‖ω(·, t)‖L∞(ΩL)

)2
≤ C (1 + Rω)(R

2
u + R2

ω)
L√
νt

.

3. (Exponential convergence to a shear flow) Assume ||ω0||L∞ < 4π2. For
any γ < 2π2, we have

L

ν
‖u(·, t)− u∞(·, t)‖L∞(ΩL) = O

(
exp

(
−γνt

L2

))
,

where

u∞(x , t) =

(
c

m(x1, t)

)
, p(x , t) = 0 , (1)

with c ∈ R and ∂tm + c∂1m− ν∂21m = O(exp−2γνt/L2) as t → ∞.
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Part 3: Convergence to an invariant manifold

An entropy reaction-diffusion equation

Unucky case: no two dissipating energies / invariant manifold not
flat

Example: Entropy reaction-diffusion equation (Mielke, Haskovec, 2015),
a, b > 0:

ut = auxx + k(v2 − u)

vt = bvxx + 2k(u − v2)

It is an extended gradient system!

F (u) = u log u − u + 1

e = F (u) + F (v) + e0

f = a(log u)ux + b(log v)vx

d = a
u2
x

u
+ b

v2
x

v
+ k(v2 − u) log

v2

u
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Part 3: Convergence to an invariant manifold

Convergence to an invariant manifold

Theorem (Th. Gallay, S.Sl, work in progress)
Assume M is an invariant normally hyperbolic subset of X (i.e. normally
hyperbolic for any restriction to a finite domain).
Assume X \M contains no equilibria.
Then the dynamics converges uniformly locally to M.

Also bounds on relaxation times, depending on energy dissipation away
from M
Proof: Adapting ideas of Otto, Reznikoff (JDE 2004) + extended
dynamical systems techniques

Corollary: The entropy reaction diffusion equation converges uniformly
locally to v2 = u.
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Part 4: Lyapunov stability and invariant sets

An ODE toy example

xt = −∇E (y) + f (y , t)

x(t) ∈ RN ,

E : RN → R smooth, E ≥ 0,

E (0) = 0,

|f (x , t)| ≤ δ, f smooth.

Problem: When there exists δ0 > 0 such that for δ < δ0 there exists an
invariant set in the unit ball containing 0?

Sufficient condition: D2E (0) > 0,

Stronger result, sufficient and necessary condition: Connected
component of {x , E (x) = 0} containing 0 does not intersect {x = 1}
(Proof: Morse-Sard theorem).
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Part 4: Lyapunov stability and invariant sets

Pohožaev Theorem

A : X → R,

X a real, separable, reflexive Banach space

A is Fréchet, if it is C 2 (in the sence of Fréchet derivatives), dimension of
Ker D2A(h) (as an operator from X to X ∗ for a fixed h) is finite
dimensional.

The critical value of A is any value x ∈ R, such that there exists h ∈ X so
that A(h) = x , DA(h) ≡ 0.

Theorem (Morse-Sard-Pohožaev) Assume that Ker D2A(h) ≤ m < ∞ for
any h ∈ X , and let k ≥ max {m, 2}. Then the set of critical values of A
has Lebesgue measure 0.

Tool to bound dissipation from below away from zero!
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Part 4: Lyapunov stability and invariant sets

Example: Lagrangian dynamics

We say that L : RN/ZN ×RN ×R, L(q, v , t) is a time-dependent Tonelli
Lagrangian on a torus, if

1 L is C 2,

2 L is strictly convex in the fibers, i.e. ∂2L/∂v2 is positive definite,

3 L is superlinear in each fiber, i.e.

lim
||v ||→∞

L(x , v , t)

||v || = +∞,

4 L is time-periodic, i.e. L(x , v , t) = L(x , v , t + 1).

Euler-Lagrange equations δA(q) = 0:

Lvv (q, qt , t)qtt − Lx (q, qt , t) + Lqv (q, qt , t)qt + Lvt(q, qt , t) = 0.
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Part 4: Lyapunov stability and invariant sets

Formally gradient dynamics of the action

We write qs = −δA(q)0 as

qs = Lvv (q, qt , t)qtt − Lx (q, qt , t) + Lqv (q, qt , t)qt + Lvt(q, qt , t).

We change for q : R→ RN :

qs = qtt + L−1vv (q, qt , t) (−Lx (q, qt , t) + Lqv (q, qt , t)qt + Lvt(q, qt , t))

This is an extended gradient system, N = 1! Axioms (A1-5) OK!

Corollary: Every bounded invariant set of the formally gradient dynamics
of the action contains a Euler-Lagrange orbit.
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Part 4: Lyapunov stability and invariant sets

Arnold’s example

V. Arnold, 1964: q = (u, v) ∈ R2:

L(u, v , ut , vt , t) = u2
t /2 + v2

t /2 + V (u, v , t)

V (u, v , t) = ε [1− cos(u)] [1− µ(cos(v) + cos(t))]

V.I. Arnold, Instability of dynamical systems with several degrees of
freedom, Soviet. Math. Dokl. 5 (1964), 581-585.

Introduced ”Arnold’s diffusion” - construction of ”wandering” orbits
in nonintegrable Hamiltonian systems

”The details of the proof must be formidable, although the idea of
the proof is clearly outlined.” - J. Moser, Mathematical Reviews, 1965

”Perhaps it is difficult to find a 4 page paper that has generated so
much.” - Rafael de la Llave, International Congress of
Mathematicians, Hyderabad, 2010
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Part 4: Lyapunov stability and invariant sets

Extended gradient dynamics approach

us = utt − ε sin(u) [1− µ(cos(v) + cos(t))] ,

vs = vtt − εµ [1− cos(u)] sin(v).

Theorem: Construction of

”Diffusive” orbits of the Euler-Lagrange flow for a wide range of ε, µ,

Orbits dense in the momentum space,

Positive-entropy invariant measures.

Proof:

Invariant set by energy - energy dissipation - flux equality ”between
jumps”

Lower bound on dissipation by Pohožaev theorem

Upper bound on flux away from ”jumps” by hyperbolicity argument.
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Part 4: Lyapunov stability and invariant sets

To be continued ... (B. Rabar talk)

Thank you!
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