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1. Introduction

In the process of extending the Lyapunov operator equation to
the case of autonomous systems x′

= Ax when the operator A is
unbounded, Datko [1] established his famous theorem which as-
serts that the trajectories of a C0-semigroup {T (t)}t≥0 on a Hilbert
space X exhibit an exponential decay if and only if they stay in
L2(R+, X). Since then this theorem became one of the pillars of
the modern control theory and has inspired numerous extensions
and generalizations. In particular, Pazy [2] proved that the conclu-
sion of Datko’s theorem holds if L2(R+, X) is replaced with any
Lp(R+, X) with p ∈ [1, ∞). Furthermore, Datko [3] obtained the
version of his theorem which deals with the exponential stability
of evolution families {T (t, s)}t≥s≥0 which describe solutions of the
variety of differential equations. More precisely, he proved the fol-
lowing result.

Theorem 1. Let {T (t, s)}t≥s≥0 be an evolution family on a Banach
space X. The following statements are equivalent:

(1) there exist D, λ > 0 such that

∥T (t, s)∥ ≤ De−λ(t−s) for t ≥ s ≥ 0;

(2) there exists p ∈ [1, ∞) such that

sup
s≥0


∞

s
∥T (t, s)x∥p < ∞ for each x ∈ X .
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The first results related to discrete-time evolution families are
due to Zabczyk [4].

A major improvement of this ideas is due to Rolewicz [5]
who characterized exponential stability of evolution families in
terms of the existence of appropriate functions N of two real
variables (see [6] for details and further discussion). This approach
unified and extended many of the previously known results. The
most recent contributions [6,7] deal with obtaining the version of
Datko’s theorem for the notion of nonuniform exponential stability
which was introduced by Barreira and Valls (see [8]). Moreover,
in [9] the authors have obtained a certain ergodic version of Datko’s
theorem.

The main purpose of the present paper is to obtain a version
of Datko’s theorem for the notion of an exponential stability in
average which is a particular case of a more general notion of
an exponential dichotomy in average introduced in [10,11] for
discrete and continuous time respectively. This notion essentially
corresponds to assuming the existence of uniform contraction
and uniform expansion along complementary directions but
now in average, with respect to a given probability measure.
We emphasize that this notion includes the classical concepts
of uniform exponential dichotomy (and thus also of uniform
exponential stability) as particular cases.

The paper is organized as follows. In Section 2 we recall some
basic notions and the concept of an exponential stability in average.
In Section 3 we prove the version of Datko’s theorem for cocycles
over semiflows. Then, in Section 4 we do the same but for cocycles
over maps. Finally, in Section 5 we imply those results to the study
of the persistence of the notion of the exponential stability in
average under small linear perturbations.
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http://www.elsevier.com/locate/sysconle
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2. Preliminaries

We begin by recalling some well-known notions. Let Ω =

(Ω, B, µ) be a probability space. Ameasurablemapϕ : R+

0 ×Ω →

Ω is said to be a semiflow on Ω if:

(1) ϕ(0, ω) = ω for ω ∈ Ω;
(2) ϕ(t + s, ω) = ϕ(t, ϕ(s, ω)) for t, s ≥ 0 and ω ∈ Ω .

For each t ≥ 0 we can consider the map ϕt : Ω → Ω given by
ϕt(x) = ϕ(t, x), x ∈ Ω . Moreover, let X be a Banach space and let
L(X)denote the set of all invertible bounded linear operators acting
on X . A strongly measurable map Φ : R+

0 ×Ω → L(X) (this means
that (t, ω) → Φ(t, ω)x is Bochner measurable for each x ∈ X) is
said to be a cocycle over ϕ if:

(1) Φ(0, ω) = Id for ω ∈ Ω;
(2) Φ(t + s, ω) = Φ(t, ϕs(ω))Φ(s, ω) for t, s ≥ 0 and ω ∈ Ω .

Example 1. In the particular case when the map t → Φ(t, ω)x is
of class C1 for eachω and x the cocycle can be described as follows.
Let

A(ω) =
d
dt

Φ(t, ω)

t=0.

One can easily verify that the unique solution of the problem

x′
= A(ϕt(ω))x, x(0) = x0

is then given by x(t) = Φ(t, ω)x0. Note that under the above
assumption themap t → A(ϕt(ω))x is continuous for eachω and x.

Before proceeding, we emphasize that cocycles (over maps and
flows) arise naturally in the study of nonautonomous dynamics.
For example, smooth ergodic theory builds around the study
of the derivative cocycle associated either to map or a flow
(see Sections 5 and6 in [12]).Moreover, cocycles describe solutions
of variational equations and Cauchy problems with unbounded
coefficients (we refer to Chapter 6 of [13] for detailed discussion).
Finally, the notion of a cocycle arises from stochastic differential
equations (see Chapter 2 in [14] for details).

Let F denote the Banach space of all Bochner measurable
functions, sometimes simply referred to as measurable functions,
z : Ω → X such that

∥z∥1 :=


Ω

∥z(ω)∥ dµ(ω) < ∞,

identified if they are equal to µ-almost everywhere (we note that
F is simply the set of all Bochner integrable functions identified
if they are equal to µ-almost everywhere, sometimes denoted by
L1

µ(Ω, X)). Given a cocycle Φ over a semiflow ϕ, we shall always
assume that there exist K , a > 0 such that

Ω

∥Φω(t, τ )z(ω)∥ dµ(ω) ≤ Kea|t−τ |


Ω

∥z(ω)∥ dµ(ω) (1)

for z ∈ F and t, τ ≥ 0, where

Φω(t, s) = Φ(t, ω)Φ(s, ω)−1.

We now introduce the concept of exponential stability in
average.We say that the cocycleΦ is exponentially stable in average
if there exists D, λ > 0 such that

Ω

∥Φω(t, s)z(ω)∥ dµ(ω) ≤ De−λ(t−s)


Ω

∥z(ω)∥ dµ(ω), (2)

for z ∈ F and t ≥ s ≥ 0. This notion is a particular case of a
more general notion of exponential dichotomy inmean introduced
in [11]. We recall that a cocycle Φ is said to admit an exponential
dichotomy in average if there exist projections Pτ : F → F for τ ≥ 0
such that:
(1) for each t, τ ≥ 0 and z, z̄ ∈ F such that z̄(ω) = Φω(t, τ )z(ω)
for µ-almost every ω ∈ Ω , we have

(Pt z̄)(ω) = Φω(t, τ )(Pτ z)(ω) (3)

for µ-almost every ω ∈ Ω;
(2) there exist constants D, λ > 0 such that for each z ∈ F, we

have
Ω

∥Φω(t, s)(Psz)(ω)∥ dµ(ω)

≤ De−λ(t−s)


Ω

∥z(ω)∥ dµ(ω) (4)

for t ≥ s and
Ω

∥Φω(t, s)(Qsz)(ω)∥ dµ(ω)

≤ Deλ(t−s)


Ω

∥z(ω)∥ dµ(ω) (5)

for t ≤ s, where Qs = Id − Ps.

We note that when Pt = Id, the condition (4) reduces to (2)
(while (3) and (5) became trivial) and we recover the notion of
exponential stability in average.

Example 2. Any uniformly hyperbolic cocycle admits an exponen-
tial dichotomy in average. We recall that a cocycle Φ is uniformly
hyperbolic if there exist projections P̃t : X → X for t ∈ R such that:

(1) for each t, τ ≥ 0 and ω ∈ Ω , we have

PtΦω(t, τ ) = Φω(t, τ )Pτ ;

(2) there exist constants D, λ > 0 such that for each ω ∈ Ω , we
have

∥Φω(t, τ )P̃τ∥ ≤ De−λ(t−τ)

for t ≥ τ and

∥Φω(t, τ )Q̃τ∥ ≤ Deλ(t−τ)

for t ≤ τ , where Q̃t = Id − P̃t .

Defining projections Pt : F → F for t ∈ R by

(Ptz)(ω) = P̃t(z(ω)),

we find that each uniformly hyperbolic cocycle admits an
exponential dichotomy in average with respect to any probability
measure µ on Ω .

The previous example shows that the notion of an exponential
dichotomy in average includes the classical notion of uniform
hyperbolicity as a particular case.

Example 3. Now we describe examples of cocycles that admit
an exponential dichotomy in average but that are not uniformly
hyperbolic. Consider a partition Ω =

N
i=0 Ωi of Ω (N may be

finite or infinite) with µ(Ω0) = 0 and numbers λ0 = 0 and λi > 0
for i ∈ N with infi∈N λi > 0. We assume that

Ωi

∥Φω(t, s)(Psz)(ω)∥ dµ(ω) ≤ De−λi(t−s)


Ωi

∥z(ω)∥ dµ(ω)

for t ≥ s and
Ωi

∥Φω(t, s)(Qsz)(ω)∥ dµ(ω) ≤ Deλi(t−s)


Ωi

∥z(ω)∥ dµ(ω)

for t ≤ s, for all z ∈ F and i ∈ N0 ∩ [0,N]. Then the cocycle admits
an exponential dichotomy in average. If the set Ω0 is nonempty,
then the cocycle is not uniformly hyperbolic. For example, the set
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Ω0 can contain parabolic fixed points or more generally parabolic
periodic points.We refer the reader to [12] formany explicit exam-
ples ofweak hyperbolic behavior that coexistswith some parabolic
behavior (see in particular Sec. 6.2 for the detailed construction of
parabolic horseshoes). We refer to [11] for further discussion.

3. Main result

The following result gives a complete characterization of the
notion of an exponential stability in average. It can be regarded as
a version of the classical Datko–Pazy results for this notion.

Theorem 2. The cocycle Φ is exponentially stable in average if and
only if there exist C, p > 0 such that

∞

t0


Ω

∥Φω(τ , t0)z(ω)∥ dµ(ω)

p

dτ
1/p

≤ C


Ω

∥z(ω)∥ dµ(ω), (6)

for every t0 ≥ 0 and z ∈ F.

Proof. Assume that the cocycle Φ is exponentially stable in
average and take an arbitrary p > 0. It follows from (2) that

∞

t0


Ω

∥Φω(τ , t0)z(ω)∥ dµ(ω)

p

dτ

≤


∞

t0


De−λ(τ−t0)


Ω

∥z(ω)∥ dµ(ω)

p

dτ

= Dp


Ω

∥z(ω)∥ dµ(ω)

p 
∞

t0
e−λp(τ−t0) dτ

= Dp


Ω

∥z(ω)∥ dµ(ω)

p 
∞

0
e−λpτ dτ

=
Dp

λp


Ω

∥z(ω)∥ dµ(ω)

p

,

which immediately implies that (6) holds with C =
D

(λp)1/p
.

We now establish the converse. Assume that there exist C, p >

0 such that (6) holds for every t0 ≥ 0 and z ∈ F. Using (1) and (6),
we have

Ω

∥Φω(t, t0)z(ω)∥ dµ(ω)

p  t

t0
e−ap(t−s) ds

=

 t

t0


Ω

∥Φω(t, t0)z(ω)∥ dµ(ω)

p

e−ap(t−s) ds

=

 t

t0


Ω

∥Φω(t, s)Φω(s, t0)z(ω)∥ dµ(ω)

p

e−ap(t−s) ds

≤

 t

t0
K peap(t−s)


Ω

∥Φω(s, t0)z(ω)∥ dµ(ω)

p

e−ap(t−s) ds

≤ K p


∞

t0


Ω

∥Φω(s, t0)z(ω)∥ dµ(ω)

p

ds

≤ K pCp


Ω

∥z(ω)∥ dµ(ω)

p

,

for t ≥ t0 ≥ 0. Since t

t0
e−ap(t−s) ds =

 t−t0

0
e−aps ds ≥

 1

0
e−aps ds =: b > 0,
for t ≥ t0 + 1, we have that
Ω

∥Φω(t, t0)z(ω)∥ dµ(ω) ≤
KC
b1/p


Ω

∥z(ω)∥ dµ(ω),

for t ≥ t0 + 1. (7)

On the other hand, it follows from (1) that
Ω

∥Φω(t, t0)z(ω)∥ dµ(ω) ≤ Kea


Ω

∥z(ω)∥ dµ(ω),

for t ∈ [t0, t0 + 1]. (8)

Combining (7) and (8), we conclude that
Ω

∥Φω(t, t0)z(ω)∥ dµ(ω) ≤ L


Ω

∥z(ω)∥ dµ(ω),

for t ≥ t0, (9)

where

L = max


KC
b1/p

, Kea

.

Fix now any t ≥ t0 and let s ∈ [t0, t]. It follows from (9) that
Ω

∥Φω(t, t0)z(ω)∥ dµ(ω)

=


Ω

∥Φω(t, s)Φω(s, t0)z(ω)∥ dµ(ω)

≤ L


Ω

∥Φω(s, t0)z(ω)∥ dµ(ω).

By integrating from t0 to t and using (6), we obtain

(t − t0)


Ω

∥Φω(t, t0)z(ω)∥ dµ(ω)

p

≤ Lp
 t

t0


Ω

∥Φω(s, t0)z(ω)∥ dµ(ω)

p

ds

≤ Lp


∞

t0


Ω

∥Φω(s, t0)z(ω)∥ dµ(ω)

p

ds

≤ CpLp


Ω

∥z(ω)∥ dµ(ω)

p

,

which implies that

(t − t0)1/p


Ω

∥Φω(t, t0)z(ω)∥ dµ(ω)

≤ CL


Ω

∥z(ω)∥ dµ(ω). (10)

By adding the inequalities (9) and (10), we conclude that

(1 + (t − t0)1/p)


Ω

∥Φω(t, t0)z(ω)∥ dµ(ω)

≤ L(C + 1)


Ω

∥z(ω)∥ dµ(ω)

and thus
Ω

∥Φω(t, t0)z(ω)∥ dµ(ω)

≤
L(C + 1)

(1 + (t − t0)1/p)


Ω

∥z(ω)∥ dµ(ω). (11)
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It follows from (11) that there exists N ∈ N such that for all
t ≥ t0 ≥ 0 such that t − t0 ≥ N ,

Ω

∥Φω(t, t0)z(ω)∥ dµ(ω)

≤
1
e


Ω

∥z(ω)∥ dµ(ω) for every z ∈ F. (12)

Take now arbitrary t ≥ t0 ≥ 0 and write t − t0 in the form
t − t0 = kN + r , where k ∈ N0 and 0 ≤ r < N . By (12),

Ω

∥Φω(t, t0)z(ω)∥ dµ(ω) ≤
1
ek


Ω

∥Φω(t0 + r, t0)z(ω)∥ dµ(ω),

which together with (9) implies that
Ω

∥Φω(t, t0)z(ω)∥ dµ(ω) ≤
L
ek


Ω

∥z(ω)∥ dµ(ω).

We conclude that (2) holds with Pt = Id, D = Le and λ =
1
N and

therefore Φ is exponentially stable in average. �

4. Cocycles over maps

In this section we obtain a discrete time version of Theorem 2.
Let (Ω, B, µ) be a probability space and let f : Ω → Ω be a
measurable map. A measurable map A : N0 × Ω → L(X) is said
to be a cocycle over f if A(0, ω) = Id and

A(n + m, ω) = A(n, f m(ω))A(m, ω) (13)

for m, n ∈ N0 and ω ∈ Ω . We write

Aω(m, n) = A(m, ω)A(n, ω)−1.

We also consider the map A = A(1, ·) : Ω → L(X). Clearly,

A(m, ω) =


A(f m−1(ω)) · · · A(ω), m > 0,
Id, m = 0.

We say that the cocycle A is exponentially stable in average if there
exists D, λ > 0 such that

Ω

∥Aω(m, n)z(ω)∥ dµ(ω) ≤ De−λ(m−n)


Ω

∥z(ω)∥ dµ(ω), (14)

for m ≥ n ≥ 0 and z ∈ F.
The following is a version of Theorem 2 for cocycles over maps.

Our proof follows the same strategy as the proof of Theorem 2with
two important distinctions. Namely, in the case of discrete time
we do not have to require condition (1) and the analogue of (9)
follows directly from the discrete time version of (6) (see (15)).
Consequently, the proof is less involved and simpler.

Theorem 3. The cocycle A is exponentially stable in average if and
only if there exist C, p > 0 such that ∞

n=m0


Ω

∥Aω(n,m0)z(ω)∥ dµ(ω)

p1/p

≤ C


Ω

∥z(ω)∥ dµ(ω), (15)

for every m0 ∈ N0 and z ∈ F.

Proof. We follow closely the proof of Theorem 2. Assume that the
cocycle A is exponentially stable in average and take an arbitrary
p > 0. It follows from (14) that
∞

n=m0


Ω

∥Aω(n,m0)z(ω)∥ dµ(ω)

p

≤

∞
n=m0


De−λ(n−m0)


Ω

∥z(ω)∥ dµ(ω)

p

= Dp


Ω

∥z(ω)∥ dµ(ω)

p ∞
n=m0

e−λp(n−m0)

= Dp


Ω

∥z(ω)∥ dµ(ω)

p ∞
n=0

e−λpn

=
Dp

1 − e−λp


Ω

∥z(ω)∥ dµ(ω)

p

,

which immediately implies that (15) holds with C =
D

(1−e−λp)1/p
.

Suppose now that there exist C, p > 0 such that (15) holds for
m0 ∈ N0 and z ∈ F. It follows directly from (15) that

Ω

∥Aω(m, n)z(ω)∥ dµ(ω) ≤ C


Ω

∥z(ω)∥ dµ(ω), (16)

for m ≥ n ≥ 0 and z ∈ F. Take now m ≥ n ≥ 0 and k such that
m ≥ k ≥ n. It follows from (16) that

Ω

∥Aω(m, n)z(ω)∥ dµ(ω)

=


Ω

∥Aω(m, k)Aω(k, n)z(ω)∥ dµ(ω)

≤ C


Ω

∥Aω(k, n)z(ω)∥ dµ(ω),

which implies that

(m − n + 1)


Ω

∥Aω(m, n)z(ω)∥ dµ(ω)

p

≤ Cp
m

k=n


Ω

∥Aω(k, n)z(ω)∥ dµ(ω)

p

≤ Cp
∞
k=n


Ω

∥Aω(k, n)z(ω)∥ dµ(ω)

p

≤ C2p


Ω

∥z(ω)∥ dµ(ω)

p

.

Hence,
Ω

∥Aω(m, n)z(ω)∥ dµ(ω) ≤
C2

(1 + m − n)1/p


Ω

∥z(ω)∥ dµ(ω),

for m ≥ n ≥ 0 and z ∈ F. One can now proceed as in the proof of
Theorem 2 and conclude that the cocycle A is exponentially stable
in average. �

5. Robustness of the stability in average

In this section we use Theorem 3 to establish the persistence
of the notion of an exponential stability in average for cocycles
over maps under sufficiently small linear perturbations. In [10] we
have established similar property for the notion of the exponential
dichotomy in average. Although this notion is more general then
the notion of stability in averagewe emphasize that the robustness
property of dichotomy does not imply the robustness property for
stability.
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Theorem 4. Let A and B be a cocycles over f with generators A and
B respectively. Furthermore, assume that
(1) the cocycle A is exponentially stable in average;
(2) there exists c > 0 such that

∥A(ω) − B(ω)∥ ≤ c, for a.e. ω ∈ Ω . (17)

Then, if c is sufficiently small, the cocycle B is exponentially stable in
average.

Proof. Let

Y =


z = (zn)n≥0 ⊂ F : z0 = 0 and

∞
n=1

∥zn∥1 < ∞


.

It is straightforward to verify that Y is a Banach space with respect
to the norm

∥z∥ =

∞
n=1

∥zn∥1.

Moreover, we define a linear operator T : Y → Y by (Tz)0 = 0 and

(Tz)m+1(ω) = zm+1(ω) − A(f m(ω))zm(ω),

for m ≥ 0 and ω ∈ Ω. (18)

It follows from (14) that ∥(Tz)m+1∥1 ≤ ∥zm+1∥1 + D∥zm∥1 which
immediately implies that T is well-defined.

We now claim that T is invertible. Assume that Tz = 0 for
z = (zm)m≥0 ∈ Y . Then, since z0 = 0 it follows from (18) that
zm = 0 for every m ≥ 0 and thus z = 0. In order to prove that T is
onto, take y = (ym)m≥0 ∈ Y and define x = (xm)m≥0 by

xm(ω) =

m
k=0

Aω(m, k)yk(ω), for m ≥ 0 and ω ∈ Ω .

It follows from (14) that

∥xm∥1 ≤

m
k=1

De−λ(m−k)
∥yk∥1

and thus
∞

m=1

∥xm∥1 ≤ D
∞

m=1

m
k=1

e−λ(m−k)
∥yk∥1 ≤

D
1 − e−λ

∥y∥.

Therefore, x = (xm)m≥0 ∈ Y and it is easy to verify that Tx = y.
We now introduce an operator S : Y → Y defined by (Tz)0 = 0
and

(Sz)m+1(ω) = zm+1(ω) − B(f m(ω))zm(ω),

form ≥ 0 and ω ∈ Ω. (19)

It follows directly from (17) that ∥S − T∥ ≤ c and thus if c is
sufficiently small, S is also invertible. Take nowan arbitrarym0 ∈ N
and z ∈ F and define y = (ym)m≥0 ∈ Y by ym0 = z and yn = 0 for
n ≠ m0. Then, there exists x = (xm)m≥0 ∈ Y such that Sx = y. It
follows easily from (19) that

xm(ω) =


0 ifm < m0;

Bω(m,m0)z(ω) ifm ≥ m0.

Hence,

∥x∥ =

∞
m=m0


∥Bω(m,m0)z(ω)∥ dµ(ω) ≤ ∥S−1

∥ · ∥y∥

= ∥S−1
∥ ·


∥z(ω)∥ dµ(ω).

It follows from Theorem 3 (applied for p = 1) that B is
exponentially stable in average. �
We will now formulate the continuous time version of
Theorem 4. Given a cocycleΦ over a semiflow ϕ and an essentially
bounded strongly measurable function B : Ω → L(X), we consider
a strongly measurable map Ψ : R+

0 × Ω → L(X) satisfying

Ψω(t, s) = Φω(t, s) +

 t

s
Φω(t, τ )B(ϕτ (ω))Ψω(τ , s) dτ (20)

for t, s ≥ 0 and µ-almost every ω ∈ Ω , where

Ψω(t, s) = Ψ (t, ω)Ψ (s, ω)−1.

We shall always assume that Φ is such that Eq. (20) has a unique
solution Ψ for any such B. In particular, if the cocycle Φ is
continuous in t , then Ψ is unique and is also a cocycle over ϕ (see
for example [14]). This provides a large class of examples.

Example 4. It turns out that there are many examples even
under much more restrictive assumptions, although natural in the
context of the theory of differential equations. Namely, assume in
addition that:

(1) the map t → Φ(t, ω)x is of class C1 for each ω and x;
(2) the map t → B(ϕt(ω))x is continuous for each ω and x.

Using also Example 1, one can then easily verify that the unique
solution of the problem

x′
= [A(ϕt(ω)) + B(ϕt(ω))]x, x(0) = x0

is given by x(t) = Ψω(t, 0)x0, with Ψω(t, s) specified (uniquely)
by (20).

The following is a continuous time version of Theorem 4.

Theorem 5. Assume that the cocycle Φ is exponentially stable in
average. If

c := ess sup
ω∈Ω

∥B(ω)∥ (21)

is sufficiently small, then the cocycle Ψ defined by (20) is also
exponentially stable in average.

Theorem 5 can be proved in two ways both of which are easy
adaptation of the strategy outlined in the proof of Theorem 4 and
already known techniques (and thus the proof is omitted). One
can proceed in a similar manner to that in the proof of Theorem 4
by constructing appropriate Y and a continuous time versions of
operators T and R from the proof of Theorem 4 (see [11] for the
construction of those operators). Alternatively, one can deduce
Theorem 5 from Theorem 4 using the standard type of arguments
when passing from discrete to continuous time (see [15,16]). We
emphasize that the crucial assumption that enables this approach
to work is that (1) holds.
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