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ABSTRACT
We give a characterization of the notion of a tempered exponential
dichotomy on a Banach space in terms of an admissibility property.
We note that for a linear cocycle over a measure-preserving transfor-
mation satisfying a certain integrability assumption, it follows from
the multiplicative ergodic theorem that the dynamics admits a tem-
pered exponential dichotomy if and only if all Lyapunov exponents
are non-zero almost everywhere. As a consequence of our approach,
we give a new proof of the robustness property of the notion of a
tempered exponential dichotomy under sufficiently small linear per-
turbations and we establish a version of the Grobman–Hartman the-
orem yielding the existence of topological conjugacies between a
linear dynamicswith a tempered exponential dichotomy and any suf-
ficiently small nonlinear perturbation. In addition, we show that the
conjugacy maps vary continuously with the perturbation.

1. Introduction

1.1. Tempered exponential dichotomies

In this paper, we consider the notion of a tempered exponential dichotomy (see Section 2
for the definition). For a linear cocycle over a measure-preserving transformation satisfy-
ing a certain integrability assumption, it follows from the multiplicative ergodic theorem
that the dynamics admits a tempered exponential dichotomy if and only if all Lyapunov
exponents are non-zero almost everywhere. Hence, a principal motivation to consider this
notion of exponential dichotomy is its ubiquity in the context of smooth ergodic theory
and of the non-uniform hyperbolicity theory. We refer to [1] for detailed expositions of
the theory, which goes back to the landmark works of Oseledets [2] and Pesin.[3] More
recently, Lian and Lu [4] showed that for a strongly measurable cocycle with values in the
set of bounded linear operators acting on a separable Banach space, it is also true that if the
usual integrability assumption holds and all the Lyapunov exponents are non-zero almost
everywhere, then the dynamics admits a tempered exponential dichotomy.

Our main objective is twofold
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(1) to give a characterization of the notion of a tempered exponential dichotomy in
terms of an admissibility property;

(2) to establish a Grobman–Hartman theorem, thus yielding a topological conjugacy
between a tempered exponential dichotomy and any sufficiently small nonlinear
perturbation.

As a consequence of our approach, we also give a new andmuch simpler proof of the robust-
ness of the notion of a tempered exponential dichotomy established by Zhou et al.[5] More
precisely, we use Lyapunov norms and the complete characterization of the notion of a
tempered exponential dichotomy in terms of an admissibility property established in our
paper.

1.2. Robustness and admissibility

Having inmind the central role of the notion of an exponential dichotomy in a large of part
of the stability theory of differential equations and dynamical systems, it is not surpris-
ing that the study of its robustness has a long history. For some of the most relevant early
contributions in the area we refer to the books by Massera and Schäffer [6] and Dalec’kĭı
and Kreı̆n.[7] Related results for discrete time were obtained by Coffman and Schäffer.[8]
We refer to the book [9] for some early results in infinite-dimensional spaces. For further
references, see [10,11].

The robustness property of a tempered exponential dichotomy was studied in [12,13]
and, more recently, in [5] with the most general result. In the last paper (in Remark 1), the
authors note that it is unclear whether the existence of a tempered exponential dichotomy
can be characterized in terms of an admissibility property. The study of admissibility prop-
erties goes back to Perron [14] and referred originally to the existence of bounded solutions
of the equation

x′ = A(t )x + f (t ) (1)

in R
n for any bounded continuous perturbation f : R

+
0 → R

n. The remark made in [5]
is quite relevant since often the study of the robustness of an exponential dichotomy uses
a characterization in terms of an admissibility property, and one might expect that this
could again be the case with the tempered exponential dichotomies. Because of the lack of a
characterization, they use othermethods, partly based on techniques developed by Barreira
andValls [15] for non-uniform exponential dichotomies (some of which are inspired by the
work of Popescu [16] for uniform exponential dichotomies).

We show in this paper that indeed the existence of a tempered exponential dichotomy
can be completely characterized in terms of an admissibility property (see Theorems 3.1
and 3.2). Roughly speaking, the notion of a tempered exponential dichotomy can be
expressed in terms of the invertibility of certain operators associated to single trajectories,
which essentially corresponds to a discrete time version of (1) for cocycles (and thus with
one equation for each trajectory θn(ω) with n ∈ Z, although satisfying a certain joint mea-
surability). Our approach is partly inspired on the characterization of hyperbolic sets in [17]
and on the characterization of non-uniform exponential dichotomies in terms of an admis-
sibility property in [18]. Moreover, in contrast to many of the existing approaches, we are
able to obtain bounds along the stable and unstable directions in a single step.
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As already noted above, and as a consequence of our approach, we also give a new and
much simpler proof of the main result in [5], thus showing that admissibility does play a
role in the study of the robustness of the tempered exponential dichotomies.

1.3. A Grobman–Hartman theorem

Going back to pioneering work of Poincaré, a fundamental problem in the study of the
local behaviour of a map or a flow is whether the linearization of the system along a given
solution approximates well the solution itself in some open neighbourhood. That is, we
look for an appropriate change of variables, called a conjugacy, that can take the system
to a linear one. This can be done, for example, when the linear dynamics admits an expo-
nential dichotomy: by the Grobman–Hartman theorem, under mild additional assump-
tions on the perturbation the two dynamics are topologically conjugate. The original ref-
erences for the Grobman–Hartman theorem are Grobman [19,20] and Hartman.[21,22]
Using the ideas inMoser’s proof [23] of the structural stability of Anosov diffeomorphisms,
the Grobman–Hartman theorem was extended to Banach spaces independently by Palis
[24] and Pugh.[25]

We establish a version of the Grobman–Hartman theorem for the nonlinear perturba-
tions of a tempered exponential dichotomy thus yielding the existence of topological con-
jugacies between a linear dynamics with a tempered exponential dichotomy and any suf-
ficiently small nonlinear perturbation. In addition, we show that the conjugacy maps vary
continuously with the perturbation.

2. Preliminaries

We first introduce some basic notions. Let (�,F, μ) be a probability space and let θ : � →
� be a measurable map with measurable inverse. We always assume that θ preserves the
measure μ. Since θ has a measurable inverse, this is equivalent to require that

μ(θ(A)) = μ(A) for A ∈ F.

Now let X be a Banach space and let B(X) be the set of all bounded linear operators act-
ing on X. Moreover, let � : N0 × � → B(X ) be a strongly measurable map. In the present
work, this means that the map ω �→�(n, ω)x is measurable for each n ∈ N0 and x � X (in
the sense that the preimage of a measurable set is measurable). When some integrability
conditions are also necessary (although they are not needed in our work), one must make
the stronger assumption that for each n and x, there exists a sequence Fm:� → X of simple
(measurable) functions such that

‖Fm(ω) − �(n, ω)x‖ → 0 whenm → ∞ (2)

for μ-almost every ω � � (since the measure μ is finite, there is no need to consider
countably-valued functions Fm).

The map � is called a (measurable) cocycle over θ , if
(1) �(0, ω) = Id for ω � �;
(2) �(n + m, ω) = �(n, θm(ω))�(m, ω) form, n � 0 and ω � �.
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The strongly measurable map A� : � → B(X ) defined by A�(ω) = �(1, ω) is called the
generator of�. Conversely, each strongly measurable map A:� → B(X) induces a strongly
measurable cocycle by letting

�(n, ω) =
{
A(θn−1(ω)) . . .A(ω), n > 0,
Id, n = 0,

for n � 0 and ω � �. When A(ω) is invertible for all ω � � and the map ω �→A(ω)−1 is
strongly measurable, we obtain a Z-cocycle by also defining

�(n, ω) = �(−n, θn(ω)) for n < 0.

It should be noted that for the stronger notion of measurability in (2), the product of
strongly measurable bounded linear operator a priori may not be strongly measurable in
that sense, although this is true, for example, when X is a separable Hilbert space (see [26]).

We say that a strongly measurable cocycle� admits a tempered exponential dichotomy if
there exist a strongly measurable map�s:� → B(X) and measurable functions α, K:� →
(0, +�) with K � 1 such that for μ-almost every ω � �:

(1) �s(ω) is a projection, α(θ(ω)) = α(ω) and

lim sup
n→±∞

1
|n| logK(θn(ω)) = 0; (3)

(2) �s(θn(ω))�(n, ω) = �(n, ω)�s(ω) for n � 0;
(3) for each n > 0 the map

�(n, ω)| ker�s(ω) : ker�s(ω) → ker�(θ s(ω))

is invertible and ω �→ (�(n, ω)| ker�s(ω))−1 is strongly measurable;
(4)

‖�(n, ω)�s(ω)‖ ≤ K(ω)e−α(ω)n, n ≥ 0 (4)

and

‖�(n, ω)�u(ω)‖ ≤ K(ω)eα(ω)n, n ≤ 0, (5)

where �u(ω) = Id − �s(ω) and

�(n, ω) = (
�(−n, θn(ω))| Im�u(θn(ω))

)−1 for n ≤ 0.

3. Characterization of tempered exponential dichotomies

In this section, we give a complete characterization of the notion of a tempered exponential
dichotomy in terms of an admissibility property. As a consequence of our approach, we also
give a new proof of the robustness of a tempered exponential dichotomy.
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Consider a measurable family of norms on X, that is, a family of norms ‖·‖ω on X for ω

� � such that the map (x, ω)�→‖x‖ω is measurable. For each ω � �, we define

Yω =
{
x = (xn)n∈Z ⊂ X : sup

n∈Z
‖xn‖θn(ω) < +∞

}
.

It is easy to verify that Yω is a Banach space when equipped with the norm

‖x‖ω,∞ = sup
n∈Z

‖xn‖θn(ω).

We also consider the set Y of all measurable functions y : Z × � → X such that yω =
(y(n, ω))n∈Z ∈ Yω for each ω � �, identified if they coincide (ν × μ)-almost everywhere
on Z × �, where ν is the counting measure on Z. Up to the measurability requirement,
one can think of the set Y simply as (Yω)ω∈Z. We shall also write y(n, ω) = yn(ω) for each
y ∈ Y .

Theorem 3.1: Let � be a strongly measurable cocycle admitting a tempered exponential
dichotomy. Then there exist a θ-invariant measurable set �̃ ⊂ � of full μ-measure, a mea-
surable family of norms ‖ · ‖ω on X forω � �, and measurable functions K, ρ:� → (0,+�)
with K � 1 and ρ θ-invariant such that

(1) property (3) holds and

1
2
‖x‖ ≤ ‖x‖ω ≤ K(ω)‖x‖ for ω ∈ �̃ and x ∈ X; (6)

(2) given y ∈ Y, there exists a unique xω = (xn(ω))n∈Z ∈ Yω satisfying

xn(ω) − A�(θn−1(ω))xn−1(ω) = yn(ω) for n ∈ Z (7)

and

‖xω‖ω,∞ ≤ ρ(ω)‖y‖ω,∞; (8)

moreover, the function (n, ω)�→xn(ω) is measurable.

Proof: We first construct appropriate Lyapunov norms ‖ · ‖ω. For each ω � � and x � X,
let

‖x‖ω = max
{‖x1‖ω, ‖x2‖ω

}
, (9)

where

‖x1‖ω = sup
m≥0

(‖�(m, ω)�s(ω)x‖eα(ω)m)
and

‖x2‖ω = sup
m≤0

(‖�(m, ω)�u(ω)x‖e−α(ω)m)
.
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By construction, the family of norms ‖·‖ω is measurable. Moreover, it follows from (4)
and (5) that property (6) holds for some θ-invariant measurable set �̃ ⊂ � of full μ-
measure. �
Lemma 3.1: For each ω ∈ �̃, we have

‖�(m, ω)�s(ω)x‖θm(ω) ≤ e−α(ω)m‖x‖ω, m ≥ 0 (10)

and

‖�(m, ω)�u(ω)x‖θm(ω) ≤ eα(ω)m‖x‖ω, m ≤ 0. (11)

Proof of the lemma: We have

‖�(m, ω)�s(ω)x‖θm(ω)

= sup
n≥0

(‖�(n, θm(ω))�s(θm(ω))�(m, ω)�s(ω)x‖eα(ω)n)
= e−α(ω)m sup

n≥0

(‖�(n + m, ω)�s(ω)x‖eα(ω)(n+m)
)

≤ e−α(ω)m‖x‖ω

for x � X and so (10) holds. One can establish (11) in a similar manner. �

Now take y ∈ Y . For each n ∈ Z and ω ∈ �̃, let

x1n(ω) =
∑
m≥0

�(m, θn−m(ω))�s(θn−m(ω))yn−m(ω)

and

x2n(ω) = −
∑
m≥1

�(−m, θn+m(ω))�u(θn+m(ω))yn+m(ω).

It follows from (10) and (11) that

‖x1n(ω)‖θn(ω) ≤ 1
1 − e−α(ω)

‖yω‖ω,∞ (12)

and

‖x2n(ω)‖θn(ω) ≤ e−α(ω)

1 − e−α(ω)
‖yω‖ω,∞. (13)

Let

xn(ω) = x1n(ω) + x2n(ω) for n ∈ Z and ω ∈ �̃.

Moreover, define x ∈ Y by x(n, ω) = xn(ω) (themeasurability of x follows readily from the
measurability assumptions in the theorem). It follows from (12) and (13) that x ∈ Y and
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that (8) holds with

ρ(ω) = (1 + e−α(ω))/(1 − e−α(ω)).

Moreover, it is easy to verify that (7) holds.
In order to establish the uniqueness of xω = (xn(ω))n∈Z, it is sufficient to take y = 0, in

which case

xn(ω) = A�(θn−1(ω))xn−1(ω) for n ∈ Z and x ∈ �̃.

Let

xsn(ω) = �s(θn(ω))xn(ω) and xun(ω) = �u(θn(ω))xn(ω).

Clearly, xn(ω) = xsn(ω) + xun(ω),

xsn(ω) = A�(θn−1(ω))xsn−1(ω) and xun(ω) = A�(θn−1(ω))xun−1(ω).

Since xsk(ω) = �(m, θ k−m(ω))xsk−m(ω) form � 0, we have

‖xsk(ω)‖θk(ω) = ‖�(m, θ k−m(ω))xsk−m(ω)‖θk(ω)

= ‖�(m, θ k−m(ω))�s(θ k−m(ω))xk−m(ω)‖θk(ω)

≤ e−α(ω)m‖xk−m(ω)‖θk−m(ω)

≤ e−α(ω)m‖x‖ω,∞.

Lettingm → +� yields that xsk(ω) = 0 for k ∈ Z. One can show in a similar manner that
xuk (ω) = 0 for k ∈ Z and thus xω = 0 for each ω ∈ �̃. This completes the proof of the the-
orem.

Now we establish the converse of Theorem 3.1. �
Theorem 3.2: Let � be a strongly measurable cocycle and assume that there exist a θ-
invariant measurable set �̃ ⊂ � of full μ-measure, a measurable family of norms ‖·‖ω on
X for ω � �, and measurable functions K, ρ: � → (0, +�) with K � 1 and ρ θ-invariant
satisfying properties 1 and 2 in Theorem 3.1. Then the cocycle� admits a tempered exponen-
tial dichotomy.

Proof: We first introduce a family of linear operators related to condition (7). Namely, for
each ω ∈ �̃, we define a linear operator Tω : D(Tω) → Yω by

(Tωx)n = xn − A�(θn−1(ω))xn−1, n ∈ Z, (14)

on the domainD(Tω) composed of those x ∈ Yω such that Tωx ∈ Yω. �
Lemma 3.2: The linear operator Tω : D(Tω) → Yω is closed.
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Proof of the lemma: Let (xk)k∈N be a sequence inD(Tω) converging to x ∈ Yω and assume
that Tωxk converges to y ∈ Yω. Then,

xn − A�(θn−1(ω))xn−1 = lim
k→∞

(
xkn − A�(θn−1(ω))xkn−1

)
= lim

k→∞
(Tωxk)n = yn

for n ∈ Z, since the linear operatorA�(θn−1(ω)) is continuous. Therefore, x ∈ D(Tω) and
Tωx = y. This shows that Tω is closed. �

For x ∈ D(Tω) ⊂ Yω, we consider the graph norm

‖x‖′
ω,∞ = ‖x‖ω,∞ + ‖Tωx‖ω,∞.

Clearly, the operator

Tω : (D(Tω), ‖ · ‖′
ω,∞) → (Yω, ‖ · ‖ω,∞)

is bounded. From now on we denote it simply by Tω. It follows from Lemma 3.2 that
(D(Tω), ‖ · ‖′

ω,∞) is a Banach space for each ω ∈ �̃. Moreover, in view of the assumptions
in the theorem, the operator Tω is invertible and

‖(Tω)−1y‖′
ω,∞ ≤ (ρ(ω) + 1)‖y‖ω,∞

for y ∈ Yω (see (8)).
For each ω ∈ �̃, let

Fs(ω) =
{
x ∈ X : sup

m≥0
‖�(m, ω)x‖θm(ω) < +∞

}
.

Moreover, let Fu(ω) be the set of all vectors x � X for which there exists a sequence
(xm)m � 0�X such that x0 = x, supm≤0 ‖xm‖θm(ω) < +∞ and

xm = A�(θm−1(ω))xm−1 form ≤ 0.

It is easy to verify that Fs(ω) and Fu(ω) are subspaces of X.

Lemma 3.3: For each ω ∈ �̃, we have

X = Fs(ω) ⊕ Fu(ω). (15)

Proof of the lemma: Take v � X and consider the function y ∈ Y defined by

y(0, ω) = v and y(n, ω) = 0 for n �= 0, (16)

for each ω � � (since y is independent of ω it is clearly measurable). Now take x ∈ Y such
that Tωxω = yω for ω ∈ �̃. We have

x0(ω) − A�(θ−1(ω))x−1(ω) = v
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and

xn(ω) = A�(θn−1(ω))xn−1(ω) for n �= 0.

Therefore, xn = �(n, ω)x0(ω) for n � 0 and so x0(ω) � Fs(ω). One can show in a similar
manner that A�(θ−1(ω))x−1(ω) ∈ Fu(ω), and so

v = x0(ω) + (−A�(θ−1(ω))x−1(ω)
) ∈ Fs(ω) + Fu(ω).

Now take v � Fs(ω)�Fu(ω) and let (xn)n � 0�X be a sequence such that x0 = v ,
supn≤0 ‖xn‖θn(ω) < +∞ and

xn = A�(θn−1(ω))xn−1 for n ≤ 0.

We define

zn =
{
�(n, ω)v, n > 0,
xn, n ≤ 0.

Then z = (zn)n∈Z ∈ Yω. It is easy to verify that Tωz = 0 and thus z = 0. Therefore, x0 = v

= 0. �

Let

π s(ω) : X → Fs(ω) and πu(ω) : X → Fu(ω)

be the projections associated to the decomposition in (15). According to the proof of
Lemma 3.3, we have

�s(ω)v = x0(ω), �u(ω)v = −A�(θ−1(ω))x−1(ω), (17)

where xω = (xn(ω))n∈Z are the unique sequences such that Tωxω = yω for each ω ∈ �̃,
with y as in (16). Since y ∈ Y , it follows from the assumptions in the theorem that also
x = (xω)ω∈Z ∈ Y , which ensures that the functions ω �→xn(ω) are measurable. Hence, it
follows from (17) that the maps �s: � → B(X) and �u: � → B(X) defined by

�s(ω)v = π s(ω)v and �u(ω)v = πu(ω)v

are strongly measurable. One can easily verify that

�s(θn(ω))�(n, ω) = �(n, ω)�s(ω)

for n � 0 and ω ∈ �̃.
Lemma 3.4: For each n � 0, the map

�(n, ω)|Fu(ω) : Fu(ω) → Fu(θn(ω)) (18)

is invertible.
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Proof of the lemma: Take a vector v � Fu(ω) such that �(n, ω)v = 0 and let (xm)m � 0�X
be a sequence such that x0 = v , supm≤0 ‖xm‖θm(ω) < +∞ and

xm = A�(θm−1(ω))xm−1 form ≤ 0.

We define

ym =
{
xm+n, m ≤ −n,
�(m + n, ω)v, m > −n.

It is easy to verify that y = (ym)m∈Z ∈ Y θn(ω) and T θn(ω)y = 0. Hence, y = 0 and so v = y−n

= 0. This shows that the map in (18) is one-to-one.
Now take v � Fu(θn(ω)) and let (xm)m � 0�X be a sequence such that x0 = v ,

supm≤0 ‖xm‖θm+n(ω) < +∞ and

xm = A�(θm+n−1(ω))xm−1 form ≤ 0.

We define ym = xm − n,m � 0. Since

‖ym‖θm(ω) = ‖xn−m‖θm−n(θn(ω))

and

ym = A�(θm−1(ω))ym−1 form ≤ 0,

we obtain y0 = x−n � Fu(ω). Finally, we note that v = �(n, ω)y0, and so the map is
onto. �

In order to show that the mapω �→(�(n,ω)|Fu(ω))−1 is strongly measurable we proceed
as follows. Given w � Fu(θn(ω)), consider the map y ∈ Y defined by

y(n, ω) = −w and y(m, ω) = 0 form �= n.

Then, Tωxω = yω, where

x(m, ω) =
{
zn(ω), m < n,
0, m ≥ n,

with zn(ω) = w, supm≤0 ‖zn+m‖θn+m(ω) < ∞ and

zn+m(ω) = A�(θn+m−1(ω))zn+m−1 form ≤ 0.

Since w � Fu(θn(ω)), by Lemma 3.4, the sequence (zn + m(ω))m � 0 is uniquely defined.
Moreover, since y ∈ Y , it follows from the hypotheses in the theorem that x ∈ Y and that
xω is unique for each ω ∈ �̃. In particular, this implies that

ω �→ (�(n, ω)|Fu(ω))−1w = z0(ω) = x(0, ω)

is measurable, since x ∈ Y .
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It remains to establish the exponential bounds along the stable and unstable directions.
Take ω ∈ �̃ and v � X. Moreover, let y and x be as in the proof of Lemma 3.3. For each
z � 1, we define an operator

R(z) : (D(Tω), ‖ · ‖′
ω,∞) → (Yω, ‖ · ‖ω,∞)

by

(R(z)ν)m =
{
zνm − A�(θm−1(ω))νm−1, m ≤ 0,
1
z νm − A�(θm−1(ω))νm−1, m > 0.

Clearly,

‖(R(z) − Tω)ν‖ω,∞ ≤ (z − 1)‖ν‖′
ω,∞

for ν ∈ D(Lω) and z � 1. This implies that R(z) is invertible whenever 1 � z < 1 + 1/(1 +
ρ(ω)), in which case

‖R(z)−1‖ ≤ 1
(1 + ρ(ω))−1 − (z − 1)

.

Now let γ : � → (0, 1) be a θ-invariant measurable function such that

γ (ω)−1 < 1 + 1/(1 + ρ(ω)) for ω ∈ �.

Moreover, take z ∈ Yω such that R(γ (ω)−1)z = yω. Writing

D(ω) = 1
(1 + ρ(ω))−1 − (γ (ω)−1 − 1)

,

we obtain

‖z‖ω,∞ ≤ ‖R(γ (ω)−1)−1yω‖′
ω,∞ ≤ D(ω)‖y‖ω,∞ = D(ω)‖v‖ω.

For each m ∈ Z, let wm = γ (ω)|m| − 1zm and define w = (wm)m∈Z. Clearly, w ∈ Yω. More-
over, one can easily verify that Tωw = yω and hence w = xω. Therefore,

‖xm(ω)‖θm(ω) = ‖wm‖θm(ω) = γ (ω)|m|−1‖zm‖θm(ω) ≤ D(ω)γ (ω)|m|−1‖v‖ω

form ∈ Z. By (6) and (17), we obtain

‖�(m, ω)�s(ω)v‖ ≤ 2
D(ω)

γ (ω)
K(ω)γ (ω)m‖v‖ form ≥ 0

and

‖�(m, ω)�u(ω)v‖ ≤ 2
D(ω)

γ (ω)
K(ω)γ (ω)−m‖v‖ form ≤ 0.

This shows that the cocycle � admits a tempered exponential dichotomy. �
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The following result was established in [5]. We give an alternative proof using the com-
plete characterization of tempered exponential dichotomies provided by Theorems 3.1
and 3.2.
Theorem 3.3: Let � be a strongly measurable cocycle admitting a tempered exponential
dichotomy. Then there exists a θ-invariant measurable function δ: � → (0, +�) such that
any strongly measurable cocycle  satisfying

‖A(ω) − A�(ω)‖ ≤ δ(ω)/K(θ (ω)), ω ∈ �, (19)

also admits a tempered exponential dichotomy.

Proof: Let �̃, ‖ · ‖ω and ρ be as in Theorem 3.1. Moreover, let δ: � → (0, +�) be a mea-
surable function such that

0 < 2δ(ω) < 1/(ρ(ω) + 1) for ω ∈ �.

Finally, let Tω be the linear operators defined by (14).
We construct analogous linear operators associated to A . Namely, for each ω ∈ �̃, let

Lω : D(Lω) → Yω be the linear operator defined by

(Lωx)n = xn − A(θn−1(ω))xn−1, n ∈ Z,

on the domain D(Lω) composed of those x ∈ Yω such that Lωx ∈ Yω. It follows from (6)
and (19) that

‖(Tω − Lω)x‖ω,∞ = sup
n∈Z

∥∥[A�(θn−1(ω)) − A(θn−1(ω))]xn−1
∥∥

θn(ω)

≤ sup
n∈Z

(
K(θn(ω))

∥∥[A�(θn−1(ω)) − A(θn−1(ω))]xn−1
∥∥)

≤ 2δ(ω) sup
n∈Z

‖xn−1‖θn−1(ω) = 2δ(ω)‖x‖ω,∞

for x ∈ Yω. Therefore,D(Tω) = D(Lω) and since ‖x‖ω,∞ ≤ ‖x‖′
ω,∞, we obtain

‖Tω − Lω‖ ≤ 2δ(ω).

Hence,

‖Tω − Lω‖ < ‖(Tω)−1‖−1,

which shows that Lω is invertible for ω ∈ �̃, with inverse given by

(Lω)−1 =
∞∑
n=0

(
Id − (Tω)−1Lω

)n
(Tω)−1.

It follows from this identity that property 2 in Theorem 3.1 holds with the operator Tω

replaced by Lω (the strong measurability condition follows from the explicit formula for
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(Lω)−1). Moreover,

‖(Lω)−1‖ ≤ 1
(ρ(ω) + 1)−1 − 2δ(ω)

.

Since the function on the right-hand side is measurable and θ-invariant, it follows from
Theorem 3.2 that the cocycle  admits a tempered exponential dichotomy. �

4. A Grobman–Hartman theorem

The goal of this section is to obtain a Grobman–Hartman theorem for the notion of tem-
pered exponential dichotomy. In the remainder of the paper we always consider generators
A such that A(ω) is invertible for all ω � � and ω �→A(ω)−1 is strongly measurable.

Let � be a strongly measurable cocycle admitting a tempered exponential dichotomy
and let ‖ · ‖ω be the measurable family of norms constructed in (9). We denote by Z the set
of all measurable maps u:� ×X→X such that the function uω:X→X defined by uω(x)=
u(ω, x) is continuous for μ-almost every ω � � and

‖u‖′ := ess sup
ω∈�

sup
x∈X

‖uω(x)‖ω < +∞.

One can easily verify that (Z, ‖ · ‖′) is a Banach space.
Although themeasureμneednot be ergodic, one can always consider an ergodic decom-

position and obtain results for each measure in the ergodic decomposition. Thus, without
loss of generality one can and will assume in what follows that μ is ergodic.

Theorem 4.1: Let � be a strongly measurable cocycle admitting a tempered exponential
dichotomy and let f: � × X → X be a measurable map such that, for μ-almost every ω �
�,

(1) fω = f(ω, ·) is continuous and Fω = A�(ω) + fω is a homeomorphism;
(2) there exists a constant δ > 0 such that, for x, y � X, we have

‖ fω(x)‖ ≤ δK(θ (ω))−2 (20)

and

‖ fω(x) − fω(y)‖ ≤ δK(θ (ω))−2‖x − y‖. (21)

Then provided that δ is sufficiently small,
(1) there is a unique u � Z such that, for μ-almost every ω � �, we have

A�(ω) ◦ ûω = ûθ (ω) ◦ (A�(ω) + fω), where ûω = Id + uω; (22)

(2) there is a unique v � Z such that, for μ-almost every ω � �, we have

v̂θ (ω) ◦ A�(ω) = (A�(ω) + fω) ◦ v̂ω, where v̂ω = Id + vω; (23)
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(3) for μ-almost every ω � �, the maps ûω and v̂ω are homeomorphism and

ûω ◦ v̂ω = v̂ω ◦ ûω = Id. (24)

Proof:
(1) We note that the first identity in (22) is equivalent to

A�(ω) ◦ uω − uθ (ω) ◦ Fω = fω. (25)

For each ω � �, let

B(ω) = A�(ω)| Im�s(ω) and C(ω) = A�(ω)| Im�u(ω).

Clearly, the operators

B(ω) : Im�s(ω) → Im�s(θ (ω)) and C(ω) : Im�u(ω) → Im�u(θ (ω))

are invertible. Write uω = (bω, cω) and fω = (gω, hω), where

bω = �s(ω)uω, cω = �u(ω)uω, gω = �s(θ (ω)) fω, hω = �u(θ (ω)) fω.

Then, (25) holds for μ-almost every ω � � if and only if (bω, cω) = (b̄ω, c̄ω) for
μ-almost every ω � �, where

b̄ω = (B(η) ◦ bη − gη) ◦ F−1
η , (26)

with η = θ−1(ω), and

c̄ω = C(ω)−1 ◦ (cθ (ω) ◦ Fω + hω). (27)

Given u= (bω, cω)ω � � � Z, we define S(u) = (b̄ω, c̄ω)ω∈�. For each z�X, we have

‖b̄ω(z)‖ω ≤ sup
n≥0

(‖B(n, ω)B(η)bη(F−1
η (z))‖eα(ω)n)

+ sup
n≥0

(‖B(n, ω)gη(F−1
η (z))‖eα(ω)n)

= sup
n≥0

(‖B(n + 1, η)bη(F−1
η (z))‖eα(ω)n)

+ sup
n≥0

(‖B(n, ω)gη(F−1
η (z))‖eα(ω)n)

≤ e−α(ω) sup
n≥0

(‖B(n + 1, η)bη(F−1
η (z))‖eα(ω)(n+1))

+ sup
n≥0

(‖B(n, ω)‖ · ‖gη‖∞eα(ω)n),
where B(n, ω) = �(n, ω)�s(ω) and where ‖ · ‖� is the usual supremum norm.
Using (4) and (20), we conclude that

‖b̄ω(z)‖ω ≤ e−α(ω)‖bη(F−1
η (z))‖η + δ
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for μ-almost every ω � � and thus,

‖b̄‖′ ≤ ‖b‖′ + δ < +∞. (28)

Similarly, for each z � X, we have

‖c̄ω(z)‖ω ≤ sup
n≤0

(‖C(n, ω)C(ω)−1cθ (ω)(Fω(z))‖e−α(ω)n)
+ sup

n≤0

(‖C(n, ω)C(ω)−1hω(z)‖e−α(ω)n)
= sup

n≤0

(‖C(n − 1, θ (ω))cθ (ω)(Fω(z))‖e−α(ω)n)
+ sup

n≤0

(‖C(n − 1, θ (ω))hω(z)‖e−α(ω)n)
≤ e−α(ω) sup

n≤0

(‖C(n − 1, θ (ω))cθ (ω)(Fω(z))‖e−α(ω)(n−1))
+ sup

n≤0

(‖C(n − 1, θ (ω))‖ · ‖hω‖∞e−α(ω)n),
where C(n, ω) = �(n, ω)�u(ω). Using (5) and (20), we obtain

‖c̄ω(z)‖ω ≤ e−α(ω)‖cθ (ω)(Fω(z))‖θ (ω) + δe−α(ω)

for μ-almost every ω � � and thus,

‖c̄‖′ ≤ ‖c‖′ + δ < +∞. (29)

It follows from (28) and (29) that S(u)� Z for every u� Z (themeasurability of S(u)
follows readily from (26) and (27)).
Now we show that S is a contraction. Take u1 = (b1, ω, c1, ω)ω � � and u2 = (b2, ω,

c2, ω)ω � � in Z. For each z � X, we have

‖b̄1,ω(z) − b̄2,ω(z)‖ω = sup
n≥0

(‖B(n + 1, η)(b1,η − b2,η )(F−1
η (z))‖eα(ω)n)

≤ e−α(ω)‖(b1,η − b2,η )(F−1
η (z))‖η

≤ e−a‖(b1,η − b2,η )(F−1
η (z))‖η,

for μ-almost every ω � �, where a is the constant value of the θ-invariant function
α on � up to a set of measure zero (recall that the measure μ is assumed to be
ergodic). Therefore,

‖b̄1 − b̄2‖′ ≤ e−a‖b1 − b2‖′. (30)
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Similarly,

‖c̄1,ω(z) − c̄2,ω(z)‖ω

= sup
n≤0

(‖C(n − 1, θ (ω))(c1,θ (ω) − c2,θ (ω))(Fω(z))‖e−α(ω)n)
≤ e−α(ω)‖(c1,θ (ω) − c2,θ (ω))(Fω(z))‖θ (ω)

≤ e−a‖(c1,θ (ω) − c2,θ (ω))(Fω(z))‖θ (ω),

for z � X and μ-almost every ω � �. Hence,

‖c̄1 − c̄2‖′ ≤ e−a‖c1 − c2‖′. (31)

By (30) and (31), we have

‖S(u1) − S(u2)‖′ ≤ e−a‖u1 − u2‖′

and so S is a contraction. We conclude that S has a unique fixed point in Z which
yields the first statement in the theorem.

(2) We note that (23) is equivalent to

vθ (ω) ◦ A�(ω) − A�(ω) ◦ vω = fω ◦ v̂ω. (32)

Write vω = (dω, eω), where dω = �s(ω)vω and eω = �u(ω)vω. Then, (32) holds for
μ-almost every ω � � if and only if (dω, eω) = (d̄ω, ēω) for μ-almost every ω � �,
where

d̄ω = (B(η) ◦ dη + gη ◦ v̂η) ◦ A�(η)−1, (33)

with η = θ−1(ω), and

ēω = C(ω)−1 ◦ (eθ (ω) ◦ A�(ω) − hω ◦ v̂ω). (34)

Given v = (dω, eω)ω � � � Z, we define T (v ) = (d̄ω, ēω)ω∈�. For each z � X, we
have

‖d̄ω(z)‖ω ≤ sup
n≥0

(‖B(n, ω)B(η)dη(A�(η)−1z)‖eα(ω)n)
+ sup

n≥0

(‖B(n, ω)gη(v̂η(A�(η)−1z))‖eα(ω)n)
≤ e−α(ω) sup

n≥0

(‖B(n + 1, η)dη(A�(η)−1z)‖eα(ω)(n+1))
+ sup

n≥0

(‖B(n, ω)‖ · ‖gη‖∞eα(ω)n).
Using (10) and (20), we conclude that

‖d̄ω(z)‖ω ≤ e−α(ω)‖dη(A�(η)−1z)‖η + δ
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for μ-almost every ω � � and thus,

‖d̄‖′ ≤ ‖d‖′ + δ < +∞. (35)

Similarly, for each z � X, we have

‖ēω(z)‖ω ≤ sup
n≤0

(‖C(n, ω)C(ω)−1eθ (ω)(A�(ω)z)‖e−α(ω)n)
+ sup

n≤0

(‖C(n, ω)C(ω)−1hω(v̄ω(z))‖e−α(ω)n)
≤ e−α(ω) sup

n≤0

(‖C(n − 1, θ (ω))eω(A�(ω)z)‖e−α(ω)(n−1))
+ sup

n≤0

(‖C(n − 1, θ (ω))‖ · ‖hω‖∞e−α(ω)n).
By (11) and (20),

‖ēω(z)‖ω ≤ e−α(ω)‖eθ (ω)(A�(ω)z)‖θ (ω) + δe−α(ω)

for μ-almost every ω � � and thus,

‖ē‖′ ≤ ‖e‖′ + δ < +∞. (36)

It follows from (35) and (36) that T(v) � Z for every v � Z (the measurability of
T(v) follows readily from (33) and (34)).
Now we show that T is a contraction. Take v1 = (d1, ω, e1, ω)ω � � and v2 = (d2, ω,

e2, ω)ω � � in Z. Let Gi,ω = v̂i,ω ◦ A�(ω)−1 for i = 1, 2. For each z � X, using (10)
and (21) we obtain

‖d̄1,ω(z) − d̄2,ω(z)‖ω

≤ sup
n≥0

(‖B(n + 1, η)(d1,η − d2,η )(A�(η)−1z)‖eα(ω)n)
+ sup

n≥0

(‖B(n, ω)(gη(G1,η(z)) − gη(G2,η(z)))‖eα(ω)n)
≤ e−α(ω)‖(d1,η − d2,η )(A�(η)−1z)‖η

+ K(ω) sup
n≥0

(‖B(n, ω)‖ · ‖ fη(G1,η(z)) − fη(G2,η(z))‖eα(ω)n)
≤ e−α(ω)‖(d1,η − d2,η )(A�(η)−1z)‖η

+ δ‖v1,η(A�(η)−1(z)) − v2,η(A�(η)−1(z))‖η

for μ-almost every ω � � and thus,

‖d̄1 − d̄2‖′ ≤ e−a‖d1 − d2‖′ + δ‖v1 − v2‖′. (37)
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Similarly, using (11) and (21) we obtain

‖ē1,ω(z) − ē2,ω(z)‖ω[0]

≤ sup
n≤0

(‖C(n − 1, θ (ω))[e1,θ (ω)(A�(ω)z) − e2,θ (ω)(A�(ω)z)]‖e−α(ω)n)
+ sup

n≤0

(‖C(n − 1, θ (ω))(hω(v̂1,ω(z)) − hω(v̂2,ω(z)))‖e−α(ω)n)
≤ e−α(ω)‖e1,θ (ω)(A�(ω)z) − e2,θ (ω)(A�(ω)z)‖θ (ω)

+ δe−α(ω)‖v1,ω(z) − v2,ω(z)‖ω

for z � X and μ-almost every ω � �. Hence,

‖ē1 − ē2‖′ ≤ e−a‖e1 − e2‖′ + δ‖v1 − v2‖′, (38)

It follows from (37) and (38) that for any sufficiently small δ, the operator T is a
contraction on Z which yields the second statement in the theorem.

(3) In order to complete the proof, it is sufficient to establish (24). By (22) and (23), we
have

ûθ (ω) ◦ v̂θ (ω) ◦ A�(ω) = ûθ (ω) ◦ (A�(ω) + fθ (ω)) ◦ v̂ω = A�(ω) ◦ ûω ◦ v̂ω,

for μ-almost every ω � �. Furthermore,

ûω ◦ v̂ω − Id = vω + uω ◦ v̂ω

for μ-almost every ω � � and thus (ûω ◦ v̂ω − Id)ω∈� ∈ Z. So it follows from the
uniqueness statement in Theorem 4.1 that ûω ◦ v̂ω = Id for μ-almost every ω � �.
Similarly, one can establish the second equality in (24). �

Finally, we describe how the conjugacies vω in Theorem 4.1 vary with the perturbations
fω. A related study can be effected for the functions uω. We denote each function vω in (23)
by

v f (ω, ·) = vω, f = (dω, f , eω, f ) = (d f (ω, ·), e f (ω, ·)).

We continue to assume that the measure μ is ergodic.

Theorem 4.2: Let � be a strongly measurable cocycle. Then there exists C > 0 such that for
any sufficiently small δ as in (20) and (21) we have

‖v f − v f̄ ‖′ ≤ C ess sup
ω∈�

(
max

{
K(ω),K(θ (ω))

}
sup
x∈X

‖ fω(x) − f̄ω(x)‖ω

)

for any maps f and f̄ satisfying the hypotheses of Theorem 4.1.

Proof: Write

v̂ω, f = Id + vω, f and Gω, f = v̂ω, f ◦ A�(ω)−1.
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For μ-almost every ω � � and each x � X, it follows from (33) that writing η = θ−1(ω),
we have

‖dω, f (x) − dω, f̄ (x)‖ω

≤ sup
n≥0

(∥∥B(n, ω)B(η)[dη, f (A�(η)−1x) − dη, f̄ (A�(η)−1x)]
∥∥eα(ω)n)

+ sup
n≥0

(∥∥B(n, ω)[gη(Gη, f (x)) − ḡη(Gη, f̄ (x))]
∥∥eα(ω)n)

≤ e−α(ω) sup
n≥0

(∥∥B(n + 1, η)[dη, f (A�(η)−1x) − dη, f̄ (A�(η)−1x)]
∥∥eα(ω)(n+1))

+ sup
n≥0

(∥∥B(n, ω)[gη(Gη, f (x)) − ḡη(Gη, f (x))]
∥∥eα(ω)n)

+ sup
n≥0

(∥∥B(n, ω)[ḡη(Gη, f (x)) − ḡη(Gη, f̄ (x))]
∥∥eα(ω)n)

≤ e−α(ω)‖(dη, f − dη, f̄ )(A�(η)−1x)‖η + K(ω)‖(gη − ḡη)(Gη, f (x))‖η

+ δ‖(̂vη, f − v̂η, f̄ )(A�(η)−1(x))‖η.

(39)

Thus,

sup
x∈X

‖dω, f (x) − dω, f̄ (x)‖ω ≤ e−a sup
x∈X

‖dη, f (x) − dη, f̄ (x)‖η

+ K(ω) sup
x∈X

‖gη(x) − ḡη(x)‖η

+ δ sup
x∈X

‖vη, f (x) − vη, f̄ (x)‖η

and

(1 − e−a)‖d f − d f̄ ‖′ ≤ ess sup
ω∈�

sup
x∈X

(
K(ω)‖gη(x) − ḡη(x)‖η

) + δ‖v f − v f̄ ‖′. (40)

Proceeding in a similar manner to that in (39), we obtain

sup
x∈X

‖eω, f (x) − eω, f̄ (x)‖ω ≤ e−a sup
x∈X

‖eθ (ω), f (x) − eθ (ω), f̄ (x)‖θ (ω)

+ K(ω) sup
x∈X

‖hω(x) − h̄ω(x)‖ω

+ δ sup
x∈X

‖vω, f (x) − vω, f̄ (x)‖ω

and

(1 − e−a)‖e f − e f̄ ‖′ ≤ ess sup
ω∈�

sup
x∈X

(
K(ω)‖hω(x) − h̄ω(x)‖ω

) + δ‖v f − v f̄ ‖′. (41)

The desired statement follows now readily from (40) and (41). �
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