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For an evolution family, we characterize completely the notion of a nonuniform 
exponential trichotomy in terms of admissibility properties. As a nontrivial 
application, we establish the robustness of the notion in a very simple manner. We 
also obtain corresponding results for a strong nonuniform exponential trichotomy. 
We emphasize that both notions are ubiquitous in the context of ergodic theory. 
Moreover, we develop a corresponding theory for the notion of a nonuniformly 
partially hyperbolic set, in which case one considers simultaneously a collection 
of trajectories instead of a single one. In particular, this required first developing 
an appropriate theory for nonuniformly hyperbolic sets, which is of independent 
interest.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Our main aim is to give a complete characterization of the notion of a nonuniform exponential trichotomy 
in terms of admissibility properties. The study of admissibility goes back to Perron in [13] and referred 
originally to the existence of bounded solutions of the equation

x′ = A(t)x + f(t)
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in a finite-dimensional space Rn for any bounded continuous function f . One can also consider other spaces, 
both where we take the perturbations and where we look for the solutions. In this paper, we take locally 
integrable measurable perturbations f satisfying

sup
t∈R

t+1∫
t

‖f(s)‖s ds < +∞

and look for solutions x such that

sup
t∈R

‖x(t)‖t < +∞,

where ‖ ·‖t is an appropriate family of norms. When the norms are independent of t we recover the “classical” 
case of a uniform exponential behavior. We emphasize that the need to consider different spaces for the 
perturbations and for the solutions is not due to considering a nonuniform exponential behavior. Instead, it 
is unavoidable whenever the original linear dynamics does not have the bounded growth property. Indeed, 
the problem already occurs for a uniform exponential behavior (see [6]), although it never occurs in the case 
of discrete time.

For some of the early contributions to the study of admissibility properties in connection with stability 
and conditional stability, we refer to the books by Massera and Schäffer [11] and by Dalec’kĭı and Krĕın [7]. 
See [10] for some early results in infinite-dimensional spaces. For further references, we refer the reader 
to [5,9].

We also consider the notion of a strong nonuniform exponential trichotomy and we give a corresponding 
characterization in terms of admissibility properties. In this case there are both lower and upper exponential 
bounds on the stable and unstable directions, instead of only along the central direction. As an application 
of our results, we give simple proofs of the robustness of the notions of a nonuniform exponential trichotomy 
and of a strong nonuniform exponential trichotomy under sufficiently small linear perturbations.

A principal motivation to consider the notions of a nonuniform exponential trichotomy and of a strong 
nonuniform exponential trichotomy is that from the point of view of ergodic theory, that is, for an au-
tonomous differential equation whose flow preserves a finite measure, almost all linear variational equations 
have a nonuniform exponential behavior. For example, this happens on any compact energy level of a 
Hamiltonian system with respect to the Liouville measure.

Finally, we obtain a corresponding characterization of the notion of a nonuniformly partially hyperbolic 
set. Essentially this corresponds to consider various trajectories simultaneously instead of a single one. 
We emphasize that the notion of a nonuniformly partially hyperbolic set arises naturally in the context 
of smooth ergodic theory (see [3]). Before obtaining this characterization, we first develop an appropriate 
theory for nonuniformly hyperbolic sets, which is of independent interest on its own. For related work in 
the case of discrete time, we refer the reader to Mather [12] and Dragičević and Slijepčević [8].

2. Preliminaries

Let X = (X, ‖ · ‖) be a Banach space and let B(X) be the set of all bounded linear operators acting 
on X. A family T (t, τ), with t, τ ∈ R, of linear operators in B(X) is called an evolution family if:

1. T (t, t) = Id for t ∈ R;
2. T (t, s)T (s, τ) = T (t, τ) for t, s, τ ∈ R;
3. for each t, τ ∈ R and x ∈ X, the maps s �→ T (t, s)x and s �→ T (s, τ)x are continuous.
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We say that an evolution family T (t, τ) admits a nonuniform exponential trichotomy if there exist projections 
P i
t : X → X for i ∈ {1, 2, 3} and t ∈ R satisfying

P 1
t + P 2

t + P 3
t = Id, T (t, τ)P i

τ = P i
tT (t, τ)

for t, τ ∈ R and i ∈ {1, 2, 3}, and there exist constants

D > 0, 0 ≤ a < b, 0 ≤ c < d, ε ≥ 0

such that

‖T (t, τ)P 1
τ ‖ ≤ De−d(t−τ)+ε|τ |, ‖T (t, τ)P 3

τ ‖ ≤ Dea(t−τ)+ε|τ | (1)

for t, τ ∈ R with t ≥ τ and

‖T (t, τ)P 2
τ ‖ ≤ De−b(τ−t)+ε|τ |, ‖T (t, τ)P 3

τ ‖ ≤ Dec(τ−t)+ε|τ | (2)

for t, τ ∈ R with t ≤ τ .
Moreover, we say that an evolution family T (t, τ) admits a nonuniform exponential dichotomy if it admits 

a nonuniform exponential trichotomy with P 3
t = 0 for t ∈ R.

Now we consider a family of norms ‖ · ‖t, t ∈ R, such that ‖ · ‖t is equivalent to ‖ · ‖ for each t and such 
that the map

t �→ ‖x‖t is continuous for each x ∈ X. (3)

We say that an evolution family T (t, τ) admits an exponential dichotomy with respect to the family of norms 
‖ · ‖t, where each norm ‖ · ‖t is equivalent to ‖ · ‖ if there exist projections Pt for t ∈ R satisfying

PtT (t, τ) = T (t, τ)Pτ , t, τ ∈ R,

and there exist constants λ, D > 0 such that for each x ∈ X and t, τ ∈ R we have

‖T (t, τ)Pτx‖t ≤ De−λ(t−τ)‖x‖τ for t ≥ τ (4)

and

‖T (t, τ)Qτx‖t ≤ De−λ(τ−t)‖x‖τ for t ≤ τ, (5)

where Qt = Id − Pt.
We will need the following auxiliary result.

Proposition 1. For each t ∈ R we have

ImPt =
{
x ∈ X : sup

s≥t
‖T (s, t)x‖s < +∞

}

and

ImQt =
{
x ∈ X : sup

s≤t
‖T (s, t)x‖s < +∞

}
.
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Proof. It follows from (4) that

sup
s≥t

‖T (s, t)x‖s < +∞ (6)

for x ∈ ImPt. Now take x ∈ X satisfying (6). Since x = Ptx + Qtx, it follows from (4) that

sup
s≥t

‖T (s, t)Qtx‖s < +∞.

On the other hand, by (5), we have

‖Qtx‖t = ‖T (t, s)T (s, t)Qtx‖t ≤ e−λ(s−t)‖T (s, t)Qtx‖s

for s ≥ t. Letting s → ∞ we obtain Qtx = 0 and so x = Ptx ∈ ImPt. The proof of the second identity in 
the proposition is analogous. �

The following result establishes the connection between the notions of a nonuniform exponential di-
chotomy and of an exponential dichotomy with respect to a sequence of norms (see for example [4]).

Proposition 2. The following properties are equivalent:

1. T (t, τ) admits a nonuniform exponential dichotomy;
2. T (t, τ) admits an exponential dichotomy with respect to a family of norms ‖ · ‖t satisfying (3) and

‖x‖ ≤ ‖x‖t ≤ Deε|t|, t ∈ R, x ∈ X

for some constant D > 0.

Now let Y1 be the set of all continuous functions x: R → X such that

‖x‖∞ := sup
t∈R

‖x(t)‖t < +∞

and let Y2 be the set of all locally integrable measurable functions x: R → X such that

‖x‖L := sup
t∈R

t+1∫
t

‖x(s)‖s ds < +∞,

identified if they are equal Lebesgue-almost everywhere. We note that Y1 and Y2 are Banach spaces when 
equipped, respectively, with the norms ‖ · ‖∞ and ‖ · ‖L (see [2] for a proof in the case of Y2). We say that 
the evolution family T (t, τ) has an admissibility property with respect to the family of norms ‖ · ‖t if for 
each y ∈ Y2 there exists a unique x ∈ Y1 such that

x(t) = T (t, τ)x(τ) +
t∫

τ

T (t, s)y(s) ds for t ≥ τ.

The following result was established in [2].

Proposition 3. The following statements are equivalent:
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1. T (t, τ) admits an exponential dichotomy with respect to the family of norms ‖ · ‖t;
2. T (t, τ) has an admissibility property with respect to the family of norms ‖ · ‖t.

3. Nonuniform exponential trichotomies

In this section we give a characterization of the notion of a nonuniform exponential trichotomy in terms 
of an admissibility property.

Theorem 1. Assume that an evolution family T (t, τ) admits a nonuniform exponential trichotomy with 
ε < b + d. Then there exist families of norms ‖ · ‖1,t and ‖ · ‖2,t for t ∈ R satisfying property (3) and there 
exist constants D′, ω > 0 and ω′ < 0 with ε ≤ ω − ω′ such that:

1. the evolution family eω(t−τ)T (t, τ) has an admissibility property with respect to the family of norms ‖ ·‖1,t;
2. the evolution family eω

′(t−τ)T (t, τ) has an admissibility property with respect to the family of 
norms ‖ · ‖2,t;

3. for t ∈ R, i ∈ {1, 2} and x ∈ X, we have

‖x‖ ≤ ‖x‖i,t ≤ D′eε|t|‖x‖. (7)

Proof. Take ω ∈ (c, d) and consider the evolution family

U(t, τ) = eω(t−τ)T (t, τ). (8)

It follows from (1) and (2) that

‖U(t, τ)P 1
τ ‖ ≤ De−(d−ω)(t−τ)+ε|τ | (9)

for t ≥ τ and that

‖U(t, τ)P 2
τ ‖ ≤ De−(b+ω)(τ−t)+ε|τ | (10)

and

‖U(t, τ)P 3
τ ‖ ≤ De−(ω−c)(τ−t)+ε|τ | (11)

for t ≤ τ . By (9), (10) and (11), the evolution family U(t, τ) admits a nonuniform exponential dichotomy 
with projections Pt = P 1

t . Hence, by Proposition 2, the evolution family U(t, τ) admits an exponential 
dichotomy with respect to a family of norms ‖ · ‖1,t satisfying (3) and (7) with some constant D′ > 0. 
Moreover, it follows from Proposition 3 that the evolution family U(t, τ) has an admissibility property with 
respect to the family of norms ‖ · ‖1,t.

Now take ω′ ∈ (−b, −a) and consider the evolution family

U ′(t, τ) = eω
′(t−τ)T (t, τ). (12)

It follows from (1) and (2) that

‖U ′(t, τ)P 1
τ ‖ ≤ De−(d−ω′)(t−τ)+ε|τ | (13)

and

‖U ′(t, τ)P 3
τ ‖ ≤ De−(−a−ω′)(t−τ)+ε|τ | (14)
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for t ≥ τ and that

‖U ′(t, τ)P 2
τ ‖ ≤ De−(b+ω′)(τ−t)+ε|τ | (15)

for t ≤ τ . By (13), (14) and (15), the evolution family U ′(t, τ) admits a nonuniform exponential dichotomy 
with projections Pt = P 1

t +P 3
t . Hence, it follows from Propositions 2 and 3 that the evolution family U ′(t, τ)

has an admissibility property with respect to a family of norms ‖ · ‖2,t satisfying (3) and (7) with some 
constant D′ > 0 (that can be the same as before).

Finally, since ε < b + d, one can choose ω and ω′ so that ε ≤ ω − ω′. �
Now we establish the converse of Theorem 1.

Theorem 2. Assume that there exist families of norms ‖ ·‖1,t and ‖ ·‖2,t for t ∈ R satisfying (3) and constants 
D′, ω > 0, ε ≥ 0 and ω′ < 0 with ε ≤ ω − ω′ satisfying properties 1–3 in Theorem 1. Then the evolution 
family T (t, τ) admits a nonuniform exponential trichotomy.

Proof. It follows from Proposition 3 that the evolution families eω(t−τ)T (t, τ) and eω
′(t−τ)T (t, τ) admit 

exponential dichotomies, respectively, with respect to the families of norms ‖ · ‖1,t and ‖ · ‖2,t. Hence, there 
exist projections P 1

t and P 2
t satisfying

P 1
t e

ω(t−τ)T (t, τ) = eω(t−τ)T (t, τ)P 1
τ ,

P 2
t e

ω′(t−τ)T (t, τ) = eω
′(t−τ)T (t, τ)P 2

τ

for t, τ ∈ R and there exist constants λ, D > 0 such that

‖U(t, τ)P 1
τ x‖1,t ≤ De−λ(t−τ)‖x‖1,τ , (16)

‖U ′(t, τ)P 2
τ x‖2,t ≤ De−λ(t−τ)‖x‖2,τ (17)

for t ≥ τ and

‖U(t, τ)Q1
τx‖1,t ≤ De−λ(τ−t)‖x‖1,τ , (18)

‖U ′(t, τ)Q2
τx‖2,t ≤ De−λ(τ−t)‖x‖2,τ (19)

for t ≤ τ , with the operators U(t, τ) and U ′(t, τ) as in (8) and (12), and where Qi
t = Id − P i

t .

Lemma 1. For each τ ∈ R, we have

ImP 1
τ ⊂ ImP 2

τ and ImQ2
τ ⊂ ImQ1

τ .

Proof. Take x ∈ ImP 1
τ . By (7), we have

‖U ′(t, τ)x‖2,t = eω
′(t−τ)‖T (t, τ)x‖2,t

≤ D′eω
′(t−τ)eε|t|‖T (t, τ)x‖

≤ D′eω
′(t−τ)eε|t|‖T (t, τ)x‖1,t

= D′e(ω′−ω)(t−τ)eε|t|‖U(t, τ)x‖1,t
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for t ≥ τ . Since ε ≤ ω − ω′, it follows from Proposition 1 that

sup
t≥τ

‖U ′(t, τ)x‖2,t < +∞

and thus x ∈ ImP 2
τ . The second inclusion can be obtained in a similar manner. �

Lemma 2. The map Id − P 1
τ −Q2

τ is a projection for each τ ∈ R.

Proof. It follows from Lemma 1 that

P 1
τ Q

2
τ = Q2

τP
1
τ = 0

for τ ∈ R. Hence,

(Id − P 1
τ −Q2

τ )2 = Id − 2P 1
τ − 2Q2

τ + (P 1
τ )2 + (Q2

τ )2 + P 1
τ Q

2
τ + Q2

τP
1
τ

= Id − P 1
τ −Q2

τ

and the conclusion of the lemma follows. �
Lemma 3. For each τ ∈ R, we have

Im(Id − P 1
τ −Q2

τ ) = ImP 2
τ ∩ ImQ1

τ .

Proof. Take x ∈ ImP 2
τ ∩ ImQ1

τ . We have Q2
τx = P 1

τ x = 0 and thus,

(Id − P 1
τ −Q2

τ )x = x.

This shows that x ∈ Im(Id − P 1
τ − Q2

τ ). Now take x ∈ Im(Id − P 1
τ − Q2

τ ). Then P 1
τ x = −Q2

τx. Applying 
P 1
τ , it follows from Lemma 1 that P 1

τ x = 0 and thus x ∈ ImQ1
τ . One can show in a similar manner that 

x ∈ ImP 2
τ and so x ∈ ImP 2

τ ∩ ImQ1
τ . �

Now we complete the proof of the theorem. It follows from (7) and (16) that

‖T (t, τ)P 1
τ ‖ ≤ DD′e−(λ+ω)(t−τ)+ε|τ | for t ≥ τ. (20)

Similarly, by (7) and (19) we have

‖T (t, τ)Q2
τ‖ ≤ DD′e−(λ−ω′)(τ−t)+ε|τ | for t ≤ τ. (21)

Moreover, it follows from (7), (17), (18) and Lemma 3 that for each x ∈ Im(Id − P 1
τ −Q2

τ ), we have

‖T (t, τ)x‖ ≤ DD′e−(λ+ω′)(t−τ)+ε|τ |

for t ≥ τ and

‖T (t, τ)x‖ ≤ DD′e−(λ−ω)(τ−t)+ε|τ |

for t ≤ τ . In addition, by (16) and (19),

‖Id − P 1
τ −Q2

τ‖ ≤ 3DD′eε|τ |
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for τ ∈ R. Hence,

‖T (t, τ)(Id − P 1
τ −Q2

τ )‖ ≤ 3(DD′)2e−(λ+ω′)(t−τ)+2ε|τ | for t ≥ τ (22)

and

‖T (t, τ)(Id − P 1
τ −Q2

τ )‖ ≤ 3(DD′)2e−(λ−ω)(τ−t)+2ε|τ | for t ≤ τ. (23)

It follows from (20), (21), (22) and (23) that the evolution family T (t, τ) admits a nonuniform exponential 
trichotomy. �
4. Strong nonuniform exponential trichotomies

In this section we obtain corresponding results to those in the former section for the stronger notion of 
a strong nonuniform exponential trichotomy.

We say that an evolution family T (t, τ) admits a strong nonuniform exponential trichotomy if it admits 
a nonuniform exponential trichotomy and if there exist constants d′ ≥ d and b′ ≥ b such that

‖T (t, τ)P 1
τ ‖ ≤ Ded

′(τ−t)+ε|τ | for t ≤ τ

and

‖T (t, τ)P 2
τ ‖ ≤ Deb

′(t−τ)+ε|τ | for t ≥ τ.

Theorem 3. Assume that the evolution family T (t, τ) admits a nonuniform exponential trichotomy with 
ε < b + d. Then there exist families of norms ‖ · ‖1,t and ‖ · ‖2,t for t ∈ R satisfying (3) and constants 
D′, ω > 0, c1, c2, K1, K2 > 0 and ω′ < 0 with ε ≤ ω − ω′ satisfying properties 1–3 in Theorem 1 as well as

1
K1

ec1(τ−t)‖x‖1,τ ≤ ‖T (t, τ)x‖1,t, ‖T (t, τ)x‖2,t ≤ K2e
c2(t−τ)‖x‖2,τ (24)

for t ≥ τ and x ∈ X.

Proof. Take ω ∈ (c, d) and consider the evolution family U(t, τ) in (8). In addition to (9), (10) and (11), 
we have

‖U(t, τ)P 1
τ ‖ ≤ De(d′−ω)(τ−t)+ε|τ | for t ≤ τ. (25)

For τ ∈ R and x ∈ X, let

‖x‖1,τ = sup
t≥τ

(
‖U(t, τ)P 1

τ x‖eλ(t−τ)) + sup
t≤τ

(
‖U(t, τ)(Id − P 1

τ )x‖eλ(τ−t))

+ sup
t<τ

(
‖U(t, τ)P 1

τ x‖e−(d′−ω)(τ−t)),

where

λ = min
{
d− ω, b + ω, ω − c

}
> 0.

It follows from (9), (10), (11) and (25) that the norms ‖ · ‖1,t satisfy (7) with D′ = 4D.
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Lemma 4. The evolution family U(t, τ) admits an exponential dichotomy with respect to the family of 
norms ‖ · ‖1,t. Moreover, there exists c1 > 0 such that the first inequality in (24) holds for t ∈ R and 
x ∈ X.

Proof. For t ≥ τ , since λ < d′ − ω we have

‖U(t, τ)P 1
τ x‖1,t = sup

s≥t

(
‖U(s, τ)P 1

τ x‖eλ(s−t))

+ sup
s<t

(
‖U(s, τ)P 1

τ x‖e−(d′−ω)(t−s))

≤ sup
s≥t

(
‖U(s, τ)P 1

τ x‖eλ(s−t))

+ sup
τ≤s<t

(
‖U(s, τ)P 1

τ x‖e−λ(t−s))

+ sup
s<τ

(
‖U(s, τ)P 1

τ x‖e−(d′−ω)(t−s))

≤ 2e−λ(t−τ) sup
s≥τ

(
‖U(s, τ)P 1

τ x‖eλ(s−τ))

+ e−(d′−ω)(t−τ) sup
s<τ

(
‖U(s, τ)P 1

τ x‖e−(d′−ω)(τ−s))

≤ 2e−λ(t−τ)‖x‖1,τ . (26)

One can show in a similar manner that

‖U(t, τ)P 1
τ x‖1,t ≤ 2e(d′−ω)(τ−t)‖x‖1,τ for t ≤ τ. (27)

Moreover,

‖U(t, τ)(Id − P 1
τ )x‖1,t = sup

s≤t

(
‖U(s, t)U(t, τ)(Id − P 1

τ )x‖eλ(t−s))

= e−λ(τ−t) sup
k≤m

(
‖U(s, τ)(Id − P 1

τ )x‖eλ(τ−s))

≤ e−λ(τ−t)‖x‖1,τ (28)

for t ≤ τ . It follows from (26) and (28) that the evolution family U(t, τ) admits an exponential dichotomy 
with respect to the family of norms ‖ · ‖1,t. By (27) and (28), we have

e−ω(τ−t)‖T (t, τ)x‖1,t = ‖U(t, τ)x‖1,t

≤ ‖U(t, τ)P 1
τ x‖1,t + ‖U(t, τ)(Id − P 1

τ )x‖1,t

≤ 2e(d′−ω)(τ−t)‖x‖1,τ + e−λ(τ−t)‖x‖1,τ

≤ 3e(d′−ω)(τ−t)‖x‖1,τ

for x ∈ X and t ≤ τ . This shows that the first inequality in (24) holds with c1 = d′ and K1 = 3. �
By Lemma 4 and Proposition 3, the evolution family U(t, τ) has an admissibility property with respect 

to the family of norms ‖ · ‖1,t.
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Now take ω′ ∈ (−b, −a) and consider the evolution family U ′(t, τ) in (12). In addition to (13), (14)
and (15), we have

‖U ′(t, τ)P 2
τ ‖ ≤ De(b′+ω′)(t−τ)+ε|τ | for t ≥ τ. (29)

For τ ∈ R and x ∈ X, let

‖x‖2,τ = sup
t≥τ

(
‖U ′(t, τ)(Id − P 2

τ )x‖eλ′(t−τ)) + sup
t≤τ

(
‖U ′(t, τ)P 2

τ x‖eλ
′(τ−t))

+ sup
t>τ

(
‖U ′(t, τ)P 2

nx‖e−(b′+ω′)(t−τ)),
where

λ′ = min
{
d− ω′,−a− ω′, b + ω′} > 0.

It follows from (13), (14) and (15) and (29) that the norms ‖ · ‖2,t satisfy (7) with D′ = 4D.

Lemma 5. The evolution family U ′(t, τ) admits an exponential dichotomy with respect to the family of 
norms ‖ · ‖2,t. Moreover, there exists c2 > 0 such that the second inequality in (24) holds for t ∈ R and 
x ∈ X.

Proof. Take t ≤ τ . Since λ′ < b′ + ω′, proceeding as in (26) we obtain

‖U ′(t, τ)P 2
τ x‖2,t = sup

s≤t

(
‖U ′(s, τ)P 2

τ x‖eλ
′(t−s))

+ sup
s>t

(
‖U ′(s, τ)P 2

τ x‖e−(b′+ω′)(s−t))

≤ sup
s≤t

(
‖U ′(s, τ)P 2

τ x‖eλ
′(t−s))

+ sup
τ≥s>t

(
‖U ′(s, τ)P 2

τ x‖eλ
′(t−s))

+ sup
s>τ

(
‖U ′(s, τ)P 2

τ x‖e−(b′+ω′)(s−t))

≤ 2e−λ′(τ−t) sup
s≤τ

(
‖U ′(s, τ)P 2

τ x‖eλ
′(τ−s))

+ e−(b′+ω′)(τ−t) sup
s>τ

(
‖U ′(s, τ)P 2

τ x‖e−(b′+ω′)(s−τ))

≤ 2e−λ′(τ−t)‖x‖2,τ . (30)

One can show in a similar manner that

‖U ′(t, τ)P 2
τ x‖2,t ≤ 2e(b′+ω′)(t−τ)‖x‖2,τ (31)

and

‖U ′(t, τ)(Id − P 2
τ )x‖2,t ≤ e−λ′(t−τ)‖x‖2,τ (32)

for t ≥ τ . It follows from (30) and (32) that the evolution family U ′(t, τ) admits an exponential dichotomy 
with respect to the family of norms ‖ · ‖2,t. Moreover, by (31) and (32), we have
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eω
′(t−τ)‖T (t, τ)x‖2,t = ‖U ′(t, τ)x‖1,t

≤ ‖U ′(t, τ)P 2
τ x‖2,t + ‖U ′(t, τ)(Id − P 2

τ )x‖2,t

≤ 2e(b′+ω′)(t−τ)‖x‖2,τ + e−λ(t−τ)‖x‖2,τ

≤ 3e(b′+ω′)(t−τ)‖x‖2,τ

for x ∈ X and t ≥ τ . This shows that the second inequality in (24) holds with c2 = b′ and K2 = 3. �
By Lemma 5 and Proposition 3, the evolution family U ′(t, τ) has an admissibility property with respect 

to the family of norms ‖ · ‖2,t.
Finally, since ε < b + d, one can choose ω and ω′ so that ε ≤ ω − ω′. �
Now we establish the converse of Theorem 3.

Theorem 4. Assume that there exist families of norms ‖ ·‖1,t and ‖ ·‖2,t for t ∈ R satisfying (3) and constants 
D′, ω > 0, ε ≥ 0, c1, c2, K1, K2 > 0 and ω′ < 0 with ε ≤ ω − ω′ satisfying properties 1–3 in Theorem 1
and (24). Then the evolution family T (t, τ) admits a strong nonuniform exponential trichotomy.

Proof. Using the same notation as in the proof of Theorem 2, it follows from (24) that

‖T (t, τ)P 1
τ x‖ ≤ ‖T (t, τ)P 1

τ x‖1,t

≤ K1e
c1(τ−t)‖x‖1,τ

≤ K1D
′ec1(τ−t)+ε|τ |‖x‖

for t ≤ τ and x ∈ X. Similarly,

‖T (t, τ)Q2
τx‖ ≤ ‖T (t, τ)Q2

τx‖2,t

≤ K2e
c2(t−τ)‖x‖1,τ

= K2D
′ec2(t−τ)+ε|τ |‖x‖

for t ≥ τ and x ∈ X. This shows that the nonuniform exponential trichotomy given by Theorem 2 is 
strong. �
5. Robustness

In this section we establish the robustness of the notions of a nonuniform exponential trichotomy and of 
a strong nonuniform exponential trichotomy under sufficiently small linear perturbations.

Theorem 5. Let T (t, τ) be an evolution family and let B: R → B(X) be a strongly continuous function such 
that:

1. T (t, τ) admits a nonuniform exponential trichotomy with ε < b + d;
2. there exists ρ > 0 such that

‖B(t)‖ ≤ ρe−ε|t|, t ∈ R. (33)
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If ρ is sufficiently small, then the evolution family U(t, τ) defined by

U(t, τ) = T (t, τ) +
t∫

τ

T (t, s)B(s)U(s, τ) ds for t ≥ τ (34)

admits a nonuniform exponential trichotomy.

Proof. We first recall a result established in [2].

Lemma 6. Assume that the evolution family T (t, τ) admits an exponential dichotomy with respect to a family 
of norms ‖ · ‖t and that B: R → B(X) is a strongly continuous function satisfying (33). If ρ is sufficiently 
small, then the evolution family U(t, τ) defined by (34) admits an exponential dichotomy respect to the same 
family of norms.

Let ω′ < 0 < ω be the constants and let ‖ ·‖i,t be the norms given by Theorem 1. It follows from Lemma 6
that for any sufficiently small ρ the evolution families eω(t−τ)U(t, τ) and eω

′(t−τ)U(t, τ) have admissibility 
properties, respectively, with respect to the families of norms ‖ · ‖1,t and ‖ · ‖2,t. Hence, by Theorem 2, the 
evolution family U(t, τ) admits a nonuniform exponential trichotomy. �

Now we consider the case of strong nonuniform exponential trichotomies.

Theorem 6. Let T (t, τ) be an evolution family and let B: R → B(X) be a strongly continuous function such 
that:

1. T (t, τ) admits a strong nonuniform exponential trichotomy with ε < b + d;
2. there exists ρ > 0 such that (33) holds.

If ρ is sufficiently small, then the evolution family U(t, τ) defined by (34) admits a strong nonuniform 
exponential trichotomy.

Proof. In view of Theorem 5 and the characterization of a strong nonuniform exponential trichotomy given 
by Theorems 3 and 4, it is sufficient to show that there exist constants c′1, c′2 > 0 and K ′

1, K
′
2 > 0 such that

1
K ′

1
ec

′
1(τ−t)‖x‖1,τ ≤ ‖U(t, τ)x‖1,t, ‖U(t, τ)x‖2,t ≤ K ′

2e
c′2(t−τ)‖x‖2,τ

for t ≥ τ and x ∈ X. These inequalities can be easily deduced from (24) and Gronwall’s lemma (see [1] for 
a detailed argument). �
6. Characterization of nonuniformly hyperbolic sets

In this section we obtain corresponding results to those in the former sections for nonuniformly hyperbolic 
sets. These will be used in Section 7 to characterize the notion of a partially hyperbolic set.

Let M be a compact d-dimensional Riemannian manifold and let Φ = (φt)t∈R be a smooth flow on M . 
Throughout this section we denote by E0(x) the 1-dimensional subspace of TxM spanned by the direction 
of the flow at x, that is, by the vector (d/dt)φt(x)|t=0.

A Φ-invariant measurable set Λ ⊂ M is said to be nonuniformly hyperbolic for Φ if there exist constants 
0 < λ < 1 < μ and splittings

TxM = Es(x) ⊕Eu(x) ⊕ E0(x)
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for x ∈ Λ so that given ε > 0, there exist measurable functions C, K: Λ → R
+ such that for each x ∈ Λ, 

v ∈ TxM and t ∈ R we have:

1. dxφ
tEs(x) = Es(φt(x)) and dxφtEu(x) = Eu(φt(x));

2. for t ≥ 0,

‖dxφtv‖φt(x) ≤ C(x)λteεt‖v‖x, v ∈ Es(x) (35)

and

‖dxφ−tv‖φ−t(x) ≤ C(x)μ−teεt‖v‖x, v ∈ Es(x); (36)

3. ∠(Es(x), Eu(x)) ≥ K(x);
4.

C(φt(x)) ≤ C(x)eε|t|, K(φt(x)) ≥ K(x)e−ε|t|. (37)

Now let Λ ⊂ M be a Φ-invariant set. We say that a collection E of subspaces E(x) ⊂ TxM , x ∈ Λ is a 
k-dimensional invariant distribution on Λ if:

1. the subspaces E(x) depend measurably on x;
2. dxφ

tE(x) = E(φt(x)) for t ∈ R and x ∈ Λ;
3. dimE(x) = k for x ∈ Λ.

Consider a k-dimensional invariant distribution E on Λ and a norm ‖ · ‖′x on E(x) for each x ∈ Λ. Given 
x ∈ Λ, we denote by Yx the set of all continuous functions v: R → TΛM such that v(t) ∈ E(φt(x)) for t ∈ R

and

sup
t∈R

‖v(t)‖′φt(x) < +∞.

One can easily verify that Yx is a Banach space when equipped with the norm

‖v‖ = sup
t∈R

‖v(t)‖′φt(x).

Moreover, let Rx be the linear map defined by Rxu = v in the domain D(Rx) formed by all u ∈ Yx for 
which there exists v ∈ Yx such that

u(t) = dφs(x)φ
t−su(s) +

t∫
s

dφτ (x)φ
t−τv(τ) dτ for t ≥ s. (38)

We note that Rx is well-defined. Indeed, assume on the contrary that there exist u, v, ̃v ∈ Yx such that

u(t) = dφs(x)φ
t−su(s) +

t∫
s

dφτ (x)φ
t−τv(τ) dτ

and

u(t) = dφs(x)φ
t−su(s) +

t∫
dφτ (x)φ

t−τ ṽ(τ) dτ

s
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for t ≥ s. Then

0 =
t∫

s

dφτ (x)φ
t−τ (v(τ) − ṽ(τ)) dτ = dxφ

t

t∫
s

dφτ (x)φ
−τ (v(τ) − ṽ(τ)) dτ,

which implies that

t∫
s

dφτ (x)φ−τ (v(τ) − ṽ(τ)) dτ = 0.

Therefore,

dφt(x)φ−t(v(t) − ṽ(t)) = 0

and so v(t) = ṽ(t) for all t. This shows that Rx is well-defined.
The following two results give a characterization of the notion of a nonuniformly hyperbolic set in terms 

of an admissibility property.

Theorem 7. Let Λ ⊂ M be a nonuniformly hyperbolic set for Φ. Then there exist a (d − 1)-dimensional 
invariant distribution E on Λ, a measurable function G: Λ → R

+, and constants ε0, D, A > 0 such that 
given ε ∈ (0, ε0), there exists a norm ‖ · ‖′ = ‖ · ‖ε on TΛM and for each x ∈ Λ, v ∈ TxM and t ∈ R we 
have:

1.

TxM = E(x) ⊕ E0(x); (39)

2.

1
3‖v‖x ≤ ‖v‖εx ≤ G(x)‖v‖x, v ∈ E(x), (40)

and

G(φt(x)) ≤ e2ε|t|G(x); (41)

3. Rx: D(Rx) → Yx is a invertible linear operator with

‖R−1
x ‖ ≤ D; (42)

4.

‖dxφtv‖εφt(x) ≤ 2A|t|(eε|t| + 1)‖v‖εx, v ∈ E(x). (43)

Proof. Let E(x) = Es(x) ⊕Eu(x) for x ∈ Λ. Clearly, E is a (d − 1)-dimensional invariant distribution and 
satisfies (39).

Since M is compact, there exists A > 0 such that ‖dxφt‖ ≤ A|t| for x ∈ M and t ∈ R. Without loss of 
generality, one may assume that 1/A ≤ λ and μ ≤ A (since otherwise one can simply increase A). Take 
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ε0 > 0 such that λeε0 < 1 < μe−ε0 . For each ε ∈ (0, ε0), we introduce a norm ‖ · ‖ε on TΛM . For v ∈ Es(x), 
let

‖v‖εx = sup
t≥0

(
λ−te−εt‖dxφtv‖φt(x)

)
+ sup

t<0

(
eεtAt‖dxφtv‖φt(x)

)
.

It follows from (35) that

‖v‖x ≤ ‖v‖εx ≤ (C(x) + 1)‖v‖x for v ∈ Es(x). (44)

Moreover,

‖dxφtv‖εφt(x) = sup
s≥0

(
λ−se−εs‖dxφs+tv‖φs+t(x)

)

+ sup
s<0

(
eεsAs‖dxφs+tv‖φs+t(x)

)

≤ sup
s≥0

(
λ−se−εs‖dxφs+tv‖φs+t(x)

)

+ sup
s<−t

(
eεsAs‖dxφs+tv‖φs+t(x)

)

+ sup
−t≤s≤0

(
e−εsλ−s‖dxφs+tv‖φs+t(x)

)

≤ 2λteεt‖v‖εx (45)

for v ∈ Es(x) and t ≥ 0 and, analogously,

‖dxφ−tv‖εφ−t(x) ≤ At(2eεt + 1)‖v‖εx (46)

for v ∈ Es(x) and t ≥ 0. Similarly, for v ∈ Eu(x), let

‖v‖εx = sup
t≤0

(
μ−teεt‖dxφtv‖φt(x)

)
+ sup

t>0

(
A−te−εt‖dxφtv‖φt(x)

)
.

It follows from (36) that

‖v‖x ≤ ‖v‖εx ≤ (C(x) + 1)‖v‖x for v ∈ Eu(x). (47)

Moreover, proceeding as in (45), we obtain

‖dxφ−tv‖εφ−t(x) ≤ 2μ−teεt‖v‖εx (48)

for v ∈ Eu(x) and t ≥ 0, and

‖dxφtv‖εφt(x) ≤ At(2eεt + 1)‖v‖εx (49)

for v ∈ Eu(x) and t ≥ 0. For an arbitrary v ∈ TxM , let

‖v‖εx = max
{
‖vs‖εx, ‖vu‖εx, ‖v0‖x

}
,

where v = vs +vu +v0 with vs ∈ Es(x), vu ∈ Eu(x) and v0 ∈ E0(x). It follows from (44) and (47) that (40)
holds taking

G(x) = cmax
{
1, (C(x) + 1)/K(x)

}
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for some constant c > 0. Moreover, it follows from (37) that (41) holds. Finally, it follows from (45), (46), 
(48) and (49) that (43) holds.

Now let

P (x):E(x) → Es(x) and Q(x):E(x) → Eu(x)

be the projections associated to the decomposition E(x) = Es(x) ⊕Eu(x).

Lemma 7. There exists a constant Z > 0 (independent of ε and x) such that

‖P (x)v‖εx ≤ Z‖v‖εx and ‖Q(x)v‖εx ≤ Z‖v‖εx (50)

for x ∈ Λ and v ∈ TxM .

Proof. For each x ∈ Λ, let

γε
x = inf

{
‖vs + vu‖εx : ‖vs‖εx = ‖vu‖εx = 1, vs ∈ Es(x), vu ∈ Eu(x)

}
.

Take a vector v ∈ E(x) such that Pv �= 0 and Qv �= 0, where P = P (x) and Q = Q(x). Then

γε
x ≤

∥∥∥∥ Pv

‖Pv‖εx
+ Qv

‖Qv‖εx

∥∥∥∥
ε

x

= 1
‖Pv‖εx

∥∥∥∥Pv + ‖Pv‖εx
‖Qv‖εx

Qv

∥∥∥∥
ε

x

= 1
‖Pv‖εx

∥∥∥∥v + ‖Pv‖εx − ‖Qv‖εx
‖Qv‖εx

Qv

∥∥∥∥
ε

x

≤ 2‖v‖εx
‖Pv‖εx

and so,

‖Pv‖εx ≤ 2
γε
x

‖v‖εx

for v ∈ E(x). In order to estimate γε
x, take vs ∈ Es(x) and vu ∈ Eu(x) such that ‖vs‖εx = ‖vu‖εx = 1. It 

follows from (45), (48) and (43) (recall that ε < ε0) that

‖vs + vu‖εx ≥ 1
2A(eε0 + 1)‖dxφ

1(vs + vu)‖εφ1(x)

≥ 1
2A(eε0 + 1)

(
‖dxφ1vu‖εφ1(x) − ‖dxφ1vs‖εφ1(x)

)

≥ 1
2A(eε0 + 1)(μe−ε0 − λeε0)

and so,

γε
x ≥ 1

2A(eε0 + 1)(μe−ε0 − λeε0).

Therefore, (50) holds taking

Z = 4A(eε0 + 1)
μe−ε0 − λeε0

.

This completes the proof of the lemma. �
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Now take x ∈ Λ. We first show that the map Rx is onto. Take v ∈ Yx. We define

u(t) =
t∫

−∞

dφτ (x)φ
t−τvs(τ) dτ −

∞∫
t

dφτ (x)φ
t−τvu(τ) dτ

for t ∈ R, where

vs(τ) = P (φτ (x))v(τ) and vu(τ) = Q(φτ (x))v(τ).

It follows from (45), (48) and (50) that

‖u(t)‖εφt(x)

≤ 2Z
( t∫
−∞

(λeε0)t−τ‖v(τ)‖εφτ (x) dτ +
∞∫
t

(μe−ε0)t−τ‖v(τ)‖εφτ (x) dτ

)

= 2Z
(

1
− log(λeε0) + 1

log(μe−ε0)

)
‖v‖ (51)

for t ∈ R and so u ∈ Yx. Moreover, it is easy to verify that Rxu = v. Indeed,

u(t) − dφs(x)φ
t−su(s)

=
t∫

−∞

dφτ (x)φ
t−τvs(τ) dτ − dφs(x)φ

t−s

s∫
−∞

dφτ (x)φ
s−τvs(τ) dτ

−
∞∫
t

dφτ (x)φ
t−τvu(τ) dτ + dφs(x)φ

t−s

∞∫
s

dφτ (x)φ
s−τvu(τ) dτ

=
t∫

s

dφτ (x)φ
t−τvs(τ) dτ +

t∫
s

dφτ (x)φ
t−τvu(τ) dτ

=
t∫

s

dφτ (x)φ
t−τv(τ) dτ

for t ≥ s.
Now we show that Rx is one-to-one. Assume that Rxv = 0 for some v ∈ Yx. Then

vs(t) = dxφ
t−τ (φτ (x))vs(τ) and vu(t) = dxφ

t−τ (φτ (x))vu(τ)

for t ≥ τ . For each t ∈ R, it follows from (45) that

‖vs(t)‖εφt(x) ≤ 2(λeε)t−τ‖v(τ)‖εφτ (x) ≤ 2(λeε0)t−τ‖v‖

for τ ≤ t. Letting τ → −∞, we obtain vs(t) = 0. Similarly, vu(t) = 0 for t ∈ R and so v = 0. We conclude 
that the map Rx is one-to-one for each x ∈ Λ. Moreover, it follows from (51) that (42) holds with

D = 2Z
(

1
− log(λeε0) + 1

log(μe−ε0)

)
.

This completes the proof of the theorem. �
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Now we establish the converse of Theorem 7.

Theorem 8. Let Λ ⊂ M be a Φ-invariant measurable set. Assume that there exist a (d − 1)-dimensional 
invariant distribution E on Λ and constants ε0, D, A > 0 such that given ε ∈ (0, ε0), there exist a norm 
‖ · ‖ε on TΛM and a measurable function G: Λ → R

+ satisfying properties 1–4 in Theorem 7. Then Λ is a 
nonuniformly hyperbolic set for Φ.

Proof. Take x ∈ Λ and ε ∈ (0, ε0). We define

Es(x, ε) =
{
v ∈ E(x) : sup

t≥0

(
‖dxφtv‖εφt(x)

)
< +∞

}

and

Eu(x, ε) =
{
v ∈ E(x) : sup

t≤0

(
‖dxφtv‖εφt(x)

)
< +∞

}
.

Lemma 8. For each x ∈ Λ, we have

E(x) = Es(x, ε) ⊕Eu(x, ε). (52)

Proof. Let ψ: R → R be a continuous function supported on [0, 1] such that 
∫ 1
0 ψ(s) ds = 1. Given a vector 

v ∈ E(x), we define a function g: R → X by

g(t) = ψ(t)dxφtv.

Clearly, g ∈ Yx. Since Rx is invertible, there exists w ∈ Yx such that Rxw = g. Moreover, it follows from (38)
that

w(t) = dxφ
t(w(0) + v)

for t ≥ 1 and thus w(0) + v ∈ Es(x, ε). Furthermore, again by (38), we have w(t) = dxφ
tw(0) for t ≤ 0 and 

thus w(0) ∈ Eu(x, ε). This shows that v ∈ Es(x, ε) + Eu(x, ε).
Now take v ∈ Es(x, ε) ∩ Eu(x, ε) and let w(t) = dxφ

tv. Clearly, w ∈ Yx and one can easily verify that 
Rxw = 0. Since Rx is invertible, we obtain w = 0 and so v = 0. �

It follows from (39) and (52) that

TxM = Es(x, ε) ⊕ Eu(x, ε) ⊕E0(x) for x ∈ Λ. (53)

Now let

P (x):E(x) → Es(x, ε) and Q(x):E(x) → Eu(x, ε)

be the projections associated to the decomposition (52).

Lemma 9. There exists M > 0 (independent of x and ε) such that

‖P (x)v‖εx ≤ M‖v‖εx (54)

for x ∈ Λ and v ∈ E(x).
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Proof. Using the same notation as in the proof of Lemma 8, we obtain

‖P (x)v‖εx = ‖w(0) + v‖εx
≤ ‖w(0)‖εx + ‖v‖εx ≤ ‖w‖ + ‖v‖εx
= ‖R−1

x g‖ + ‖v‖εx ≤ D‖g‖ + ‖v‖εx,

using (42) in the last inequality. On the other hand, it follows from (43) that ‖g‖ ≤ CA(eε0 +1)‖v‖εx, where

C = sup
{
|φ(t)| : t ∈ [τ, τ + 1]

}
.

This shows that (54) holds taking M = CA(eε0 + 1) + 1. �
Lemma 10. There exist constants λ, C > 0 (independent of x and ε) with λ < 1 such that

‖dxφtv‖εφt(x) ≤ Cλt‖v‖εx, (55)

for v ∈ Es(x, ε) and t ≥ 0.

Proof. Take v ∈ Es(x, ε) and let u(t) = dxφ
tv. Moreover, let ψ: R → R be a smooth function supported on 

[0, +∞) such that 0 ≤ ψ ≤ 1, ψ = 1 on [1, +∞) and supt∈R
|ψ′(t)| ≤ 2. Clearly, ψu ∈ Yx and one can easily 

verify that Rx(ψu) = ψ′u. Moreover,

sup
{
‖u(t)‖εφt(x) : t ∈ [1,+∞)

}
= sup

{
‖ψ(t)u(t)‖εφt(x) : t ∈ [1,+∞)

}
≤ ‖ψu‖ = ‖R−1

x (ψ′u)‖

≤ ‖R−1
x ‖ · ‖ψ′u‖

= ‖R−1
x ‖ sup

{
‖(ψ′u)(t)‖εφt(x) : t ∈ [0, 1]

}
≤ 2‖R−1

x ‖ sup
{
‖u(t)‖εφt(x) : t ∈ [0, 1]

}
= 2‖R−1

x ‖ sup
{
‖dxφtv‖εφt(x) : t ∈ [0, 1]

}
≤ 2K‖R−1

x ‖ · ‖v‖εx,

where K = 2A(eε0 + 1), using (43) in the last inequality. Hence, again using (43), we obtain

‖u(t)‖εφt(x) ≤ C‖v‖εx for t ≥ 0, (56)

where C = 2K max{1, ‖R−1
x ‖}.

Now we show that there exists N ∈ N such that for every x ∈ Λ and v ∈ Es(x, ε),

‖u(t)‖εφt(x) ≤
1
2‖v‖

ε
x for t ≥ N. (57)

Take t0 such that t0 > 0 and ‖u(t0)‖εφt0 (x) > ‖v‖εx/2. It follows from (56) that

1 ‖v‖εx < ‖u(s)‖εφs(x) ≤ C‖v‖εx, 0 ≤ s ≤ t0. (58)
2C
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Now take δ > 0 and let ψ: R → R be a smooth function supported on [0, t0] such that 0 ≤ ψ ≤ 1 and ψ = 1
on [δ, t0 − δ]. Moreover, let

y(t) = ψ(t)u(t) and w(t) = u(t)
t∫

−∞

ψ(s) ds (59)

for t ∈ R. Clearly, y and w belong to Yx and one can easily verify that Rxw = y. Indeed,

w(t) − dφs(x)φ
t−sw(s) = u(t)

t∫
−∞

ψ(τ) dτ − dφs(x)φ
t−su(s)

s∫
−∞

ψ(τ) dτ

= u(t)
t∫

s

ψ(τ) dτ

=
t∫

s

dφτ (x)φ
t−τψ(τ)u(τ) dτ =

t∫
s

dφτ (x)φ
t−τy(τ) dτ

for t ≥ s. Therefore,

‖R−1
x ‖ sup

{
‖u(t)‖εφt(x) : t ∈ [0, t0]

}
≥ ‖R−1

x ‖ · ‖y‖ ≥ ‖w‖.

Hence, it follows from (58) that

C‖R−1
x ‖ · ‖v‖εx ≥ ‖w(t0)‖εφt0 (x)

≥ ‖u(t0)‖εφt0 (x)

t0−δ∫
δ

ψ(s) ds

≥ 1
2C (t0 − 2δ)‖v‖εx.

Letting δ → 0 we obtain

t0 ≤ 2C2‖R−1
x ‖

and so property (57) holds taking N > 2C2‖R−1
x ‖.

Now take t ≥ 0 and write t = kN + r, with k ∈ N and 0 ≤ r < N . By (56) and (57), we obtain

‖dxφtv‖εφt(x) = ‖dxφkN+r(x)v‖εφkN+r(x)

≤ 1
2k ‖dxφ

rv‖εφr(x)

≤ C

2k ‖v‖
ε
x

≤ 2Ce−t log 2/N‖v‖εx,

for v ∈ Es(x, ε) and so property (55) holds taking λ = e− log 2/N . �
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Lemma 11. There exist constants λ, C > 0 (independent of x and ε) with μ > 1 such that

‖dxφ−tv‖εφ−t(x) ≤ Cμ−t‖v‖εx, (60)

for v ∈ Eu(x, ε) and t ≥ 0.

Proof. Take v ∈ Eu(x, ε) and let u(t) = dxφ
tv. Moreover, let ψ: R → R be a smooth function supported 

on (−∞, 0] such that 0 ≤ ψ ≤ 1, ψ = 1 on (−∞, −1] and supt∈R
|ψ′(t)| ≤ 2. Clearly, ψu ∈ Yx and one can 

easily verify that Rx(ψu) = ψ′u. Moreover,

sup
{
‖u(t)‖εφt(x) : t ∈ (−∞,−1]

}
= sup

{
‖ψ(t)u(t)‖εφt(x) : t ∈ (−∞,−1]

}
≤ ‖ψu‖ = ‖R−1

x (ψ′u)‖

≤ ‖R−1
x ‖ · ‖ψ′u‖

= ‖R−1
x ‖ sup

{
‖(ψ′u)(t)‖εφt(x) : t ∈ [−1, 0]

}
≤ 2‖R−1

x ‖ sup
{
‖u(t)‖εφt(x) : t ∈ [−1, 0]

}
= 2‖R−1

x ‖ sup
{
‖dxφtv‖εφt(x) : t ∈ [−1, 0]

}
≤ 2K‖R−1

x ‖ · ‖v‖εx,

where K = 2A(eε0 + 1), using (43) in the last inequality. Hence, again using (43), we obtain

‖u(t)‖εφt(x) ≤ C‖v‖εx for t ≤ 0, (61)

where C = 2K max{1, ‖R−1
x ‖}.

Now we show that there exists N ∈ N such that for every x ∈ Λ and v ∈ Eu(x, ε),

‖u(t)‖εφt(x) ≤
1
2‖v‖

ε
x for t ≤ −N. (62)

Take t0 such that t0 < 0 and ‖u(t0)‖εφt0 (x) > ‖v‖εx/2. It follows from (61) that

1
2C ‖v‖εx < ‖u(s)‖εφs(x) ≤ C‖v‖εx, t0 ≤ s ≤ 0. (63)

Now take δ > 0 and let ψ: R → R be a smooth function supported on [t0, 0] such that 0 ≤ ψ ≤ 1 and ψ = 1
on [t0 + δ, −δ]. Moreover, let y(t) and w(t) be as in (59). Clearly, y and w belong to Yx and one can easily 
verify that Rxw = y. Therefore,

‖R−1
x ‖ sup

{
‖u(t)‖εφt(x) : t ∈ [t0, 0]

}
≥ ‖R−1

x ‖ · ‖y‖ ≥ ‖w‖.

Hence, it follows from (63) that

C‖R−1
x ‖ · ‖v‖εx ≥ ‖w(t0)‖εφt0 (x)

≥ ‖u(t0)‖εφt0 (x)

−δ∫
t0+δ

ψ(s) ds

≥ 1 (−t0 − 2δ)‖v‖εx.
2C
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Letting δ → 0 we obtain

−t0 ≤ 2C2‖R−1
x ‖

and so property (62) holds taking N > 2C2‖R−1
x ‖.

Now take t ≤ 0 and write −t = kN + r, with k ∈ N and 0 ≤ r < N . By (61) and (62), we obtain

‖dxφtv‖εφt(x) = ‖dxφ−kN−r(x)v‖εφ−kN−r(x)

≤ 1
2k ‖dxφ

−rv‖εφ−r(x)

≤ C

2k ‖v‖
ε
x

≤ 2Cet log 2/N‖v‖εx,

for v ∈ Eu(x, ε) and so property (60) holds taking μ = elog 2/N . �
Now we complete the proof of the theorem. It follows from (40) and (54) that

‖P (x)v‖x ≤ 1
K(x)‖v‖x and ‖Q(x)v‖ ≤ 1

K(x)‖v‖x, (64)

where K(x) = 1/((2M + 1)G(x)). Moreover, by (40), (55) and (60), we have

‖dxφtv‖φt(x) ≤ 3CG(x)λt‖v‖x (65)

for v ∈ Es(x, ε) and t ≥ 0, and

‖dxφ−tv‖φ−t(x) ≤ 3CG(x)μ−t‖v‖x (66)

for v ∈ Eu(x, ε) and t ≥ 0. It follows from (53), (64), (65) and (66) that Λ is a nonuniformly hyperbolic set 
for Φ. �
7. Characterization of partially hyperbolic sets

Let Φ = (φt)t∈R be a flow on a compact d-dimensional Riemannian manifold M . A Φ-invariant measurable 
set Λ ⊂ M is said to be nonuniformly partially hyperbolic if there exist constants 0 ≤ a < b, 0 ≤ c < d and 
splittings

TxM = Es(x) ⊕ Eu(x) ⊕Ec(x) ⊕E0(x)

for x ∈ Λ, so that given ε > 0, there exist measurable functions C, K: Λ → R
+ such that for each x ∈ Λ, 

v ∈ TxM and t ∈ R we have:

1. dxφ
tEα(x) = Eα(φt(x)) for α ∈ {s, u, c};

2. for t ≥ 0,

‖dxφtv‖φt(x) ≤ C(x)e−dteεt‖v‖x, v ∈ Es(x) (67)

and

‖dxφ−tv‖φ−t(x) ≤ C(x)e−bteεt‖v‖x, v ∈ Eu(x); (68)
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3. for t ≥ 0 and v ∈ Ec(x),

‖dxφtv‖φt(x) ≤ C(x)eateεt‖v‖x

and

‖dxφ−tv‖φ−t(x) ≤ C(x)ecteεt‖v‖x; (69)

4. ∠(Eα(x), Eβ(x)) ≥ K(x) for α, β ∈ {s, u, c} with α �= β;
5.

C(φt(x)) ≤ C(x)eε|t|, K(φt(x)) ≥ K(x)e−ε|t|. (70)

The following two results give a characterization of the notion of a partially hyperbolic set in terms of 
an admissibility property.

Theorem 9. Let Λ ⊂ M be a nonuniformly partially hyperbolic set for Φ. Then there exist a (d− 1)-dimen-
sional invariant distribution E on Λ, a measurable function G: Λ → R

+, and constants ε0, ω, D, A > 0 and 
ω′ < 0 such that given ε ∈ (0, ε0), there exist norms ‖ · ‖′ = ‖ · ‖ε,1 and ‖ · ‖′′ = ‖ · ‖ε,2 on TΛM and for each 
x ∈ Λ, v ∈ TxM , t ∈ R and i = 1, 2 we have:

1. TxM = E(x) ⊕E0(x);
2.

1
3‖v‖x ≤ ‖v‖ε,ix ≤ G(x)‖v‖x, v ∈ E(x),

and

G(φt(x)) ≤ e2ε|t|G(x);

3. R1
x: D(R1

x) → Y 1
x defined with respect to the norm ‖ · ‖′ and the cocycle B(x, t) = eωtdxφ

t is invertible 
and ‖(R1

x)−1‖ ≤ D;
4. R2

x: D(R2
x) → Y 2

x defined with respect to the norm ‖ · ‖′′ and the cocycle B′(x, t) = eω
′tdxφ

t is invertible 
and ‖(R2

x)−1‖ ≤ D;
5. ‖dxφtv‖εφt(x) ≤ 3A|t|(eε|t| + 1)‖v‖εx, v ∈ E(x).

Proof. The proof is similar to the proof of Theorem 1. Let

E(x) = Es(x) ⊕ Eu(x) ⊕ Ec(x)

for x ∈ Λ. Take ω ∈ (c, d). It follows from (67), (68) and (69) that for each x ∈ Λ, v ∈ TxM and t ≥ 0, we 
have

‖B(x, t)v‖φt(x) ≤ C(x)e(ω−d)teεt‖v‖x, v ∈ Es(x),

‖B(x,−t)v‖φ−t(x) ≤ C(x)e−(b+ω)teεt‖v‖x, v ∈ Eu(x)

and

‖B(x,−t)v‖φ−t(x) ≤ C(x)e−(ω−c)teεt‖v‖x, v ∈ Ec(x).
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This implies that Λ is a nonuniformly hyperbolic set for Φ with respect to the cocycle B. It follows from 
Theorem 7 that there exists ε0 > 0 such that given ε ∈ (0, ε0), there exist a norm ‖ · ‖′ = ‖ · ‖ε,1 on TΛM

and a measurable function G: Λ → R
+ satisfying properties 1 and 2 in the theorem.

Similarly, Λ is a nonuniformly hyperbolic set with respect to the cocycle B′, where ω′ ∈ (−b, −a). Using 
Theorem 7, we obtain norms ‖ · ‖ε,2 satisfying properties 1 and 3 in the theorem. �

Now we establish the converse of Theorem 9.

Theorem 10. Let Λ ⊂ M be a Φ-invariant measurable set. Assume that there exist a (d − 1)-dimensional 
invariant distribution E on Λ and constants ε0, ω, D, A > 0 and ω′ < 0 such that given ε ∈ (0, ε0), there 
exist norms ‖ · ‖ε,1 and ‖ · ‖ε,2 on TΛM and a measurable function G: Λ → R

+ satisfying properties 1–5 in 
Theorem 9. Then Λ is a nonuniformly partially hyperbolic set for Φ.

Proof. It follows from Theorem 8 that Λ is a nonuniformly hyperbolic set for Φ with respect to the cocycles 
B and B′ in Theorem 9. Hence, there exist a constant λ > 0 and for each ε > 0 a measurable function 
C: Λ → (0, +∞) satisfying (70) such that for each x ∈ Λ, v ∈ TxM and t ≥ 0:

‖B(x, t)v‖φt(x) ≤ C(x)e−λteεt‖v‖x, v ∈ Es
B(x) (71)

‖B(x,−t)v‖φ−t(x) ≤ C(x)e−λteεt‖v‖x, v ∈ Eu
B(x) (72)

and

‖B′(x, t)v‖φt(x) ≤ C(x)e−λteεt‖v‖x, v ∈ Es
B′(x) (73)

‖B′(x,−t)v‖φ−t(x) ≤ C(x)e−λteεt‖v‖x, v ∈ Eu
B′(x). (74)

One can now repeat the arguments in the proof of Lemma 1 to show that

Es
B(x) ⊂ Es

B′(x) and Eu
B′(x) ⊂ Eu

B(x)

for x ∈ Λ. Moreover, proceeding as in the proof of Lemmas 2 and 3 we find that the operator Id−P s
B(x) −

Pu
B′(x) is a projection on TxM (where P s

B(x) is the projection on the stable space for the cocycle B and 
analogously for the other maps) with range Es

B′(x) ∩Eu
B(x), for x ∈ Λ. It follows directly from (71) and (74)

that

‖dxφtv‖φt(x) ≤ C(x)e−(λ+ω)teεt‖v‖x, v ∈ Es
B(x) (75)

and

‖dxφ−tv‖φ−t(x) ≤ C(x)e−(λ−ω′)teεt‖v‖x, v ∈ Eu
B′(x) (76)

for x ∈ Λ, v ∈ TxM and t ≥ 0. Similarly, it follows from (72) and (73) that

‖dxφ−tv‖φ−t(x) ≤ C(x)e−(λ−ω)teεt‖v‖x

and

‖dxφtv‖φt(x) ≤ C(x)e−(λ+ω′)teεt‖v‖x
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for x ∈ Λ, v ∈ Es
B′(x) ∩Eu

B(x) and t ≥ 0. On the other hand, by (72) and (73),

‖Id − P s
B(x) − Pu

B′(x)‖ ≤ 3C(x).

Hence,

‖dxφ−t(Id − P s
B(x) − Pu

B′(x))v‖f−t(x) ≤ 3C(x)2e−(λ−ω)teεt‖v‖x (77)

and

‖dxφt(Id − P s
B(x) − Pu

B′(x))v‖φt(x) ≤ 3C(x)2e−(λ+ω′)teεt‖v‖x (78)

for x ∈ Λ, v ∈ TxM and t ≥ 0. It follows from (75), (76), (77) and (78) that Λ is a nonuniformly partially 
hyperbolic set for Φ. �
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